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characterize stimulus-dependent
visual cortical shared variability

Ji Xia,1,6,* Anna Jasper,2 Adam Kohn,2,4,5 and Kenneth D. Miller1,3
SUMMARY

Correlated variability in the visual cortex ismodulated by stimulus properties. The stimulus dependence of
correlated variability impacts stimulus coding and is indicative of circuit structure. An affine model
combining amultiplicative factor and an additive offset has been proposed to explain how correlated vari-
ability in primary visual cortex (V1) depends on stimulus orientations. However, whether the affine model
could be extended to explain modulations by other stimulus variables or variability shared between two
brain areas is unknown. Motivated by a simple neural circuit mechanism, we modified the affine model to
better explain the contrast dependence of neural variability shared within either primary or secondary vi-
sual cortex (V1 or V2) as well as the orientation dependence of neural variability shared between V1 and
V2. Our results bridge neural circuit mechanisms and statistical models and provide a parsimonious expla-
nation for the stimulus dependence of correlated variability within and between visual areas.

INTRODUCTION

Neural responses in the visual cortex to repeated presentations of a fixed visual stimulus exhibit trial-to-trial variability. These trial-to-trial fluc-

tuations are correlated or shared among neurons in a local population. There are three primary motivations for investigating and character-

izing this shared variability. First, it plays a pivotal role in shaping stimulus coding.1–4 For example, shared variability patterns that steer the

population response from one stimulus toward the response to a nearby stimulus can hinder accurate stimulus coding.3 Second, accumu-

lating evidence suggests that the standard deviation of shared variability at each neuron ismodulatedby stimuli,5–8 as well as by behavioral9,10

and task-related11–13 variables. Consequently, a prevailing argument posits that shared variability does not just reflect stochasticity; instead, it

serves to encode additional, complementary information that is absent from the trial-averaged responses and may have computational util-

ity.14–16 Third, the pattern of shared variability reflects the underlying connectivity among neurons.17,18 Therefore, characterizing shared vari-

ability serves as a valuable approach for inferring circuit structure, especially because performing experimental measurements of single

neuron input-output function or connectivity is often challenging.19–21

In this work, we focus on investigating and characterizing how shared variability depends on stimuli. A comprehensive understanding of

the stimulus-dependent nature of shared variability lays the groundwork for quantifying its impact on stimulus coding and inferring circuit

structure.

Three models of stimulus-modulated shared variability have been considered in most previous work7,22–24: the amplitude (standard de-

viation) of a given neuron’s shared variability might be multiplicative (proportional to the neuron’s stimulus response), additive (stimulus in-

dependent), or affine (combination of a multiplicative and an additive component). For neurons in the visual cortex, previous work found that

multiplicative22 or affine7,24 models outperform the additive model in explaining the neural data. However, further work is needed to thor-

oughly characterize stimulus-dependent shared variability. It is possible that the underlying modulation takes other more complicated forms

than the three proposed models. Furthermore, these models cannot account for the fact that shared variability is suppressed with increasing

stimulus contrast.25,26 Moreover, thesemodels are statistical in nature and lack a foundation in neural circuitrymechanism. In this study, wewill

demonstrate that consideration of such mechanisms suggests alternative forms for the modulation of shared variability.

Trial-to-trial variability is not only correlated across neurons within a brain area but also across neurons from two connected brain

areas.27–33 This correlation of neural activity between brain areas is often interpreted as area-to-area communication. Characterizing the

shared variability between brain areas is vital for understanding its impact on joint stimulus coding by multiple brain areas and for inferring
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Box 1. How does neural variability depend on the stimulus in a recurrent neural network?

In this box, we show that in a recurrent neural network, one should expect neural variability (fluctuation around the fixed point) to depend on the stimulus

(external input), if we have a nonlinear activation function for the neurons.

Let us consider neural dynamics governed by a standard rate network equation:

t
drðtÞ
dt

= � rðtÞ+ f ðWrðtÞ + hðtÞÞ (Equation 1)

Here, t is the time constant of neurons. rðtÞ is a vector that denotes the firing rates of all the neurons at time t.W is the matrix of recurrent

connectivity between neurons. hðtÞ is a vector that denotes the external input received by all the neurons at time t. f ð $Þ is the activation

function, which is applied element-by-element to its vector argument.

Consider the case where hðtÞ = h� is a constant over time. Then, rðtÞ will evolve to a fixed point r� that satisfies

r� = f ðWr� + h�Þ (Equation 2)

provided that this fixed point is stable. We are interested in how rðtÞ fluctuates around r�, if hðtÞ = h� + dhðtÞ, where dhðtÞ denotes some

external input noise. In other words, we want to know dr that satisfies the following equation:

t
dðr�+drðtÞÞ

dt
= � ðr� + drðtÞÞ+ f ðWðr� + drðtÞÞ + ðh� + dhðtÞÞÞ (Equation 3)

As in the study by Trousdale et al., Ocker et al., and Hennequin et al.,17,18,26 we assume that both dr and dh are sufficiently small that we can Taylor expand

the second term on the right-hand side of Equation 3 around the fixed point and only keep the first-order term:

f ðWðr� + drðtÞÞ + ðh� + dhðtÞÞÞz f ðWr� + h�Þ
+ FWdrðtÞ + FdhðtÞ

F is a diagonal matrix with diagonal entries f 0ðWr� +h�Þ, which is the vector of neuronal gains—the slope of the activation function at each

neuron’s fixed-point firing rate.

With Equation 2, we can simplify Equation 3 to get:

t
dðdrðtÞÞ

dt
= � drðtÞ+ FWdrðtÞ+ FdhðtÞ (Equation 4)

If we further assume that the external input noise dhðtÞ varies slowly over time (much slower than t), the left-hand side of Equation 4 will tend to zero; thus,

we can get an expression for drðtÞ:

drðtÞ = ðI � FWÞ� 1FdhðtÞ (Equation 5)

Empirically, the slow input noise approximation gives a decent description of the simulation as long as autocorrelation time of the external input noise is

slower than � 50 ms (see Supplementary section "analysis in simplified scenarios" in the study by Hennequin et al.26).

If the activation function f ð $Þ is nonlinear, then F changes with neuronal activation level and thus depends on r�, which, in turn, depends on the stimulus h�.
Consequently, drðtÞ also depends on the stimulus through F, as discussed before in the study by Doiron et al.35

To gain more intuition on what drðtÞ looks like, consider a special case where f ðxÞ = kxn (with n> 1, x > 0), then we have F = diagf 0ðf� 1ðr�ÞÞ =

diagðnk1=nr�ð1� 1=nÞÞ. In this case, entries of F are monotonically increasing with r�. As a motivation for the choice, it has been shown that this power-law

nonlinearity well describes the responses of visual cortical neurons,36–38 with evidence from in vivo whole-cell recordings in V1.19

Equation 5 can be simplified in two limiting regimes, depending on the absolute values of the eigenvalues of FW . To explain this, we first consider the

relationship betweenmean firing rate r� and the absolute eigenvalues of FW . As we have just seen, increasing r� leads to higher positive diagonal entries of F.

Since det ðFWÞ = det F det W , increasing r� leads to higher jdet ðFWÞj through increasing det F, which typically results in increased absolute eigenvalues of

FW (though exceptions exist).

Our first limiting case is if the entries of FW are sufficiently small (low firing rates and/or weak weights) that all its eigenvalues have absolute values smaller

than 1 (i.e., FW has a spectral radius less than 1). Then, we can expand ðI � FWÞ� 1 to obtain

drðtÞz
�
I+FW+ðFWÞ2 + .

�
FdhðtÞ

The largest (first) term is FdhðtÞfdiagðr�ð1� 1=nÞÞdhðtÞ. In this case, drðtÞ tends to be higher for those neurons with higher mean firing rate r� under a given

stimulus h�.

In our second limiting case, the entries of FW are sufficiently large (high firing rates and/or strong weights) that all of the eigenvalues of FW have absolute

values larger than 1. Then, we can expand ðI � FWÞ� 1 = ðI � ðFWÞ� 1Þ� 1ð� FWÞ� 1 to obtain

drðtÞz
�
I + ðFWÞ� 1 + ðFWÞ� 2 + /

�
ð�WÞ� 1

dhðtÞ
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Box 1. Continued

The largest (first) term is � W� 1dhðtÞ, which is independent of the mean firing rate r� under a given stimulus. The higher-order terms will be stimulus

dependent through F; however, the amplitude of these terms will decrease with increasing r�. Interpolating between the two limiting cases, we expect the

stimulus dependence of dr to become weaker as population mean firing rates increase.

In summary, when the mean firing rates r� are small enough so that FW has a spectral radius less than 1, the amplitude of neural variability dr is stimulus

dependent and increases with increasing r�; when the mean firing rates r� are large enough so that all the eigenvalues of FW have absolute values larger than

1, the stimulus dependence of neural variability dr becomes weaker with increasing r�.

Here, neural variability drðtÞ could be equivalent to trial-to-trial variability if we define each time step as one trial. Otherwise, one may define that one trial

consists of multiple time steps ðftgÞ, where the trial-to-trial variability is drðtÞ summed over these time steps ðPftgdrðtÞ = ðI � FWÞ� 1F
P

ftgdhðtÞÞ. Note that,

in our neural circuit set up, the stimulus dependence of trial-to-trial variability will not change qualitatively according to the specific definition of trials.
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inter-area connectivity. Recent studies found that variability shared between areas has lower dimensionality compared with that shared within

each area,32 which suggests flexible inter-areal communication occurs through a low-dimensional subspace. However, how this inter-areal

shared variability is modulated by the external stimuli, and in particular, whether this modulation can also be captured by the previously pro-

posed multiplicative or affine statistical models, remains unknown.34

Here, we investigated how shared variability within and between visual areas depends on the stimulus. We analyzed electrophysiology

data simultaneously recorded in monkeys from areas V1 (primary visual cortex) and V2 (secondary visual cortex) in response to visual stimu-

lation of drifting gratings with different orientations and contrasts. We studied a simple circuit mechanism for explaining the previously

observed affine-like shared variability in V1.7,24We assumed that neural variability is the local fluctuation around a steady state of the recurrent

circuit, driven by stimulus-independent external noise. Based on this mechanism, we made three predictions: (1) when firing rates are low,

affine-like shared variability should be commonly observed in different brain areas with rectified power law activation functions. (2) In V1, if

we consider varying both contrasts and orientations, affine models must be modified to allow contrast-specific coefficients, due to suppres-

sion of shared variability with increasing contrast by recurrent dynamics.26 (3) Withminimal assumptions, variability shared between V1 and V2

should also be affine-like across stimulus orientations. Consistent with (1), we found that affine models also explain V2 data well when we var-

ied the stimulus orientations. Consistent with (2), when we varied both contrasts and orientations, we found that a generalized affine model

with contrast-specific coefficients best explained shared variability in V2. Consistent with (3), affine models parsimoniously explained how the

inter-areal variability shared between V1 and V2 depends on stimulus orientations. We also considered a generalized model that can have an

arbitrary form of shared variability for each stimulus. This model slightly outperformed affine models when we had sufficient data to fit it, but

differences were small.

Our work extends previous work in characterizing the nature of shared variability within a brain area to shared variability between brain

areas. Moreover, we provide a mechanistic explanation for the commonly observed affine-like shared variability. Importantly, we propose

an alternative form of stimulus-dependent shared variability that well explains the data when varying both orientation and contrast.

RESULTS

Circuit mechanism for stimulus-dependent shared variability

Numerous works have shown that in the visual cortex, shared variability is low dimensional, such that a large portion of the variance can be

explained with a 1-dimensional component or a common fluctuation across neurons.7,22,24,39,40 To date, there are two hypothesized circuit

mechanisms for explaining low-dimensional shared variability: first, it may be inherited from low-dimensional external input noise and modi-

fied by recurrent processing26,41; second, it may be intrinsically generated by chaotic dynamics in the recurrent circuit.40,42,43 In our work, we

focused on the first possibility, because this framework is more theoretically tractable and equally biologically plausible, compared to the

second possibility.

We assumed that neural variability represents fluctuations around a steady state of the recurrent circuit. Splitting neural activity into a trial-

averagedmeanplus variability ignores changes over trials in what is regarded as the ‘‘mean’’ response (for example due to adaptation), and so

is a simplification, but is the standard framework used to analyze trial-to-trial variability.35,44 Therefore, we modeled the variability as the fluc-

tuations around a static steady state.

To investigate the stimulus dependence of shared variability, we started with deriving an analytical expression for neural variability in the

recurrent neural circuit, assuming that external input noise is slow and small (Box 1). For the sake of simplicity, we assume for now that external

input noise over time is perfectly correlated across all recipient neurons in our circuit model (i.e., dhðtÞ = abðtÞ, a is a vector that denotes the
amplitude of external input noise at all the neurons, and bðtÞ is a scalar with unit variance over time). Consequently, in this model, neural vari-

ability is the same as shared variability, and private variability is not considered. As shown by Equation 5, even if the external input noise was

stimulus independent, the shared variability ðdrÞ would depend on the stimulus, because it depends on the neuronal gains (F, the slopes of

the activation function at each neuron’s firing rate), which in turn depend on the stimulus-driven neuronal firing rates ðr�Þ, given that the acti-

vation function of each neuron ðf ð $ÞÞ is nonlinear.
Previous work proposed that the stimulus dependence of shared variability can be well described by an affinemodel,7,24 meaning that the

amplitude of shared variability at each neuron can be approximated by an affine function of the neuron’s trial-averaged responses. According

to the circuit mechanism, when would the stimulus dependence of shared variability be affine? Based on our previous assumptions, the ampli-

tude of shared variability 4 can be expressed as 4 = ðI � FWÞ� 1Fa (see Box 1). If we further assume that the activation function follows a
iScience 27, 110512, August 16, 2024 3
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Figure 1. Circuit mechanism for stimulus-dependent shared variability

(A) Left: a schematic of the E-I neural circuit with a ring architecture. Excitatory neurons (red circles) and inhibitory neurons (blue circles) have preferred orientations

(POs) based on their angular positions on the ring. Two external inputs are denoted by the arrows in the bottom. Right: the connectivity strengths betweenmodel
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Figure 1. Continued

neurons. The first 50 neurons are excitatory, and the last 50 neurons are inhibitory. For simplicity, we ignore differences in numbers of E vs. I neurons. See Table 1

for a list of parameters used in the circuit model.

(B) Top: perfectly correlated external noise. Bottom: the corresponding residual responses (responses with time-averaged activity subtracted) given a visual

stimulus centered between neurons 25 and 26. On the right, we plot the amplitude of shared variability 4 across neurons. Here, we only show results for

excitatory neurons.

(C) Left top: three external static inputs h� representing visual inputs with different contrasts received by the model neurons (gray to black denotes low to high

contrast). Left bottom: the corresponding time-averaged responses r� of the model neurons. Right top: 4 at each neuron from numerical simulation (solid line)

and analytical estimation (dashed line; see Equation 5). Right bottom: the prediction of 4 from the affine models (green dashed line) plotted against the

simulated 4.

(D) Left: the simulated time-averaged firing rates of E and I neurons with POmatching the stimulus orientation, plotted against stimulus contrast. Right: Top: the

simulated time-averaged firing rates of all neurons under stimuli with different contrasts. Bottom: the shared variability amplitudes of all neurons under stimuli

with different contrast levels.
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rectified power law and the firing rates are low enough so that effective recurrent connections (the product of synaptic strengths and neuronal

gains) are negligible (see Box 1), then the amplitude of shared variability would be proportional to r�ð1� 1=nÞ (here r� is the trial-averaged ac-

tivity, and n is the exponent of the power law in the activation function). The tuning curve of dr in practice can bewell approximated by an affine

transformation of the tuning curve of r�. This approximation holds since the exponent 1 � 1=n primarily acts to flatten the tuning curve.

To investigate the case where effective recurrent connections are strong, we directly simulated a recurrent neural network with bump-

shaped orientation tuning curves, using a classical ring architecture26,45 (Figure 1A). Neurons in the network receive two external inputs:

(1) a tuned static input representing the visual stimulation and (2) perfectly correlated external noise that is slow and small (Figure 1B). We

calculated the amplitude of shared variability numerically from the network simulation (see STARMethods, Figure 1B) and analytically accord-

ing to Equation 5 (Figure 1C). Note that the analytical solution (Equation 5) only approximates the circuit dynamics described by Equation 3,

resulting in small differences between simulation results and the analytical predictions (upper right panel in Figure 1C). For simplicity, we set

the amplitudes of external noise to be the same across all recipient neurons, so that due to the ring symmetry, the dependence of shared

variability on stimulus orientation is the same as its dependence on neuronal preferred orientation (see Figure S1 for similar results when

we have external noise with heterogeneous amplitudes across recipient neurons). Interestingly, even when effective recurrent connections

are not negligibly small as assumed in Box 1, shared variability showed affine-like modulation across orientations for a wide range of contrast

levels (Figures 1C and 1D). However, the circuit model results also showed two signatures that cannot be captured by affine models, due to

recurrent dynamics. First, at high contrast levels, the shared variability amplitude exhibits an ‘‘M’’-shaped dependence on stimulus orientation

(Figure 1C); experimentally, ‘‘M’’-shaped noise correlation has been observed in monkey area MT.6 Second, with increasing contrast, shared

variability amplitude first increases and then decreases (Figure 1D; Hennequin et al.26); such a decrease in shared variability amplitude with

increasing stimulus strength has been observed in many cortical systems.25 In the supplemental information (Figures S1–S3), we further

analyze the behavior of shared variability in the ring circuit model to obtain an intuition for the origin of these two discrepancies from the

affine models (building on Hennequin et al.26).

In summary, through an analysis of the dynamics in a recurrent network subject to common input noise, we suggest an origin for affine-like

shared variability across orientations when the activation function adheres to a rectified power law. Additionally, we establish the need for the

development of a novel statistical model to more effectively capture the stimulus-dependent nature of shared variability when both stimulus

orientation and contrast are varied.
Affine models parsimoniously explain shared variability within V1 and V2 across stimulus orientations

To characterize the nature of shared variability in V1 and V2, we first analyzed electrophysiological recordings frommacaque V1 and V2 under

stimulation by drifting gratings of varying orientations and a single ð100%Þ contrast (see descriptions of dataset 1 in STAR Methods). A given

experimental session had 400 trials of each stimulus. Our goal is to identify a statistical model that explains the shared variability across stimuli

parsimoniously. Wemodeled single-trial neural responses as a sum of three elements (Figure 2A): trial-averaged responses; neural variability

shared across neurons, which itself may have multiple components (each component is a rank-1 matrix); and neural variability private to each

neuron. For neuron c on trial i with stimulus s, its response is modeled as:

rc;iðsÞ = dc;s +
X
r

4c;r;sar;i + ec;iðsÞ

dc;s is the trial-averaged response of neuron c to stimulus s; ar;i is a standardGaussian variable, ar;i � N ð0;1Þ, that governs how the rth compo-

nent of the shared variability varies across trials; 4c;r;s denotes the amplitude of the rth component of the shared variability for neuron c with

stimulus s (for a fixed s, vectors 4r;s are linearly independent across the component index r); and ec;iðsÞ represents the private variability, which

on each trial is a sample from a Gaussian distribution with neuron- and stimulus-specific variance ec;iðsÞ � N ð0;s2c;sÞ.
We considered four types of models with different constraints on the stimulus dependence of 4 (Figure 2C). For the additive model, the

amplitude of shared variability does not vary across stimuli ð4c;r;s = 4c;rÞ. For the multiplicative model, the amplitude of shared variability

is proportional to the trial-averaged activity ð4c;r;s = ac;rdc;sÞ. For the affine model, the amplitude of shared variability is constrained to be

an affine transformation of the trial-averaged response ð4c;r;s = ac;rdc;s +bc;rÞ. For the generalized model, there are no constraints on the
iScience 27, 110512, August 16, 2024 5



Table 1. Parameters used in the circuit model with a ring architecture

NE 50 –

NI 50 –

tE 20 ms

tI 10 ms

k 0.3 mV�n$s�1

n 2.5 –

WEE 0.25 mV$s

WIE 0.24 mV$s

WEI 0.13 mV$s

WII 0.1 mV$s

tnoise 500 ms

s2noise 0.5 mV2

lsyn 45 deg:

lstim 60 deg:

b 0.1 mV

Amax 20 mV
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stimulus dependence of 4c;r;s, as it can vary across s freely (i.e., it is non-parametric). In terms of number of parameters in the model, additive

model (2NS +NR parameters) = multiplicative model (2NS +NR parameters) < affine model (2NS + 2NR parameters) < generalized model

(2NS +NRS parameters), whereN is the number of neurons, S is the number of stimuli, and R is the number of components of shared variability.

If we have enough data so that none of the statistical models overfit, then we should always expect to see that the generalizedmodel performs

the best. Importantly, it is possible that, even without overfitting, a simpler model (e.g., additive or multiplicative model) can perform as well as

the generalized model. In that case, we conclude that the simpler model is the best model for capturing the data, as it contains fewer param-

eters but achieves the same performance (see Figure S3 for fitting performances of statistical models on the surrogate data with known ground

truth). Note that our proposed statistical models have a close relationwith factor analysis: the generalizedmodel is equivalent to applying factor

analysis separately to the residual responses to each stimulus; the additive model is similar to applying factor analysis to the set of residual

responses to all stimuli, except that it assumes stimulus-dependent private variability instead of stimulus-independent private variability.

We fit the four models to V1 and V2 neuronal responses separately, by maximum likelihood estimation with 5-fold cross-validation. We

evaluated the fitting performance of each model by two cross-validated measures: (1) the log likelihood of the experimental data given

the model (Figure 3A) and (2) the R2 of the model noise covariance in accounting for the experimental noise covariance (see STAR Methods,

Figure 3B). The log likelihood quantifies overall howwell the variability (both shared and private) is captured by the statisticalmodels, whereas

the R2 evaluates specifically how well the shared variability is captured by the statistical models.

All 5 experimental sessions showed the following results consistently (see Figure 3 for results from one session; Figure S5 for results from

other sessions). First, quantitatively, the generalized model performs the best among all the statistical models, especially in terms of R2

(Figures 3A and 3B). Second, qualitatively, the affine model performs almost as well as the generalized model in terms of capturing how

shared variability amplitude changes across orientations (Figure 3C, inferred 4 exhibits similar patterns for the two models). Third, with

less than 5 components in the shared variability, we captured most of the explainable variance in the neural data (Figure 3; Figure S5). Addi-

tionally, inferred private variability has an amplitude proportional to the trial-averaged responses, with proportionality constant > 1 (more

variable than Poisson noise; Figure S4).

Interestingly, we observed that experimental sessions with high firing rates tend to be better fit by additive models than multiplicative

models (Figure S5), suggesting that they exhibit weaker stimulus dependence of the shared variability. This observation aligns with the theo-

retical predictions (see Box 1) and is supported by the circuit model simulations (Figure S5).

Generalized affine models explain how shared variability depends on stimulus contrasts and orientations jointly

We predict that affine models will fail to explain how shared variability is modulated by contrasts and orientations jointly. This is because the

circuit mechanism (Figures 1B and 1D), as well as previous experimental and theoretical evidence,25,26 suggests that the amplitude of shared

variability should decreasewith increasing stimulus contrasts, which cannot be captured by affinemodels. To test this prediction, we recorded

from V2 neurons using neuropixel probes while presenting drifting gratings with 8 orientations and 3 contrast levels (see descriptions of data-

set 2 in STAR Methods and Figure S2).

Motivated by results of the circuit model simulation (Figures 1B and 1D) and fits to experiments varying orientation only (Figure 3), for a given

contrast level, we expect the dependence of shared variability on orientations to be well approximated by an affine model. Therefore, we pro-

posed a generalized affinemodel. Thismodel incorporates contrast-specific affine coefficients a and b, where4c;r;s = ac;r;contrastdc;s +bc;r;contrast.
6 iScience 27, 110512, August 16, 2024
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Figure 2. A schematic of the structures of statistical models

(A) The statistical model for capturing trial-to-trial variability shared within each brain area. For a given stimulus, we model the single-trial population neuronal

responses within a brain area as a sum of 3 terms: the trial-averaged activity (orange column, representing pattern of trial-averaged activity across neurons;

repeated identically for each trial), a 1-dimensional Gaussian variable shared across neurons (blue column representing pattern across neurons of shared

variability, multiplied by a scalar Gaussian variable for each trial, represented by row; we also studied the case with multi-dimensional shared variability), and

private variability that is an independent Gaussian variable for each neuron and trial.

(B) The statistical model for capturing trial-to-trial variability shared between two brain areas, V1 and V2. Similarly to A, we model the single-trial population

neuronal responses as a sum of 3 terms, except that the private variability is not independent across neurons, but is independent between the two brain

areas (variability within each area represented by red or blue blocks in illustrated covariance matrix, white indicates values of 0).

(C) We set up 4 types of statistical models with different constraints on the stimulus dependence of the shared variability amplitudes (i.e., of the blue column). For

additive models, the shared variability amplitude is constant across stimuli (but varies across cells, indicated by gray vector). For multiplicativemodels, the shared

variability amplitude is the element-wise product ð1Þ of a stimulus-independent vector and the stimulus-dependent trial-averaged population vector. For affine

models, the shared variability is the sum of multiplicative and additive components.
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We introduced this model as a model complex enough to capture the stimulus dependence predicted by the circuit mechanism yet simple

enough to avoid overfitting. Due to session duration limits and an increasing number of stimuli, we had to reduce the number of trials for

each stimulus. Consequently, we only have 100 trials per stimulus. With this decreased amount of data, the generalized model overfits: as

seen in our results (Figures 4A and 4B), even though the generalized models fit the data best in the training set, they perform poorly in the

test set. In contrast, the generalized affine model does not overfit.

Judging by the log likelihood and R2 of the noise covariance (Figures 4A and 4B), the generalized affine model performs the best when

both contrasts and orientations are varied. To show that an unmodified affine model indeed fails to capture the modulation of shared

variability in this case, we visualized the contrast dependence of the noise covariance, averaged over neuron pairs and stimulus orienta-

tions. As predicted by the circuit model, the amplitude of shared variability and the averaged noise covariance decreases with increasing

contrast, which is captured by the generalized affine model and the generalized model, and importantly, not by the affine model (Fig-

ure 4C; Figure S7).
iScience 27, 110512, August 16, 2024 7
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Figure 3. Affine models parsimoniously explain shared variability within V1 and V2 across stimulus orientations

Fitting results of statistical models of experimental session 1 with 8 orientations and a single contrast, 100%.

(A) The log likelihood of the test set. Error bars show the standard error of 5-fold cross-validation. Color denotes the number of components of the shared

variability. Note that we ordered the statistical models based on their complexity in ascending order from left to right.

(B) The R2 of the noise covariance (‘‘ncov’’) across stimuli of the test set. Error bars show the standard error of 5-fold cross-validation. Color denotes the number of

components of the shared variability.

(C) Fitted 4 of the 4 statistical models with 1 component in the shared variability is shown against the trial-averaged responses (units Hz) across 8 stimulus

orientations. Neurons are ordered according to their preferred orientations. The top row shows the result for V1 neurons. The bottom row shows the result

for simultaneously recorded V2 neurons.
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Circuit models predict affine-like variability shared between V1 and V2

So far, our analysis has focused on shared variability within each visual area. However, a significantly underexplored topic in the existing liter-

ature is the structure of variability shared between two interconnected visual areas. To gain some expectation on how variability shared be-

tween V1 and V2 should depend on the stimulus, we simulated a circuit model with two connected ring structures (Figure 5A), where each ring

represents one visual area. For simplicity, we assume both V1 and V2 show stronger connectivity between neurons with similar preference for

the only stimulus parameter used in our experiment, i.e., orientation. We assumed that connectivity from area 1 to area 2 is similar to con-

nectivity within each area, except without inhibitory projections (Figure 5A).

We simulated the response of neurons in the connected ring network to changing stimulus orientation (Figure 5B). Area 1 received

external inputs that consist of an orientation-tuned static external input and 1-dimensional external input noise. To calculate the ampli-

tude of 1-dimensional variability shared within each area, we looked at the dominant component found by applying singular value

decomposition to the residual activity of neurons within each ring, which is equivalent to the generalized model in the absence of pri-

vate noise. To calculate the amplitude of 1-dimensional variability shared between areas, we looked at the dominant component found

by applying probabilistic canonical correlation analysis46 to the set of residual responses of the two areas. This is equivalent to a gener-

alized joint model.

The variability shared between areas 1 and 2 consists of a pattern of neural firing across the two areas (Figure 2B). The portion of this

pattern within area 1 may be similar to (Figure 5) or quite different from (Figure S8) area 1’s pattern of purely within-area shared variability,

depending on the chosen connectivity between area 1 and area 2. (Note that, because area 2 does not receive any external noise, its

within-area and between-area noise always resemble one another.) Essentially, if the connectivity fromarea 1 to area 2 has a reasonably strong

component along the pattern of within-area-1 shared variability, this pattern will propagate to area 2, resulting in a between-area shared vari-

ability pattern that resembles the within-area-1 shared variability (Figures 5B and 5C). Conversely, if the between-area connectivity and the
8 iScience 27, 110512, August 16, 2024
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Figure 4. Generalized affine models explain how shared variability depends on stimulus contrasts and orientations jointly

Fitting performances of statistical models on the simultaneously recorded V2 data under stimulation by drifting gratings with 8 orientations and 3 contrast levels.

(A) The log likelihood of 4 different statistical models on the test set. Conventions as in Figure 3A. (‘‘gen_aff’’: generalized affine).

(B) The R2 of the noise covariance across stimuli of the test set. Conventions as in Figure 3B.

(C) The noise covariance averaged over neuron pairs and stimulus orientations is plotted against stimulus contrast levels. The first column shows the noise

covariance calculated from V2 data in the test set. Error bars show the standard error of 5-fold cross-validation. The second, third, and fourth column show

noise covariance calculated from different fitted statistical models with 2 components.
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pattern of within-area-1 shared variability are close to orthogonal, area 1’s pattern of between- and within-area shared variability may differ

(see an example simulation in Figure S8). It is reasonable to assume that the trial-averaged activity in V1 has a strong component along the

feedforward connectivity; otherwise, V2 would not be strongly activated. Building upon our previous analysis, which indicates that the domi-

nant pattern of shared variability within V1 aligns closely with trial-averaged activity and is affine (Figure 3C), we predict that shared variability

between visual areas will exhibit a similar orientation-dependent pattern to shared variability within each visual area and can be effectively

captured by affine models.
Affine joint models parsimoniously explain variability shared between V1 and V2 across stimulus orientations

Wenow characterize the stimulus dependence of variability shared between V1 and V2, in responses to stimuli of varying orientation at a fixed

ð100%Þ contrast. We use four statistical models like the four used previously, modified for the two-area case (Figure 2B).

rc;iðsÞ = dc;s +
X
r

4c;r;sar;i + ec;iðsÞ

The key differences from the within-area models are the following: first, we fit the statistical models to V1 and V2 data jointly as opposed to

separately; thus, we refer to these statistical models as ‘‘joint statistical models.’’ Second, here, 4c;r;s denotes the amplitude of the rth compo-

nent of shared variability between areas for neuron c and stimulus s, instead of shared variability within one area. Third, we assume the private

variability ec;iðsÞ is private to each brain area instead of private to each neuron (and thus can be shared within an area). Specifically, we assume

that on each trial i for a given stimulus s, eiðsÞ, which is a vector with length of the total number of neurons in V1 and V2, is a sample taken from a

multivariate Gaussian distributionN ð0;SsÞ. We assume that Ss is block diagonal, having non-zero entries only for within-V1 or within-V2 co-

variances. Note that this area-private variability ðec;iðsÞÞ includes both private variability at each neuron and variability that is shared only among

neurons within a single brain area.

As before, we fit joint statisticalmodels to V1 and V2 data bymaximum likelihood estimation with 5-fold cross-validation, andwe evaluated

the performances of the joint statisticalmodels with the previouslymentioned twomeasures.Without overfitting, we should expect to see that

the generalized model performs the best (see Figure S9 for fitting performances of joint statistical models on surrogate data with known

ground truth).
iScience 27, 110512, August 16, 2024 9
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Figure 5. Circuit models predict affine-like variability shared between V1 and V2

(A) Left: schematic of two-ring models, with each ring representing one brain area. Between-area connections are excitatory and unidirectional, from area 1 to

area 2. Area 1 receives an excitatory external input. Right: the connectivity strengths between the model neurons. The first 100 neurons are 50 excitatory and 50

inhibitory neurons in area 1, and the last 100 neurons are in area 2.

(B) Residual activity of excitatory neurons in area 1 (left) and area 2 (right). Left: (from top to bottom panels) external input noise dh received by the excitatory

neurons in area 1; residual activity dr of the excitatory neurons in area 1; the dominant 1-dimensional variability shared within area 1; the dominant

1-dimensional variability shared between two areas. Right: similar to figures on the left but for area 2. Note that area 2 does not receive any external input

noise directly.

(C) Left: the external static input h� and the time-averaged rate responses r� of all the simulated neurons in the connected ring model. Right: the 1-dimensional

shared variability amplitudes of all the simulated neurons. Dashed: analytical prediction from Equation 5. Red: amplitude of variability shared within area 1. Blue:

amplitude of variability shared within area 2. Black: amplitude of variability shared between two areas. The gap between analytical prediction and numerical

simulation in area 2 is due to a violation of the small input noise assumption.
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All 5 experimental sessions showed the following results consistently (Figure 6; Figure S10). Quantitatively, the generalized joint

model performs the best in terms of capturing the shared variability between V1 and V2, slightly outperforming the affine joint model

in terms of R2. Qualitatively, the affine joint model inferred a similar stimulus dependence pattern for the shared variability amplitude as

the generalized joint model (Figure 6C). As in Semedo et al.,32,47 we found that 1 or 2 components for variability shared between areas

are enough for capturing all the explainable variance in the experimental data. Importantly, as predicted by our circuit model simula-

tion, variability shared between V1 and V2 exhibited similar orientation dependence as variability shared within V1 or V2 (see Figures 6C

and 3C). We conclude that affine joint models parsimoniously explain how variability shared between V1 and V2 varies across

orientations.

Additionally, we found that the amplitude of variability shared between areas is smaller than that within each area, as expected from the

circuit model simulation (Figure 5C; Figures S11 and S12).
10 iScience 27, 110512, August 16, 2024



A

C

B

Figure 6. Affine joint models parsimoniously explain variability shared between V1 and V2 across stimulus orientations

Fitting results of joint statistical models for both V1 and V2 of experimental session 1 with 8 orientations and a single contrast, 100%.

(A) The log likelihood of 4 different joint statistical models on the test set. Conventions as in previous figures.

(B) The R2 of the noise covariance between V1 and V2 across stimuli of the test set. Conventions as in previous figures. For visualization purposes, we omitted part

of the y axis.

(C) Fitted 4 of the 4 joint statistical models with 1 component is shown against the trial-averaged rates (units Hz) across stimuli with 8 orientations. Neurons are

ordered according to their preferred orientations within each brain area.
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DISCUSSION

We studied the stimulus dependence of shared variability within and between V1 and V2. When only stimulus orientation is varied, affine

models effectively describe this stimulus dependence. However, when both orientation and contrast are varied, affine models must bemodi-

fied to include contrast-specific coefficients to explain the suppression of shared variability with increasing contrast. Study of a recurrent neu-

ral circuit with power-law activation function, subjected to correlated stimulus-independent external input noise, suggests amechanistic ratio-

nale for these statistical models.

Novelty of our work

In the previous literature, statistical models partition neural variability in one of two ways. First, motivated by the fact that spike count variance

grows faster than its mean across stimuli, neural variability is partitioned into firing rate variability and spiking variability (usually modeled as

Poisson noise). Second, as assumed by our work, neural variability is partitioned into shared and private variability. In general, the first method

is used for explaining the variability of individual neurons,22,48,49 whereas the second method is used for explaining variability in simulta-

neously recorded neuronal populations.7,23,24 In principle, spiking variability (or firing rate variability) may contain both shared and private

variability. However, if one assumes that spiking variability is private to each neuron and firing variability is shared across all the neurons,

then the two partition methods would be approximately equivalent. In our study, we extend the findings using the second method in four

key directions: (1) by comparing three previously proposed forms of modulation (additive, multiplicative, and affine) to an unrestricted

form (generalized), we provide evidence that affine models offer a parsimonious explanation for how shared variability is modulated by stim-

ulus orientations; (2) we establish a direct link between the statistical models and a neural circuit model, offering a straightforwardmechanism

for the observed affine shared variability; (3) we identified an alternative form of stimulus dependence of shared variability (generalized affine),

which arises when stimulus strength (contrast) is varied; (4) we broaden the framework to explain variability shared between two connected

brain areas, demonstrating that variability shared between V1 and V2 also exhibits an affine pattern across stimulus orientations.

When we only varied orientations of the grating stimuli, affine models performed quantitatively worse but qualitatively similarly to gener-

alized models in capturing the stimulus-dependent shared variability (Figure 3). However, when we varied both orientations and contrast

levels of the grating stimuli, affine models performed not only quantitatively but also qualitatively worse than the generalized affine model,

because they could not capture the decrease in variability despite increasing firing rates induced by increasing contrasts (Figure 4C). Impor-

tantly, the seemingly diverse statistical behavior of shared variability across different stimulus features (Figures 3 and 4) as well as across exper-

imental sessions (Figure S6) can be attributed to the same circuit mechanism (Box 1 and Figure 1). According to the circuit mechanism, the

amplitude of shared variability depends on the stimulus through its dependence on the trial-averaged firing rates, and this dependence is

modulated by recurrent connectivity and neural activation functions (see Equation 5).
iScience 27, 110512, August 16, 2024 11
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Implications for stimulus coding

We found that shared variability in V1 and V2 in response to drifting gratings can bewell described by affine (additive andmultiplicative) mod-

ulations. How will affine shared variability impact stimulus coding?

Stimulus coding is often evaluated by how well we can discriminate two nearby (or distant) stimuli from population neuronal responses.

Previous work50 found that the linear discriminability of two nearby stimuli can be conveniently quantified by linear Fisher information: IFðsÞ =

d0T
s Q� 1

s d0
s. Here, s is the stimulus variable (a scalar), ds is trial-averaged population response at stimulus s (anN31 vector function of s,N is the

number of neurons), and d0
s is the derivative with respect to s of ds. Qs is the noise covariance at stimulus s. As long as Qs has a component

along d0
sd

0T
s , the linear Fisher information will saturate as N goes to infinity so that shared variability is detrimental to stimulus coding; other-

wise, the linear Fisher information will keep increasing with increasing N.3

According to this theory, we can predict the impact of shared variability on coding stimulus variables, based on howmuch the amplitude of

shared variability 4s overlaps with d0
s. First, consider coding of stimulus orientation. If the preferred orientations of neurons are uniformly

distributed, then for any s, d0
s will comprise roughly equal positive and negative entries. In addition, because the inferred affine coefficients

are mostly positive (see Figures S11 and S12), 4s will comprise mostly positive entries. Consequently, 4s is almost orthogonal to d0
s, and the

affine shared variability will have limited impact on coding of orientation. Second, consider coding of stimulus contrast. The tuning curves of

contrast are monotonically increasing so that all entries in d0
s are positive. In this case, 4s is well aligned with d0

s, so that the affine shared vari-

ability is detrimental to coding contrast. In addition, because the amplitude of shared variability decreases with increasing contrast, the value

at which the linear discriminability of contrast saturates (with increasing N) will be higher for higher contrasts.

Note that being affine (or additive or multiplicative) does not necessarily constrain the direction of 4s. In other words, identifying the stim-

ulus dependence of shared variability is not very informative about how shared variability impacts coding.We can still draw conclusions about

how the specific 4s (or affine coefficients) we inferred may limit coding. However, while 4s represents the dominant component of shared

variability, even small components, if they are aligned with d0
s, will cause the information coded to saturate with increasing N. Thus, conclu-

sions about coding drawn from our model are limited to the effects of those variability components the model captures.

An alternative theory of stimulus coding posits that neurons encode a probability distribution, and neural variability represents sampling

over thatdistribution.51–53 In that case, the variability components identifiedbyourmodelwouldhelp characterize that probability distribution.
Implications for circuit structure

Investigations of circuit mechanisms give insight into how external inputs can modulate neural variability. As shown in Box 1 and discussed in

the study byDoiron et al.,35 the alteration of patterns of trial-averaged activity inducedby changes in stimuli will alter the patterns of variability,

even when external input noise remains stimulus independent. Since behavioral variables and task conditions also alter trial-averaged activity

levels, it is not surprising to observe that they too induce modulations in neural variability.

The circuit model also shows that, when firing rates become sufficiently high, and if external input noise is stimulus independent, then neu-

ral variability should become stimulus independent (drðtÞzW� 1dhðtÞ, see Box 1) and therefore well fit by an additive model. Indeed, we have

found that in some sessions with particularly high firing rates, an additive model gives the best fit (Figure S6). In the other extreme, when the

firing rates are sufficiently low to render effective connectivity very weak, the variability becomes independent of the recurrent connectivity,

being determined by effective gains and external input noise (drðtÞzFdhðtÞ, see Box 1).

In most scenarios, recurrent connectivity affects the pattern of neural variability through Equation 5, which suggests that the variability is

not necessarily always well described by affine models. Our simulation demonstrated how affine models can fall short, particularly when we

vary the contrast level of the stimulus, which is supported by experimental data analysis (Figure 4). Furthermore, the circuitmodel predicts that

the amplitude of shared variability can exhibit an ‘‘M’’-shaped pattern across orientations in response to sufficiently strong tuned input (Fig-

ure 1), as has been observed in area MT.6 However, our datasets are limited to only 8 orientations spanning a full 180� range (see STAR

Methods). Consequently, our statistical models may not discern subtle variations, such as distinguishing between an ‘‘M’’-shaped and a

bump-shapedmodulation. Alternatively, it is possible that even at the highest contrast level, V1may not receive sufficiently strong tuned input

to elicit the ‘‘M’’ shape. Future experiments with finer resolution within the stimulus space could resolve this issue.

In summary, our investigations of circuit mechanisms shed light on how external input can modulate neural variability. Statistical models

effective in V1 and V2 may not be optimal for other brain areas, due to variations in recurrent connectivity. Nonetheless, insights into the two

extreme cases of very low or very high firing rates are likely to be more general.
Implication for communication between brain areas

Previousworkhas shownthat thecommunicationsubspacebetweenV1andV2,whenstimulatedbyorienteddriftinggratings, is limitedto just 1or

2dimensionsoutofperhaps5dimensionsof variabilitywithineacharea.32,47Such lowdimensionality isunexpected forearlyprocessingstages like

V1 and V2 in the visual hierarchy. However, the shared variability between V1 and V2 varies across stimuli, as shown by our work and a previous

study,32 so the combined communication subspace under different stimuli can be higher dimensional than only considering a single stimulus.
Limitations of the study

Our study has several limitations. Firstly, the linearized dynamics we employed as the basis for the circuit mechanism may not be accurate

when trial-to-trial variability is large. A theoretical framework that incorporates nonlinear dynamics is needed for a better mechanistic model
12 iScience 27, 110512, August 16, 2024
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of neural variability (e.g., see the study by Hennequin et al.54). Secondly, while the assumption of aGaussian distribution for neural variability in

the statistical models offers computational advantages, it is not accurate for describing discrete spike data. A discrete probability distribution

such as a negative binomial distribution might be a better choice for modeling trial-to-trial variability of spike data. Thirdly, affine models (or

modified affinemodels) may not generalize to other stimulus properties (besides orientation and contrast) or brain areas (besides V1 and V2).

An approximately affine or additive model arises in the two limiting regimes of Box 1, but more complex dependencies of the amplitude of

shared variability on trial-averaged responses can arise between these two regimes (see Equation 5). Therefore, we expect to find cases where

the generalized model qualitatively outperforms affine models.
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Deposited data

dataset 1 https://crcns.org/data-sets/vc/v1v2-1/about_v1v2-1

A mildly preprocessed copy is offered here:

https://doi.org/10.5061/dryad.h9w0vt4s0

https://doi.org/10.6080/K0B27SHN

dataset 2 This study https://doi.org/10.5061/dryad.h9w0vt4s0

Software and algorithms

Deposited code This study https://github.com/tinaxia2016/

NeuronalVariabilityStatsModels
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ji Xia (jx2484@

columbia.edu).

Materials availability

The study did not generate new reagents.

Data and code availability

� Dataset 1 is available at (https://crcns.org/data-sets/vc/v1v2-1/), dataset 2 has been deposited at Dryad and is available at (https://

datadryad.org/stash/dataset/doi:10.5061/dryad.h9w0vt4s0).
� All original code has been deposited at https://github.com/tinaxia2016/NeuronalVariabilityStatsModels and is publicly available.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The study included data from four male macaques (Macaca fascicularis), 2-5 years old. Animals were housed in a 12-hour light-dark cycle and

provided access to fresh water, food, including fresh fruit and vegetables and environmental enrichment. All procedures and animal care were

approved by the IACUC of the Albert Einstein College of Medicine (protocol no: 00001407) and in accordance with NIH Guide for the Care

and Use of Laboratory Animals.

METHOD DETAILS

Neural recording and visual stimulation

Animal procedures have been reported in previous work.30,55 Briefly, animals (macaca fascicularis, 2-5 years old) were anesthetized with ke-

tamine (10mg=kg) and maintained on isoflurane during surgery. All recordings were performed under sufentanil (6-18 mg=kg=hr) anesthesia.

Vecuroniumbromide (150 mg=kg=hr) was used to prevent eyemovements. All procedures were approved by the IACUC of the Albert Einstein

College of Medicine.

Dataset 1 has been reported previously30,32 and is publicly available under https://crcns.org/data-sets/vc/v1v2-1/. Recordings in V1 were

performed using a Utah Array (96 channels, Blackrock Neurotech, USA ) and recordings in V2 were performed using a set of tetrodes (Thomas

Recording, Germany). Stimuli (full contrast drifting gratings, 8 orientations in steps of 22.5 deg, 1 cyc=d, drift rate of 3-6.25 Hz; 2.6-4.9 deg in

diameter) were presented on a gamma correctedCRT screen (1024-796 pixel, 100 Hz refresh). Each stimulus was presented 400 times for 1.28 s

preceded by an interstimulus interval of 1.5 s. Voltage snippets that exceeded a user defined threshold were digitized and sorted offline. The

recorded V1-V2 populations had overlapping receptive fields.

Dataset 2 was recorded using four Neuropixel 1.0 (IMEC, Belgium) probes inserted in a rhomboid arrangement (see Figure S1) with the

most anterior sites being roughly 3 mm posterior of the lunate sulcus. Data was recorded with a ‘linear configuration’ resulting in 384 sites

distributed over 7.6 mm of the probe shaft. Area boundaries for V1 and V2 were determined by a combination of change in receptive field

position and size and histological reconstruction of the electrode track. Stimuli (drifting gratings, 8 orientations in steps of 22.5 deg, 2 cyc= d,

drift rate of 4 Hz; 8 deg in diameter; 15 %, 50 % and 100 %Michelson contrast with Lmin = 0 cd=m2 and Lmax = 80 cd=m2) were presented on a

gamma corrected CRT screen (1024-796 pixel, 100 Hz refresh)." Each stimulus was presented 200 times for 0.5 s preceded by a 0.5 s inter
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stimulus interval. Voltage traces were digitized using spikeGLX (https://billkarsh.github.io/SpikeGLX/) and sorted offline using Kilosort 2.556

and Phy2 (https://github.com/cortex-lab/phy). The V1 and V2 populations had partially overlapping receptive fields.

For dataset 2, we didn’t show the fitting results of statistical models for V1, due to lack of sufficient data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing

For dataset 1, for each neuron and trial, we counted the spikes during the stimulus excluding the first 100 ms after stimulus onset. For dataset

2, for each neuron and trial, we counted the spikes during the stimulus. Additionally, we concatenated 2 trials as 1 trial to increase the number

of spikes per trial, ensuring that the Gaussian assumption in our statistical models remains valid. We ended up with 100 trials per stimulus.

We quantified how well-tuned each neuron is by calculating the orientation tuning index (OTI). The neuron’s tuning curve is just the trial

average of its response at each orientation. OTI is computed as

OTI =
dmax � dmin

dmax+dmin

where dmax and dmin are the maximum and minimum of the tuning curve, respectively. When fitting the statistical models, we excluded neu-

rons with 0 spikes over trials for any given stimulus and excluded neurons with a fano factor > 4 in dataset 2 to avoid unstable units. Further-

more, we excluded neurons with OTI < 0.35 for both datasets. In dataset 1 (5 recording sessions), our study included 359 out of 564 units in V1

and 119 out of 147 units in V2. In dataset 2 (1 recording session), our study included 46 out of 132 units in V1 and 74 out of 191 units in V2.

Fitting statistical models

We have 5 statistical models for describing neural variability within each brain area: additive, multiplicative, affine, generalized affine and

generalizedmodels. We fit the models separately to V1 and V2 data with 5-fold cross-validation. At each fold, we split 400 trials into a training

set of 320 trials and a test set of 80 trials, chosen at random. We fit the model to the training set with maximum likelihood estimation, and

evaluated the fitting performance by the log likelihood of the test set. Our model assumes that the number of spikes r ofN recorded neurons

at trial i with stimulus s follows a multivariate Gaussian distribution riðsÞ � N ðds;CsÞ, with the covariance Cs =
P
r
4r;s4

T
r;s +Ss. Ss is a diagonal

matrix with diagonal entries s2c;s. The log likelihood is obtained as follows:

X
i

�
� N

2
log 2 p � 1

2
log det Cs � 1

2

�
r iðsÞ � ds

�T
C� 1

s

�
riðsÞ � ds

�T�

As noted in the Results, the generalized model is equivalent to factor analysis applied separately to the residual responses to each stim-

ulus. To fit generalized models, we used the python class ‘‘sklearn.decom position.FactorAnalysis’’ with the default initialization parameters.

For the other 4 models, careful initialization was required for a fair comparison between models, because the log likelihood of our statis-

tical models can have many local maxima. To initialize the parameters in the other 4 statistical models, we fit a naive version of the additive

model with stimulus-independent private variability by applying factor analysis to population residual responses to all stimuli. Then the

models were initialized as follows:

Initialization of the additive model:

� Initialize 4c;r with the fitted 4c;r of the naive additive model.
� Initialize s2c;s with the fitted s2c;s of the generalized model.

Initialization of the affine model:

� Initialize ac;r as all zeros.

� Initialize bc;r as the fitted 4c;r from the naive additive model.
� Initialize s2c;s with the fitted s2c;s of the generalized model.

Initialization of the multiplicative model:

� Initialize ac;r as fitted ac;r from the affine model.

� Initialize s2c;s with the fitted s2c;s of the generalized model.

Initialization of the generalized affine model:

� Initialize ac;r;contrast as all zeros.
� Initialize bc;r;contrast across all contrast levels as the fitted 4c;r from the naive additive model.

� Initialize s2c;s with the fitted s2c;s of the generalized model.

For additive, multiplicative, affine, and generalized affine models, we optimized the parameters by gradient descent with the Adam opti-

mizer.We chose the learning rate to be 5e-3 or 1e-2 with a 0.96 decay rate.We stopped the optimization after the log likelihood of the training

set converges or at the 20; 000th iteration.
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Fitting joint statistical models

We have 4 joint statistical models for describing neural variability between two brain areas: additive, multiplicative, affine and generalized

joint models (we did not use generalized affine because contrast was not varied in these studies). We fit the models jointly to V1 and V2

data with 5-fold cross-validation.

We wanted to characterize the shared variability between V1 and V2, separate from shared variability within each area. This means that, in

fitting a jointmodel to V1 and V2, the private variability is private to each area (can be correlated within each area), rather than being private to

each neuron. For this reason, we cannot use the methods we applied to each single area. Instead, to fit generalized joint models, we applied

probabilistic canonical correlation analysis (pCCA) to the population residual responses from V1 and V2 to each stimulus separately (as in

Semedo et al.47). Similarly to the fitting process of within-area statistical models, we initialized the parameters in the additive, multiplicative

and affine joint models with the fitted parameters from the generalized joint models or naive additive joint models with stimulus-independent

area-private variability. Naive additive joint models were fitted by applying pCCA to the population residual response from V1 and V2 to all

stimuli.
Evaluating model performance

Wequantified howwell the statisticalmodels explain all the variance in the data by cross-validated log likelihood, as previously described (see

STAR Methods section: fitting statistical models). We also quantified how well the statistical models explain the shared variability in the data

by evaluating the cross-validated R2 of the noise covariance matrix across all stimuli. Specifically, we computed the noise covariance matrix

from the test set for each stimulus and concatenated the upper triangular elements of thesematrices across all stimuli.We then computed the

R2 describing how well this concatenated vector was predicted by the statistical models fit to the training set. The noise covariance between

neuron c1 and neuron c2 of a given stimulus s from the test set is calculated using the formula: Covc1 ;c2 ;s = 1
k� 1

P
iðsÞ

ðrc1 ;iðsÞ � dc1 ;sÞðrc2 ;iðsÞ � dc2 ;sÞ,

where k is the number of trials per stimulus in the test set, iðsÞ is the trial index during stimulus s, r is the single-trial response, d is the trial-

averaged response. The noise covariance of a given stimulus s from the fitted statistical model is calculated as Covc1 ;c2 ;s =
P
r
4c1 ;r;s4c2 ;r;s. Note

that we chose to look at noise covariance instead of noise correlation here, because noise correlation is also influencedby the stimulus-depen-

dent private variability, not just the shared variability.

Similarly, we quantified howwell the joint statisticalmodels capture variability shared between V1 and V2 by cross-validated R2 of the noise

covariance between areas. Here, noise covariance is defined for all possible neuron pairs, where each neuron pair consists of one V1 neuron

and one V2 neuron. The noise covariance is calculated using the formula described earlier, except that c1 is the index of neurons in V1, and c2 is

the index of neurons in V2. We evaluated the R2 for all elements in the noise covariance matrix between V1 and V2 across all stimuli.
Neural circuit model

We simulated a rate-based network with a ring architecture. The network contained 50 excitatory and 50 inhibitory units. The circuit dynamics

was governed by:

ti
driðtÞ
dt

= � riðtÞ+ f

 X
j

WijrjðtÞ + hi + hiðtÞ
!

ri denotes the rate for neuron i, ti is the time constant for neuron i,Wij is the synaptic strength from neuron j to neuron i, hi is the external static

input received by neuron i, hi is the external input noise received by neuron i. The activation function f is defined as: f ðxÞ = k½x�n+.
The connectivity matrix W is set to be translational invariant, and the strength of connections between two neurons follows a circular

Gaussian of the difference in their preferred orientations:

Wij = Jab exp

 
cos
�
2
�
qi � qj

�� � 1

l2syn

!
(Equation 6)

where a;b˛ fE;Ig, Jab is a scaling constant for synaptic strength between E and I neurons, set so that the sum of incoming E and I weights onto

each E and I neuron matched the values ofWab. qi denotes the preferred orientation of neuron i. lsyn sets the length scale over which synaptic

weights decay.

The external static input hi representing stimulus-related input. It is constant and follows a circular Gaussian function with an added

baseline:

hiðqstimÞ = b + cAmax exp

 
cosð2ðqi � qstimÞÞ � 1

l2stim

!

qstim denotes the orientation of the visual stimulus. The neuronwith preferred orientationmatching the stimulus orientation receives the stron-

gest external static input, and lstim sets the length scale over which the external static input decay. b denotes the constant baseline. c denotes

the contrast level. Amax denotes the maximum amplitude of external static input.
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The external input noise hiðtÞ is modeled as a multivariate Ornstein-Uhlenbeck process: tnoisedh = � hdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tnoiseSnoise

p
dz Here we

chose the external input noise to be perfectly correlated across neurons so that Snoise is a matrix with all the elements equals to a chosen

variance s2noise. In other words, we had 1-dimensional external input noise that is identical across neurons.

To numerically calculate the amplitude of shared variability 4, we applied SVD to the population residual responses. This is equivalent to

factor analysis given that there is no private variability in the rate model. 4 is calculated as the standard deviation of the dominant SVD

component.

To study variability shared between two connected brain areas, we simulated two ring circuits with a feedforward connection from one to

the other (Figure 5). To numerically calculate the amplitude of variability shared between the ring circuits, we applied pCCA to the population

residual responses from the two ring circuits. Here, 4 is calculated as the standard deviation of the dominant pCCA component.
18 iScience 27, 110512, August 16, 2024
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