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Bicoid interacting 3 domain containing RNA methyltransferase (BCDIN3D) is a member
of the Bin3 methyltransferase family and is evolutionary conserved from worm to human.
BCDIN3D is overexpressed in breast cancer, which is associated with poor prognosis
of breast cancers. However, the biological functions and properties of BCDIN3D have
been enigmatic. Recent studies have revealed that human BCDIN3D monomethylates
5′-monophsosphate of cytoplasmic tRNAHis in vivo and in vitro. BCDIN3D recognizes
the unique and exceptional structural features of cytoplasmic tRNAHis and discriminates
tRNAHis from other cytoplasmic tRNA species. Thus, BCDIN3D is a tRNAHis-specific 5′-
monophosphate methyltransferase. Methylation of the 5′-phosphate group of tRNAHis

does not significantly affect tRNAHis aminoacylation by histidyl-tRNA synthetase in vitro
nor the steady state level or stability of tRNAHis in vivo. Hence, methylation of the
5′-phosphate group of tRNAHis by BCDIN3D or tRNAHis itself may be involved in
certain unknown biological processes, beyond protein synthesis. This review discusses
recent reports on BCDIN3D and the possible association between 5′-phosphate
monomethylation of tRNAHis and the tumorigenic phenotype of breast cancer.

Keywords: Bicoid interacting 3 domain containing RNA methyltransferase, methylation, tRNA, breast cancer,
protein synthesis

INTRODUCTION

Bicoid interacting 3 domain containing RNA methyltransferase (BCDIN3D) contains an S-(5′-
adenosyl)-L-methionine (AdoMet) binding motif, and is homologous to a conserved family of
eukaryotic protein methyltransferases acting on RNA-binding proteins (Zhu and Hanes, 2000).
The BCDIN3D is evolutionary conserved and has been identified in various animals from worms
to human (Xhemalce et al., 2012), however, its biological properties and functions are unclear.
BCDIN3D mRNA overexpression has been reported in human breast cancer cells, which is
associated with cellular invasion and poor prognosis in triple-negative breast cancer (Liu et al.,
2007; Yao et al., 2016). The molecular basis of involvement of BCDIN3D in the tumorigenic
phenotype of breast cancer has remained elusive. This review discusses recent studies on human
BCDIN3D. We describe herein that a specific tRNA for histidine (tRNAHis) is now identified as
a primary target of BCDIN3D and discuss the association between the tumorigenic phenotype of
breast cancer and the methylation of tRNAHis by BCDIN3D.
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HOW DOES HUMAN BCDIN3D
RECOGNIZE SPECIFIC RNA?

Xhemalce et al. (2012) reported that BCDIN3D catalyzes
dimethylation of 5′-monophosphate of specific precursor
microRNAs (pre-miRNAs) (Xhemalce et al., 2012), such as
tumor suppressor miR145 and miR23b (He et al., 2007; Shi
et al., 2007; Sachdeva et al., 2009; Spizzo et al., 2010), using
AdoMet as a methyl-group donor. Dimethylation of the 5′-
monophosphate of pre-miRNA nullifies the negative charge
at the 5′-terminal of pre-miRNA. Since Dicer recognizes the
negative charge at the 5′-terminal of pre-miRNAs for efficient
and accurate cleavage (Park et al., 2011), the dimethylation of
5′-phosphate of pre-miRNA inhibits subsequent processing.
Consequently, mature miRNAs are down-regulated. They also
reported that the depletion of BCDIN3D mRNA by specific
shRNAs suppressed the tumorigenic phenotype of MDA-
MB231 breast cancer cells (Xhemalce et al., 2012). Therefore,
it was proposed that BCDIN3D promotes the cellular invasion
of breast cancer cells by downregulating tumor suppressor
miRNAs through dimethylation of the 5′-phosphate group of
the corresponding pre-miRNAs. However, there are no apparent
common features including primary or secondary structures
among the corresponding pre-miRNAs of downregulated
miRNAs in breast cancer cells. Thus, the mechanisms by which
BCDIN3D recognizes only a specific group of pre-miRNAs
and downregulates mature miRNAs in breast cancer cells are
unclear.

CYTOPLASMIC tRNAHIS IS CO-PURIFIED
WITH BCDIN3D AND CONTAINS A
5′-MONOMETHYLMONOPHOSPHATE
GROUP

To identify other potential RNA substrates of BCDIN3D in vivo
and to elucidate the mechanism underlying the recognition and
regulation of specific RNAs by BCDIN3D, recently, BCDIN3D-
binding RNAs in human HEK293T cells were analyzed (Martinez
et al., 2017). When BCDIN3D, expressed in HEK293T cells, was
purified from the cell extracts, a distinct 70–80-nucleotie-long
RNA molecule was co-purified with BCDIN3D protein.

It was assumed that this co-purified RNA might be
cytoplasmic tRNAHis (Figure 1A), since the nucleotide
sequences of cytoplasmic tRNAHis from human and fruit
fly reportedly contained a 5′-monomehtylphosphate group
(Cooley et al., 1982; Rosa et al., 1983). Analysis of the RNA
co-purified with BCDIN3D via RT-PCR and sequencing
confirmed that cytoplasmic tRNAHis is co-purified with
BCDIN3D from the cell extracts, but not other tRNAs,
such as tRNAPhe. Subsequent direct analysis of the RNA
via liquid chromatography and mass spectrometry (LC-MS)
revealed that this RNA is cytoplasmic tRNAHis. Moreover,
the 5′-monophosphate of cytoplasmic tRNAHis was fully
monomethylated, but not dimethylated at all. Furthermore, 5′-
monophsophate of tRNAHis is reportedly fully monomethylated

even under normal physiological conditions in HEK293T cells,
as observed previously in cytoplasmic tRNAHis from HeLa cells
(Rosa et al., 1983).

CYTOPLASMIC tRNAHIS IS
METHYLATED BY BCDIN3D IN VITRO

The enzymatic activity of recombinant human BCDIN3D
expressed in E. coli was examined using human cytoplasmic
tRNAHis transcript as a substrate and S-(5′-adenosyl)-
L- methionine (SAM) as a methyl-group donor in vitro
(Martinez et al., 2017). Cytoplasmic tRNAHis transcript
was reportedly efficiently methylated by BCDIN3D in vitro;
however, unexpectedly, human pre-miR-145, which
was previously reportedly dimethylated by BCDIN3D
(Xhemalce et al., 2012), is hardly methylated under the
same conditions assessed. The reaction products were further
analyzed via LC-MS and it was confirmed that BCDIN3D
monomethylates 5′-monophosphate of cytoplasmic tRNAHis.
Almost 100% of the tRNAHis reaction product comprised
5′-monomethylphosphate. Moreover, BCDIN3D does not
dimethylate 5′-monophosphate of tRNAHis or pre-miR145
in vitro. Steady-state kinetics of methylation of these
RNA substrates revealed that cytoplasmic tRNAHis is a
greater than 2–3 orders of magnitude better substrate than
pre-miR145.

BCDIN3D reportedly dimethylates pre-miR145 (Xhemalce
et al., 2012). However, only a small fraction (less than 1%)
of pre-miR145 substrates was methylated at the reaction
end points (Xhemalce et al., 2012). The lower methylation
of pre-miR145 by BCDIN3D is consistent with that in the
recent study (Martinez et al., 2017). Furthermore, BCDIN3D
reportedly transfers two methyl-groups from SAM to 5′-
monophosphate of pre-miR145 (Xhemalce et al., 2012). This is
inconsistent with the recent findings of Martinez et al. (2017),
wherein neither tRNAHis nor pre-miR145 are dimethylated by
BCDIN3D in vitro. Perhaps, the efficiency of dimethylation
of 5′-phosphate of pre-miR145 by BCDIN3D would be much
lower than that of monomethylation of 5′-phosphate of pre-
miR145 in vitro. The previously observed methylation of
pre-miR145 (Xhemalce et al., 2012) is at baseline levels,
as compared with that in cytoplasmic tRNAHis, and is not
significant.

CYTOPLASMIC tRNAHIS IS
METHYLATED BY BCDIN3D IN VIVO

BCDIN3D-knockout HEK293T cells, established via
CRISPR/Cas9 editing, are viable, although they exhibit a
slightly reduced growth rate than the parental cells (Martinez
et al., 2017). Cytoplasmic tRNAHis isolated from BCDIN3D-
knockout cells completely lost their methyl moiety at the
5′-monophosphate group, as evident from LC-MS. Exogenous
expression of BCDIN3D in the BCDIN3D-knockout cell
restored the 5′-monomethylphosphate modification of
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FIGURE 1 | (A) The nucleotide sequence of human cytoplasmic tRNAHis including modified nucleosides. Human cytoplasmic tRNAHis in a clover-leaf structure,
wherein the 5′-phosphate group is monomethylated (Rosa et al., 1983). (B) Maturation of human cytoplasmic tRNAHis (Gu et al., 2003; Betat et al., 2014)
Cytoplasmic tRNAHis has an additional guanosine residue at position-1 (G−1) and an 8-nucleotide-long acceptor helix with G−1:A72 mis-pairing at the top of the
acceptor helix (Rosa et al., 1983).

cytoplasmic tRNAHis. Thus, the BCDIN3D is responsible
for the monomethylation of 5′-monophosphate of cytoplasmic
tRNAHis in HEK293T cells under normal physiological
conditions. In BCDIN3D-knockout cells, no other RNAs
except for cytoplasmic tRNAHis, are significantly methylated
by recombinant BCDIN3D in vitro (Martinez et al.,
2017).

A recent study using HEK293T cells reported that
BCDIN3D-knockout or BCDIN3D overexpression do not
alter mature miR145 expression levels (Martinez et al.,
2017), concurrent with the recent in vitro results showing
that BCDIN3D does not dimethylate the 5′-monophosphate
group of either tRNAHis or pre-miR145. Only pre-miRNA
with 5′-dimethylated phosphate, but not pre-miRNA with
5′-monomethylated phosphate, is processed at lower levels by
Dicer (Xhemalce et al., 2012). These observations also suggest
that BCDIN3D does not dimethylate the 5′-phosphate group of
pre-miR145.

Together with the recent results of in vitro methylation
assays using recombinant BCDIN3D and tRNAHis transcript and
the pre-miR145 transcript (Martinez et al., 2017), the primary
target of BCDIN3D is cytoplasmic tRNAHis rather than pre-
miRNAs. BCDIN3D displays monomethylation activity on the
5′-phosphate group of RNA. Considering the significantly lower
activity of BCDIN3D toward pre-miR145 and that miR145
expression is not regulated by BCDIN3D in vivo, methylation
of pre-miR145 probably does not occur in HEK293T cells.
Under certain biological process or specific conditions in breast
cancer cells, BCDIN3D might recognize specific pre-miRNAs,
such as pre-miR145, through the regulatory factors which assist
BCDIN3D in recognizing specific RNA species. Elucidation of the
regulatory mechanism of specific pre-miRNA (di)methylation

process by BCDIN3D in breast cancer cells awaits further
study.

tRNAHIS RECOGNITION BY BCDIN3D

Human cytoplasmic tRNAHis is matured through unique
processes and has unique structural features among cytoplasmic
tRNA species (Jackman et al., 2012; Betat et al., 2014; Figure 1B).
After transcription by RNA polymerase-III, the 5′-leader and 3′-
tailer sequences of precursor tRNAHis are cleaved. Thereafter, a
single guanosine residue (G) is attached to the 5′-end (at position
-1) in the 3′–5′ direction by tRNAHis-specific guanylyltransferase
(Thg1) (Gu et al., 2003; Jackman and Phizicky, 2006; Jackman
et al., 2012) and the CCA is added at the 3′-end (positions
74–76) (Tomita and Yamashita, 2014). Consequently, the mature
form of cytoplasmic tRNAHis has an 8-nucleotide-long acceptor
helix with G−1:A73 mis-paring at the top the helix, while other
cytoplasmic tRNAs have 7-nucleotide-long acceptor helices.

In vitro steady-state kinetics of methylation of mutant
cytoplasmic tRNAHis transcripts by recombinant BCDIN3D
revealed that BCIDN3D recognizes G−1, G−1:A73 mis-pairing
at the top of the acceptor stem and 8-nucleotide-long extended
acceptor helix. The minihelix of tRNAHis is also methylated
efficiently by BCIN3D. Thus, BCDIN3D recognizes the unique
structural features of cytoplasmic tRNAHis, especially in the top-
half region of tRNAHis, and discriminates cytoplasmic tRHAHis

from other tRNA species (Martinez et al., 2017).
The structure of human BCDIN3D is still unclear. The amino

acid sequence of BCDIN3D is homologous to that of the catalytic
domain of methylphosphate capping enzyme (MePCE), which
uses SAM to transfer a methyl group onto the γ-phosphate of the
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5′-guanosine of 7SK RNA (Jeronimo et al., 2007; Shuman, 2007).
Structural modeling of human BCDIN3D using the catalytic
domain of MePCE and possible tRNA-binding modeling suggest
that BCDIN3D recognizes the acceptor stem of tRNAHis and
measures the length of acceptor helix of tRNAHis (Figure 2A).
Only the 5′-end of tRNA with an 8-nucleotide-long acceptor helix
and G−1:A72 mis-pairing at the top the acceptor helix could enter
the catalytic pocket of BCDIN3D, and the 5′-phosphate would
be monomethylated. The mechanism underlying the recognition
of tRNA by BCDIN3D would differ from those for tRNA
recognition by the CCA-adding enzymes (Tomita et al., 2004;
Yamashita et al., 2014, 2015; Yamashita and Tomita, 2016),which
recognize the T9C loop of tRNA.

The kinetics of methylation of tRNAHis mutants and the
structural model of BCDIN3D and tRNAHis complex also suggest
that human BCDIN3D is tRNAHis-specific 5′-monophosphate
methyltransferase, and cytoplasmic tRNAHis is a primary target
of human BCDIN3D.

THE BIOLOGICAL ROLE OF
5′-METHYLATION OF CYTOPLASMIC
tRNAHIS

The biological role of 5′-monomethylphosphate of cytoplasmic
tRNAHis remains unclear. While the 5′-monomethylphosphate
of cytoplasmic tRNAHis decreases the affinity of tRNAHis toward
histidyl-tRNA synthetase (Martinez et al., 2017), as expected
from the complex structure of bacterial histidyl-tRNA synthetase
with tRNAHis (Tian et al., 2015) and biochemical evaluation
(Fromant et al., 2000), the overall aminoacylation efficiency is not
affected by the modification. The steady-state level of cytoplasmic
tRNAHis in BCDIN3D-knockout cells and its parental HEK293T
cells are not significantly different. Furthermore, the stabilities

of cytoplasmic tRNAHis from HEK293T cells and BCDIN3D-
knockout cells after treatment with actinomycin-D do not
show significant differences (Martinez et al., 2017). However,
5′-monomethylmonophosphate protects cytoplasmic tRNAHis

from degradation in vitro in cytoplasmic cell extracts. Thus,
methylation of 5′-monophosphate of cytoplasmic tRNAHis might
be involved in its stability under specific conditions or in certain
biological processes.

PERSPECTIVE

The correlation between methylation of the 5′-monophosphate
group of cytoplasmic tRNAHis and tumorigenic phenotype of
breast cancer remains unknown (Figure 2B). tRNAs are involved
in various biological process in cells (Sobala and Hutvagner, 2011;
Raina and Ibba, 2014; Megel et al., 2015; Kumar et al., 2016;
Park and Kim, 2018; Schimmel, 2018) beyond their established
functions, as adaptors in protein synthesis.

In breast cancer cells, initiator tRNAMet is reportedly
upregulated (Pavon-Eternod et al., 2013). Furthermore, in
highly metastatic breast cancer cells, the upregulation of
specific tRNAs, such as tRNAGluUUC and tRNAArgCCG,
stabilizes mRNAs containing the corresponding codons
and enhances translation (Goodarzi et al., 2016). However,
knockout of BCDIN3D in HEK293T does not affect the
steady-state level of cytoplasmic tRNAHis (Martinez et al.,
2017). Thus, 5′-monophosphate methylation of cytoplasmic
tRNAHis would not enhance the translation of specific mRNAs,
although this warrants further investigation. Small RNA
fragments have reportedly been derived from tRNAs, i.e.,
tRNA fragments (tRFs), and participate in various cellular
functions (Sobala and Hutvagner, 2011; Raina and Ibba, 2014;
Kumar et al., 2016). Under various cellular stress conditions,

FIGURE 2 | (A) A model of human Bicoid interacting 3 domain containing RNA methyltransferase (BCDIN3D)-tRNAHis complex structure. Human BCDIN3D
structure was modeled using SWISS-MODEL (Biasini et al., 2014), based on the structure of the catalytic domain of methylphosphate capping enzyme (MePCE)
(Jeronimo et al., 2007) as a template model. tRNA was manually docked onto the surface of the modeled BCDIN3D and the 5′-terminal of tRNA can enter the
catalytic SAM binding site. BCDIN3D measures the length of the acceptor helix of tRNA. (B) A potential association between methylation of tRNAHis and breast
cancer. tRNAHis might have unknown functions, beyond its established function in protein synthesis.

Frontiers in Genetics | www.frontiersin.org 4 August 2018 | Volume 9 | Article 305

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00305 August 1, 2018 Time: 16:27 # 5

Tomita and Liu Human BCDIN3D Methylates tRNAHis

tRFs are often produced (Ivanov et al., 2011, 2014; Durdevic et al.,
2013; Durdevic and Schaefer, 2013; Gebetsberger and Polacek,
2013). In breast and prostate cancer, specific tRNAs, such as
cytoplasmic tRNALys and tRNAHis, are cleaved by angiogenin,
and the tRNA half fragments are abundantly expressed in a sex
hormone-dependent manner (Honda et al., 2015). These tRNA
half fragments also promote proliferation of breast and prostate
cancer cells by a yet unknown mechanism. In human and mouse
cells, 3′- or 5′- terminal tRFs (3′-tRF or 5′-tRF) are produced
and accumulate in an asymmetric manner. These tRFs associate
with Ago2 and the tRFs probably serve as typical miRNAs. The
3′-tRF, but not the 5′-tRF, derived from cytoplasmic tRNAHis is
complementary to human endogenous retroviral sequences in the
genome (Li et al., 2012).

It would be noteworthy to assume that 5′-monomethylation
of 5′-phosphate of tRNAHis regulates the expression of the tRNA
half fragments and/or tRFs derived from tRNAHis in breast
cancer cells or under specific biological or stress conditions. The
production of tRNA half fragments and/or tRFs, in turn, might
regulate the genes involved in tumorigenesis in breast cancers.
Future studies are required to understand whether methylation

of the 5′-phosphate group of tRNAHis by BCDIN3D is involved
in the tumorigenic phenotype of breast cancer and other cancers
and to potentially elucidate the unknown functions of tRNAs,
beyond their established functions.
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