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elevations in glutamate and glutamine excretion. The abso-
lute amounts of urea and ammonium excreted additionally 
were 3  mmol and 8  mmol, respectively. Already during 
CPB, distinct amounts of the histidine administered are 
metabolized, mainly to other amino acids, but only small 
amounts to urea and ammonia. Thus, the impact of the his-
tidine incorporated on acid–base status in the intraoperative 
phase is minor. On the other hand, intraoperative provision 
of several amino acids arising from histidine metabolism 
might mitigate postaggression syndrome.

Keywords  Cardioplegia · Cardiopulmonary bypass · 
Heart–lung machine · Inzolen

Introduction

Bretschneider (histidine-tryptophan-ketoglutarate, HTK) 
solution is routinely administered for cardioplegic arrest in 
many countries (Careaga et  al. 2001). In clinical studies as 
well as in experimental models the Bretschneider solution has 

Abstract  Bretschneider (histidine-tryptophan-ketoglutar-
ate, HTK) solution employed for induction of cardioplegic 
arrest possesses a high histidine concentration (198 mM). 
Due to the large volume administered, massive amounts 
of histidine are incorporated. The aim of the study was to 
evaluate alterations in amino acid and nitrogen metabolism 
originating from histidine degradation. Between 07/2014 
and 10/2014, a total of 29 consecutive patients scheduled 
for elective isolated coronary artery bypass grafting with 
cardiopulmonary bypass (CPB) were enrolled in this pro-
spective observational study. The patients received 1.6  L 
cardioplegic Bretschneider solution on average. Blood gas 
and urine samples obtained were analyzed for amino acid 
as well as urea and ammonium concentrations. After CPB 
initiation, plasma histidine concentration greatly increased 
to 21,000 µM to reach 8000 µM at the end. Within the oper-
ative period, plasma concentrations of aspartate, glutamate, 
asparagine, alanine, and glutamine increased variable in 
magnitude. During the same time, urinary analysis revealed 
histidine excretion of 19,500  µmol in total and marked 
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been shown to achieve a better myocardial protection during 
ischemia as compared to pure electrolyte-containing crystal-
loid cardioplegic solutions without histidine or to blood car-
dioplegia (Beyersdorf et al. 1990; Careaga et al. 2001; Kober 
et  al. 1998; Korun et  al. 2013; Sakata et  al. 1998; Scrascia 
et al. 2011). The effectiveness of the solution becomes appar-
ent in an increased cardiac output, fewer arrhythmias, more 
frequent spontaneous defibrillation as well as decreasing 
length of stay in the intensive care unit (Careaga et al. 2001; 
Sakata et al. 1998). The included histidine (198 mM) is asso-
ciated with enhanced efficiency of anaerobic glycolysis due 
to a high buffer capacity, whereas α-ketoglutarate (1 mM), an 
intermediary of the Krebs cycle, is assumed to serve energy 
production. Tryptophan (2 mM) and mannitol (30 mM) are 
proposed to function as a stabilizer of cell membranes and to 
reduce cellular edema formation, respectively (Careaga et al. 
2001). Usually, if Bretschneider solution is employed, almost 
all of the administered volume enters the systemic circulation. 
Thus, due to the large volume of the Bretschneider solution 
applied for induction of cardioplegic arrest, there is a massive 
incorporation of histidine.

To date, only very few data exist on plasma amino acid 
concentrations originating from histidine metabolism 
related to Bretschneider cardioplegia (Doetsch et al. 1987; 
Schayani-Mühlschlegel 1990). Therefore, we will here 
analyze concentrations of especially histidine but also fur-
ther amino acids as well as urea and ammonia in plasma 
derived from intraoperatively taken blood gas samples as 
well as urine samples obtained at the beginning and the 
end of the operation, thus trying to establish an overall bal-
ance of amino acid and nitrogen metabolism under these 
conditions.

Materials and methods

Study design and patient population

Between 07/2014 and 10/2014, a total of 29 consecu-
tive patients scheduled for elective isolated coronary 
artery bypass grafting (CABG) with cardiopulmonary 
bypass (CPB) were enrolled in the prospective observa-
tional designed study at the Department of Thoracic and 
Cardiovascular Surgery, University Hospital Essen. The 
study was approved by the Medical Ethics Committee of 
the University Hospital Essen and confirms to the princi-
ples of the Declaration of Helsinki. All individuals gave 
written informed consent. In short, myocardial protection 
was achieved using antegrade cold crystalloid Bretschnei-
der cardioplegia (Custodiol, Dr. Franz Koehler Chemie, 
Bensheim, Germany), employing 1.6 ±  0.2  L on average 
supplemented by topical cooling, and single aortic cross-
clamping for all distal anastomoses. After weaning from 

the heart–lung machine, patients received 56  mL Inzolen 
(Dr. Franz Koehler Chemie, Bensheim, Germany) on aver-
age. For further details see (Teloh et al. 2015).

Patient Characteristics

Of all patients, 76 % were male gender. The median values 
for age, height, weight, cardiopulmonary bypass time, and 
cross-clamp-time were 71  years, 173  cm, 84  kg, 86  min 
and 53  min, respectively. On average, patients received 
three grafts each.

Data collection

Blood gas samples were routinely taken during operative 
procedures (initially, after beginning of CPB, before ces-
sation of CPB, after cessation of CPB, before the end of 
operative procedures), and centrifuged at 3000g for 10 min 
at room temperature. Subsequently, the plasma was taken 
off and stored at −80 °C until analysis.

Immediately after catheterization of the patient’s urinary 
bladder, a urine sample was obtained in order to represent 
baseline conditions. At the end of the operative procedures, 
a second sample was gathered from the volume that had 
been collected during the operation.

Measurements

For ammonium quantification in urine, capillary electropho-
resis (P/ACE MDQ, Beckmann Coulter, Krefeld, Germany) 
was used. For this purpose, a fused silica capillary was 
employed with an effective length of 50 cm, an I.D. of 75 µm 
and an O.D. of 375 µm. Samples of initial urine were diluted 
with ultrapure water 1:50. Analysis was performed using a 
cation analysis kit (ABSciex, Fullerton, USA) and pressure 
injection. The subsequent separation proceeded using a volt-
age of 30 kV and normal polarity of the capillary. Indirect 
detection was performed employing a photo diode array at 
a wavelength of 200 nm. Due to the low sensitivity of the 
employed capillary electrophoresis, ammonium quantifica-
tion in plasma was performed with an enzymatic method in 
the central laboratory of the University Hospital Essen.

Urine and plasma were analyzed for urea. Plasma sam-
ples were diluted 1:4, whereas urine was diluted 1:10 
with 0.9 % NaCl. Urea was determined with the help of a 
fully automated clinical chemistry analyzer (Respons 920, 
DiaSys Diagnostics, Holzheim, Germany) using a commer-
cially available reagent (DiaSys Diagnostics, Holzheim, 
Germany) for the enzymatic reactions of urease and glu-
tamate dehydrogenase and subsequent detection of NADH 
decrease at 340 nm.

Urine and plasma samples were also analyzed for 
amino acids. For deproteinization, 300  µL sample were 
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added to 75  µL sulfosalicylic acid (10  % in water) and 
thoroughly mixed. This mixture was centrifuged at 
12,000  U/min for 5  min. Subsequently, 200  µL of the 
supernatant were diluted with reagent buffer at the ratio 
of 1:1. Of this formulation, 50  µL were injected into 
the liquid chromatograph (biochrom 30+, biochrom, 
Cambridge, UK). With the help of the employed cation 
exchanger, separation of amino acids took place at a rate 
of 0.25 mL/min due to varying pH and molarity of used 
running buffers containing citrate. Following this, the 
amino group reacted with ninhydrin, forming a colored 
complex which was detected at 570  nm (primary amino 
acids) and 440 nm (secondary amino acids), respectively. 
Urine as well as plasma samples were treated in the same 
way. Due to technical limitations in association with 
the high histidine concentration in plasma subsequent 
to Bretschneider application, tryptophan could not be 
exactly quantified.

Statistical analysis

All data are expressed as mean values ± standard deviation 
(SD) unless otherwise stated. Comparisons among differ-
ent time points were performed using one-way independ-
ent analysis of variance (ANOVA) followed by the Fisher 
(LSD) post hoc analysis. A P value <0.05 was considered 
significant.

Results

After start of CPB with concomitant induction of car-
dioplegic arrest, plasma histidine concentration sharply 
increased from an initial value of 71 to 21000 µM (Fig. 1a). 
Subsequently, during the course of the operation, it stead-
ily decreased, reaching a concentration of 8000 µM at the 
end. The aspartate’s concentration in plasma rose from 
5 µM before to 1600 µM at the end of operation (Fig. 1b). 
Within the same interval, plasma glutamate concentration 
increased from 23 to 360 µM (Fig. 1c). Plasma concentra-
tions of glutamine, asparagine, glycine, alanine and serine 
rose modestly from initial values of 596, 38, 214, 318, and 
108  µM, respectively, to 862, 65, 325, 807, and 174  µM, 
respectively, at the end of the operation (Figs.  1d, 2a–d). 
Plasma concentrations of arginine, leucine, lysine, methio-
nine, ornithine, phenylalanine, proline, tyrosine, threonine 
as well as valine varied little, and stayed within the respec-
tive reference ranges (Table 1).  

Histidine excretion largely increased from 47  µmol/
mmol creatinine at basal conditions to 6760  µmol/
mmol  creatinine at the end of operation (Fig.  3a). Taking 
the intraoperatively excreted urine volume into account, it 
amounted to 19.5 mmol, i.e. just under 7 % of the incorpo-
rated amount of histidine (300 mmol). In the same interval, 
glutamate excretion rose from 1  µmol/mmol creatinine to 
126  µmol/mmol creatinine and glutamine excretion from 

Fig. 1   Intraoperative plasma 
concentrations of a histidine, 
b aspartate, c glutamate, d 
glutamine. Patients received 
1.6 L cardioplegic solution 
at the onset of cardiopulmo-
nary bypass, which contained 
198 mM histidine for induc-
tion of cardioplegia. Values are 
shown as mean ± SD. Asterisk 
<0.05 compared with the initial 
value. Double asterisk <0.01 
compared with the initial value. 
Triple asterisk <0.001 compared 
with the initial value
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33  µmol/mmol creatinine to 150  µmol/mmol creatinine 
(Fig. 3c, d). Excretion of aspartate, asparagine, glycine, ala-
nine and serine slightly increased as well but stayed within 
the reference range (Figs. 3b, 4a–d). Amounts of carnosine, 
1-methylhistidine and 3-methylhistidine in urine were sub-
jected to only minimal changes (data not shown).

Urea and ammonium excretion per hour increased 
during the time of operative procedures from 9.5 and 
1.1  mmol/h, respectively, at basal conditions to 10.1 and 
2.6  mmol/h, respectively (Fig.  5). This increase in excre-
tion amounts to 3 mmol urea and 8 mmol ammonium (both 
median) in the intraoperative interval compared to basal 
excretion. The magnitude of increase in urea excretion 

differed among patients, thus leading to fluctuating values 
in the range of 2–30 mmol/h. In plasma, over the course of 
the operation, the median of urea concentration was about 
30 mg/dL (5 mM). Plasma ammonium concentration repre-
sented about 90 µg/dL (50 µM).

Discussion

In the human organism, histidine is degraded by two 
major pathways (Bender 2012a; Doetsch et  al. 1987). 
First, it can be deaminated to glutamate via urocanic acid, 
which is supposed to be the dominant one. Second, it can 

Fig. 2   Intraoperative plasma 
concentrations of a asparagine, 
b glycine, c alanine, d serine. 
Patients received 1.6 L cardio-
plegic solution at the onset of 
cardiopulmonary bypass, which 
contained 198 mM histidine for 
induction of cardioplegia. Val-
ues are shown as mean ± SD. 
Triple asterisk <0.001 compared 
with the initial value

Table 1   Intraoperative plasma concentrations of different amino acids. From (Duran 2008) 

Values are given as mean value ± SD

Amino acid Initial 1. BGA during CPB Last BGA during CPB 1. BGA past CPB End of operation Reference range

Arginine (µM) 71 ± 18 70 ± 8 90 ± 20 81 ± 21 71 ± 19 15–190

Leucine (µM) 135 ± 27 174 ± 30 196 ± 36 173 ± 34 159 ± 35 70–200

Lysine (µM) 179 ± 21 192 ± 28 222 ± 39 207 ± 37 194 ± 31 115–300

Methionine (µM) 22 ± 4 24 ± 5 27 ± 6 24 ± 5 25 ± 6 10–40

Ornithin (µM) 54 ± 15 49 ± 16 57 ± 15 55 ± 17 52 ± 22 50–200

Phenylalanine (µM) 55 ± 7 53 ± 9 44 ± 13 42 ± 12 37 ± 10 35–85

Proline (µM) 149 ± 28 151 ± 32 185 ± 22 182 ± 30 201 ± 39 97–330

Tyrosine (µM) 56 ± 11 58 ± 11 54 ± 12 51 ± 11 47 ± 9 35–115

Threonine (µM) 117 ± 31 131 ± 31 176 ± 41 173 ± 36 170 ± 36 60–225

Valine (µM) 237 ± 28 254 ± 37 271 ± 39 263 ± 43 258 ± 38 120–340
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be decarboxylated to finally yield aspartate. As soon as 
these two pathways that ensure a specific degradation are 
exhausted due to a high histidine concentration in plasma, 
other pathways are activated in addition, yielding those 
amino acids with short unbranched side chains while 
maintaining the histidine’s α-amino-carboxylic acid group 
(Doetsch et al. 1987). That way, glycine, alanine or serine 
may be obtained, depending on the length of the hydrocar-
bon chain, and a possible hydroxylation.

Patients received 1.6 L Bretschneider solution on aver-
age for induction of cardioplegic arrest. Based on the 

applied volume and its histidine concentration of 198 mM, 
a total of about 300 mmol histidine had been incorporated 
(Fig. 6). Assuming an estimated blood volume of approx-
imately 5.2  L [calculation on the basis of the formula of 
Nadler (Nadler et  al. 1962)], a plasma concentration of 
about 60  mM would have to be expected. However, only 
about a third of this calculated concentration, i.e. 20 mM, 
was detected in plasma in accordance with two former 
studies (Doetsch et  al. 1987; Schayani-Mühlschlegel 
1990). This strongly suggests the participation of the inter-
stitial space for distribution. Actually, inclusion of the 

Fig. 3   Excreted amounts of a 
histidine, b aspartate, c gluta-
mate, d glutamine during the 
intraoperative phase. Values are 
shown as mean ± SD. Double 
asterisk <0.01 compared with 
the initial value. Triple asterisk 
<0.001 compared with the 
initial value

Fig. 4   Excreted amounts of a 
asparagine, b glycine, c alanine, 
d serine during the intraopera-
tive phase. Values are shown as 
mean ± SD
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entire extracellular volume for calculation [intravascular 
plus interstitial, approximately 2.9-fold the blood volume 
(Grocott et al. 2005)] would result in a histidine concentra-
tion of approximately 20 mM. Thus, obviously, soon after 
incorporation (first sample during CPB), an equilibrium 
between blood and the interstitial space had already been 
achieved.

The physiologic histidine concentration in plasma 
accounts for approximately 100 µM (Table 2). Under these 

conditions, 5 % of the filtered histidine are renally excreted 
due to major reabsorption in the proximal tubule (Lingard 
et al. 1973; Silbernagl and Volkl 1977), i.e. about 100 µmol/
mmol creatinine (Table 2). In the present study, attributable 
to the highly elevated plasma histidine level (20 mM), the 
excreted amount accounted for 6800 µmol/mmol creatinine 
during the intraoperative interval. This value (equivalent to 
an absolute amount of 19.5 mmol histidine) corresponds to 
7 % of the incorporated histidine (300 mmol). For compari-
son, Doetsch et al. reported an amount of histidine excreted 
within the first 72 postoperative hours representing 20  % 
of the administered dose (Doetsch et  al. 1987). During 
the intraoperative phase, plasma histidine concentration 
decreased from 20 mM to 8 mM. Renal excretion contrib-
utes only to a minor extent to this decrease (19.5  mmol/
extracellular space of 15.1 L = 1.3 mM). Thus, uptake into 
cells and metabolic degradation (see below) should mainly 
be responsible for the rapid decline.

In accordance with the histidine’s main degradation 
pathways (see above), plasma concentrations of both 
aspartate and glutamate increased during the operation 
(Fig. 1b, c). Interestingly, however, the increase in plasma 
aspartate concentration was clearly more pronounced than 
the increase in plasma glutamate concentration (about 
1600  µM at the end of the operation, 63-times above the 
upper limit of the reference range vs. 360  µM which is 
2.8-times above the upper limit of the reference range, 
Table  2), although the degradation pathway yielding glu-
tamate is supposed to constitute the major route (Ghadimi 
1974; Mehler and Tabor 1953). A plausible explanation for 

Fig. 5   Urea as well as ammonium excretion per hour from every 
patient at basal conditions and in the intraoperative interval, respec-
tively. Lines represent median

Fig. 6   Survey of application, metabolization and renal excretion of 
several amino acids during cardiopulmoanry bypass (CPB) in coro-
nary artery bypass grafting patients. Patients received Bretschneider 
solution (main component histidine) for induction of cardioplegic 
arrest and Inzolen solution (main component potassium aspartate) 
after weaning from CPB to correct a shortage of potassium. In the 

course of intracellular metabolization, several amino acids emerge 
that show up in plasma, some of them are renally excreted. ↑↑↑, 
strong concentration increase; ↑↑, indicates moderate concentration 
increase; ↑, indicates slight concentration increase; ↔, indicates no 
change or changes staying within the reference range
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this unexpected behavior in plasma aspartate concentra-
tion is the application of Inzolen (Fig.  6). In conjunction 
with cardiac surgery, Inzolen solution, consisting mainly of 
racemic potassium aspartate and further trace elements, is 
usually applied to correct a shortage of potassium. In the 
present study, due to the solution’s composition, patients 
received approximately 24  mmol aspartate after weaning 
from CPB this way. Despite the aspartate’s highly elevated 
plasma level, urine analysis revealed only minor excretion 
(Fig. 3b), but enhanced excretion of glutamate (126 µmol/
mmol creatinine at the end of operative procedures, 3-times 
the upper limit of the reference range, Fig.  3c; Table  2). 
Because aspartate and glutamate possess the same net 
charge at physiological pH, they are reabsorbed by the 
same carrier in the proximal tubule [in the case of aspartate 
independent of the isomer (Silbernagl 1983; Silbernagl and 
Volkl 1983)]. Obviously, reabsorption of aspartate is pre-
ferred which is in line with the higher affinity of the carrier 
for aspartate (KM 0.10  mM for aspartate vs. 0.17  mM to 
0.50 mM for glutamate, both determined in the rat) (Silber-
nagl 1981, 1983).

Those amino acids having been formed by side chain 
conversion while maintaining the histidine’s original 
α-amino-carboxylic acid group, i.e. glycine, alanine and 
serine, also increased in plasma in the course of the opera-
tion, although variable in magnitude, with glycine and 

serine staying within the reference interval (Fig.  2b–d; 
Table  2). The increase of alanine (300  µM to 800  µM at 
the end of the operation, 1.4-times above the upper limit 
of the reference range, Table 2) was plainest among those 
three amino acids, perhaps either due to the transamina-
tion reaction with glutamate or with histidine itself. The 
latter reaction occurs rarely under physiologic conditions 
but becomes more important in diseases associated with 
histidinemia (Bender 2012a), characterized by histidine 
plasma levels up to 1.8 mM (Ghadimi 1974; Virmani and 
Widhalm 1993). In accordance with the elevated concentra-
tions in plasma, urinary excretion of glycine, alanine and 
serine increased slightly during the intraoperative inter-
val, but stayed within the reference interval (Fig.  4b–d; 
Table 2). Glutamine as well as asparagine possess the capa-
bility to accommodate an additional amino group, there-
fore representing the possibility to store further nitrogen. 
However, the plasma concentrations of glutamine as well 
as asparagine increased only moderately during the opera-
tion (Figs.  1d, 2a). For glutamine, this probably results 
from continuous catabolism for the purpose of ammonium 
synthesis and an increased excretion (150 µmol/mmol cre-
atinine, 2.6-times the upper limit of the reference range; 
Fig. 3d; Table 2). Increased glutamine excretion might arise 
from end product inhibition of glutamine and glutamate 
catabolism by alpha-ketoglutarate (Yao et al. 2012). Carno-
sine (β-alanyl-histidine, <5 µM), 1-methylhistidine as well 
as 3-methylhistidine (both <3  µM) as further degradation 
products of histidine (Bender 2012a) stayed below the limit 
of quantification in plasma and were comparable to base-
line conditions at the end of operative procedures in urine 
(data not shown). Thus, these pathways of histidine metab-
olism remained unused.

Alterations in glutamate, glutamine, alanine, aspara-
gine and aspartate may arise from histidine metabolism. 
In addition, aspartate is applicated with the Inzolen solu-
tion. All are, directly or indirectly, glucoplastic amino acids 
(Bender 2012a, b). Therefore, they can be used for gluco-
neogenesis that is per se energy consuming. Energy con-
sumption of asparagine, aspartate, glutamine and glutamate 
is smaller during this process compared to that of alanine, 
since pyruvate deriving from alanine degradation must first 
be carboxylated to oxaloacetate, which costs additional two 
molecules ATP per mol glucose. In contrast, metabolism of 
the aforementioned amino acids directly yields oxaloace-
tate or alpha-ketoglutarate that is converted to oxaloacetate 
via the citric acid cycle. Alpha-ketoglutarate deficiency in 
cardiac tissue occurs rapidly during ischemia (Peuhku-
rinen et  al. 1983). Provision of alpha-ketoglutarate (as an 
additive in blood cardioplegia) has been shown to attenu-
ate myocardial ischemic injury in patients undergoing 
coronary revascularization (Kjellman et  al. 1995). Hence, 
exogenous supply might preserve myocardial oxidative 

Table 2   Reference ranges of different amino acids, urea and ammo-
nia in plasma as well as amino acids in urine

From Duran (2008), Thomas (1998) and Waters et al. (1967)

Reference range

Plasma

 Histidine 70–125 µM

 Aspartate 0–25 µM

 Glutamate 10–130 µM

 Glutamine 200–760 µM

 Asparagine 35–75 µM

 Glycine 150–490 µM

 Alanine 175–580 µM

 Serine 60–180 µM

 Urea 17–43 mg/dL

 Ammonia 27–90 µg/dL

Urine (µmol/mmol creatinine)

 Histidine 52–162

 Aspartate 5–27

 Glutamate 5–37

 Glutamine 22–58

 Asparagine 11–53

 Glycine 83–475

 Alanine 27–76

 Serine 27–76
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capacity. In addition, it may help to minimize postoperative 
muscle catabolism (see below) (Wernerman et  al. 1990). 
Thus, the addition of 1 mM alpha-ketoglutarate to the car-
dioplegic solution seems beneficial, despite the possible 
conversion of amino acids arising from histidine metabo-
lism into alpha-ketoglutarate in the later course. The car-
dioplegic solution also contains 2  mM tryptophan. In the 
course of tryptophan metabolism, the antioxidant mela-
tonin might be formed but also nicotinamide adenine dinu-
cleotide might even increase which has also been reported 
to act as an antioxidant (Kirsch and de Groot 2001). Due 
to the melatonin’s inherent antioxidant function (Tan et al. 
2002) but also the induction of antioxidant enzymes, it 
can exert cardio-protective effects against amongst others 
ischemia/reperfusion injury (Giacomo and Antonio 2007; 
Reiter and Tan 2003). Since during temporary cardioplegia 
the myocardium becomes ischemic very easily, this might 
have an appreciable contribution to myocardial protection 
during this phase as well.

The entire amount of histidine having been metabolized 
during the intraoperative period should be reflected by the 
differences in amino acid as well as urea and ammonium 
concentrations/amounts before (baseline values) and at the 
end of the operation in plasma as well as in urine, averag-
ing 30 mmol in total. In this regard, the amount of further 
amino acids in urine except for histidine is negligible in 
terms of quantity. Of these 30 mmol, two-thirds account for 
the rise in several amino acids in plasma (19  mmol alto-
gether) and one-third for elevation of ammonium (8 mmol) 
plus urea (3  mmol) excretion. Plasma urea and ammonia 
concentrations were in accordance with physiological val-
ues in the literature (Table  2), as expected for substances 
that are obligatory for excretion by urine. Hence, metabo-
lism in this intraoperative phase is small, but principally, it 
is supposed to continue in the postoperative phase. In the 
special case of aspartate, this amino acid was left out of 
consideration. Due to Inzolen application beginning after 
weaning from CPB, the amount of aspartate rose continu-
ously towards the end of the intraoperative period. For this 
reason, a considerable share originating from histidine 
metabolization is unlikely.

Apart from the α-amino group, every histidine possesses 
two additional nitrogen atoms located in the imidazole 
ring. In the course of metabolism, this nitrogen should be 
excreted either as ammonium ions or as urea in the long 
term. Nitrogen excretion per se is intimately linked to sys-
temic acid–base status, since generation of urea is bicar-
bonate consuming (Han 2011; Meijer 1995; Pitts 1964), 
whereas ammonium is mainly obtained by deamination 
reactions from glutamine, glutamate or histidine (Han 
2011; Pitts 1964; Weiner et al. 2015). As it is common for 
amino acid metabolism, the histidine’s α-amino group is 
converted to urea together with bicarbonate derived from 

the degradation of the remaining α-keto acid, thus being 
neutral as regards systemic acid–base homeostasis. The 
excretion of a surplus of 3 mmol urea (see above) should 
result in an additional base deficit of only −1  mEq/L. 
Thus, in relation to acute metabolic acidosis originating 
from massive dilution of endogenous bicarbonate based 
on administration of both the priming and the cardiople-
gic solution (Teloh et  al. 2015), the impact of nitrogen 
metabolism on acid base status in the intraoperative phase 
is minor. Due to persistent metabolism in the postoperative 
phase, however, the acidifying effect caused by enhanced 
urea excretion might get more pronounced over the course 
of time. In contrast, metabolization of infused aspartate 
(24 mmol) as part of the Inzolen solution should have an 
alkalizing effect in general based on its additional carboxyl 
group.

Subsequent to severe trauma or operations, amongst 
others, a stress-induced increase in sympathetic nerv-
ous activity is observed, resulting in a hypermetabolic 
state, the so-called postaggression syndrome (Sachs et al. 
1988). One of its characteristics is an increased gluconeo-
genesis from glucoplastic amino acids originating from 
enhanced protein degradation in skeletal muscle. There-
fore, in such a condition, nitrogen balance is principally 
negative. Some evidence exist, that postaggression syn-
drome might be mitigated by amino acid administration. 
A benefit resulting from thereof is supported by a study 
of Umenai et al. that was able to show positive effects of 
perioperative amino acid infusion in patients undergoing 
off-pump CABG, resulting in a significantly shorter dura-
tion of postoperative mechanical ventilation as well as 
intensive care unit stay (Umenai et  al. 2006). Therefore, 
intraoperative provision of several amino acids arising 
from histidine metabolism (19 mmol in the present study) 
might achieve a similar result, especially since many of 
them represent glucoplastic amino acids (see above). 
Endogenous protein sources like skeletal muscle might 
be spared from degradation this way. Because the provi-
sion of several amino acids takes place before the onset of 
postaggression syndrome, this application’s effect might 
be particularly beneficial.

In conclusion, in patients undergoing CABG, receiving 
approximately 1.6 L Bretschneider solution, a very sub-
stantial elevation of plasma histidine concentration was 
observed a few minutes after onset of CPB. Of the incor-
porated amount of 300 mmol histidine approximately 7 % 
were excreted without prior metabolization. In addition, 
about 10  % were metabolized, mostly being converted 
into other amino acids. Therefore, the influence on acid–
base homeostasis originating from nitrogen metabolism is 
minor. Moreover, altered amino acid levels in plasma may 
have beneficial effects on postaggression syndrome in the 
postoperative phase.
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