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This study mainly investigated the effect of matrine on TNBS-induced intestinal
inflammation in mice. TNBS treatment caused colonic injury and gut inflammation.
Matrine (1, 5, and 10 mg/kg) treatment alleviated colonic injury and gut inflammation
via reducing bleeding and diarrhea and downregulating cytokines expression (IL-1β

and TNF-α). Meanwhile, serum immunoglobulin G (IgG) was markedly reduced in
TNBS treated mice, while 5 and 10 mg/kg matrine alleviated IgG reduction. Fecal
microbiota was tested using 16S sequencing and the results showed that TNBS caused
gut microbiota dysbiosis, while matrine treatment markedly improved gut microbiota
communities (i.e., Bacilli and Mollicutes). Functional analysis showed that cell motility,
nucleotide metabolism, and replication and repair were markedly altered in the TNBS
group, while matrine treatment significantly affected cell growth and death, membrane
transport, nucleotide metabolism, and replication and repair. In conclusion, matrine
may serve as a protective mechanism in TNBS-induced colonic inflammation and the
beneficial effect may be associated with gut microbiota.
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INTRODUCTION

Inflammatory bowel diseases (IBD), an intestinal chronic inflammatory response or ulceration,
is characterized by various pathologic symptoms, including bloody diarrhea, intestinal motility
dysfunction, and intestinal shortening (Lee et al., 2014; Hirai and Matsui, 2015). The prevalence
and incidence of IBD in China has markedly increased in recent years (Zhu et al., 2013). In the
United States, about 1.0–1.5 million patients were estimated to suffer from IBD occurring between
2003 and 2004 (Kappelman et al., 2008). Although, the pathological mechanism of IBD is still
unclear, compelling evidence suggests that inflammation and gut microbiota dysbiosis may serve
as the major contributor in IBD (Ferguson et al., 2016). Thus, improving inflammatory status and
gut microbiota communities may serve as a potential therapy for IBD patients.

Matrine, a kind of alkaloid substance, isolates from the roots of Sophora species in China.
Compelling pieces of evidence have indicated that matrine exhibits various pharmacological
activities, such as anti-inflammation, anti-oxidative stress, anti-infection, and cardiovascular
protective effects (Liu et al., 2014; Cordero-Herrera et al., 2015; Yan et al., 2016). However, the
merit of matrine on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced murine colitis has not
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been fully studied. In this study, effects of matrine of intestinal
inflammatory and gut microbiota in TNBS-induced murine
colitis were mainly investigated.

MATERIALS AND METHODS

Animal Model and Groups
This study was carried out in accordance with the
recommendations of the Declaration of Helsinki. The protocol
involving animal subjects was approved by the Animal Welfare
Committee of the University of South China. Fifty female Balb/c
mice (20.41 ± 1.68 g) were randomly divided into five groups
with ten mice for each: normal control group (N group, n = 10),
the TNBS group (TNBS group, n = 10), 1 mg/kg matrine plus
TNBS (ML group), 5 mg/kg matrine plus TNBS (MM group),
and 10 mg/kg matrine plus TNBS (MH group). Chronic colitis in
mice was induced by weekly administration of increasing dosages
of TNBS eight times (1.0–2.3 mg in 45% ethanol) according
to previous report (Weiss et al., 2015; Levit et al., 2018). After
8 weeks, all mice were sacrificed for sample collection. Colonic
length and weight were recorded.

Clinical Evaluation of TNBS Colitis
Rectal bleeding and diarrhea of all mice in this study were
recorded. Stool bloody level was determined by haemoccult kits
(Beckman Coulter). Bloody stool was evaluated by the following
scoring system: 0 means no blood in the stool; 2 means positive
haemoccult in the stool; and 4 means gross bleeding in the stool.
Diarrhea was evaluated by the following scoring system: 0 means
well-formed pellets; 2 means pasty and semiformed stools; and 4
means liquid stools (Vlantis et al., 2015).

Serum Immunoglobulins (Igs)
Blood samples were harvested by eye blooding and serum
was separated by centrifugation (3,000 × g, 10 min, 4◦C).
Serum samples were stored at −80◦C before Igs (IgA, IgG, and
IgM) analysis by spectrophotometric kits (Nanjing Jiangcheng
Biotechnology Institute, China).

Real-Time PCR
Gut pro-inflammatory cytokines were determined to evaluate
inflammation by real-time PCR. One piece of jejunum, ileum,
and colon were harvested and stored at −80◦C. Total RNA
of these tissues was isolated using TRIZOL regent and reverse
transcribed into the first strand (cDNA) with DNase I, oligo
(dT)20 and Superscript II reverse transcriptase (Invitrogen,
United States). The reverse transcription reaction was carried at
37◦C for 15 min, 85◦C 5 s. Primers in this study were designed
with Primer 5.0 (Table 1). β-actin was selected as the house-
keeping gene to normalize the expression of target genes. The
PCR cycling used followed these conditions: 40 cycles at 94◦C for
40 s, 60◦C for 30 s, and 72◦C for 35 s. The relative expression
of target genes was normalized as a ratio to the expression of
β-actin in the control group using the formula 2−(11Ct), where
11Ct = (CtTarget−Ctβ–actin)Treatment−(CtTarget−Ctβ–actin)control.

Microbiota Sequencing
Total genome DNA from fecal samples was extracted for
amplification using a specific primer (16S rRNA genes
of distinct regions [Primer 16S V4, 515F:5′-GTGCC
AGCMGCCGCGGTAA-3′ and 806R:5′-GGACTACHVGGG
TWTCTAAT-3 ′)] (Burbach et al., 2017). Sequencing libraries
were generated and analyzed according to our previous study.
Observed-species, Chao1, Shannon, and Simpson are used
to evaluate the complexity of species diversity. Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) was further used for genome prediction of
microbial communities in this study (Douglas et al., 2018;
Wilkinson et al., 2018).

Statistical Analysis
All data in this study were analyzed using IBM SPSS 21.0
software. Comparisons between groups were analyzed by Tukey’s
multiple comparison test after testing the homogeneity of
variances via Levene’s test. Values in the same row with
different superscripts (a, b, c) are significant (P < 0.05)
(Liu et al., 2018a,b).

RESULTS

Effects of Matrine on TNBS-Induced
Colonic Injury
In this study, final body weight, colonic weight and length,
rectal bleeding score, and diarrhea score were studied to
evaluate clinical status TNBS-induced murine colitis. As shown
in Table 2, TNBS markedly reduced body weight (27.72± 2.12 g)
compared with the N group (33.47 ± 2.38 g) (P < 0.05). 5
and 10 mg/kg matrine significantly alleviated TNBS-induced
growth suppression (P < 0.05). TNBS caused a marked
colonic injury evidenced by the reduced colonic length and
elevated colonic weight (P < 0.05). Although matrine failed
to influence colonic length (P > 0.05), colonic weight was

TABLE 1 | PCR primer sequences: the forward primers (F) and the reverse
primers (R) used in this study.

Gene Nucleotide sequence of primers
(5′–3′)

Accession

β-Actin F:GTCCACCTTCCAGCAGATGT
R:GAAAGGGTGTAAAACGCAGC

NM_008361.4

IL-1β F:CTGTGACTCGTGGGATGATG
R:GGGATTTTGTCGTTGCTTGT

NM_008361.4

IL-10 F: ACAGCCGGGAAGACAATAAC R:
CAGCTGGTCCTTTGTTTGAAAG

NM_010548.2

IL-17 F:TACCTCAACCGTTCCACGTC
R:TTTCCCTCCGCATTGACAC

NM_010552.3

TNF-α F:AGGCACTCCCCCAAAAGAT
R:TGAGGGTCTGGGCCATAGAA

NM_013693.3

TLR4 F: TTTGCTGGGGCTCATTCACT R:
GACTCGGCACTTAGCACTGT

NM_021297.3

Myd88 F: CTCGCAGTTTGTTGGATGCC R:
GGCCACCTGTAAAGGCTTCT

NM_010851.3
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TABLE 2 | Effects of matrine on clinical indexes. Data are presented as mean ± SEM.

Item N group TNBS ML MM MH

FBW 33.47 ± 2.38a 27.72 ± 2.12b 28.57 ± 2.98b 29.83 ± 2.56a 30.11 ± 3.24a

CL 8.23 ± 1.20a 7.45 ± 0.98b 7.55 ± 1.11b 7.78 ± 0.87ab 7.92 ± 0.93ab

CW 148.62 ± 8.29b 196.27 ± 14.23a 199.36 ± 19.83a 188.29 ± 15.38ab 178.83 ± 11.62ab

RBS 0.00 ± 0.00c 4.12 ± 0.62a 4.04 ± 0.32a 3.79 ± 0.21ab 3.11 ± 0.19b

DS 0.00 ± 0.00c 3.48 ± 0.45a 3.11 ± 0.31a 3.02 ± 0.17ab 2.11 ± 0.21b

The values having different superscript letters were significantly different (P < 0.05; n = 10). FBW: final body weight (g); CL: colonic length (cm); CW: colonic weight (mg);
RBS: rectal bleeding score; DS: diarrhea score.

TABLE 3 | Effects of matrine on serum immunoglobulins (g/l).

Item N group TNBS ML MM MH

IgA 1.89 ± 0.18 2.33 ± 0.19 2.17 ± 0.22 2.22 ± 0.27 2.09 ± 0.16

IgG 9.36 ± 0.78a 7.23 ± 0.56b 7.97 ± 0.94ab 8.66 ± 0.87a 8.94 ± 0.67a

IgM 0.44 ± 0.04ab 0.37 ± 0.03b 0.42 ± 0.06ab 0.47 ± 0.05ab 0.55 ± 0.05a

Data are presented as mean ± SEM. The values having different superscript letters were significantly different (P < 0.05; n = 10).

significant lower in the MM and MH groups than that in TNBS
group (P < 0.05).

Rectal bleeding and diarrhea score are two major clinical
indexes and we found that TNBS treatment markedly increased
rectal bleeding score and diarrhea score (P < 0.05), while
10 mg/kg matrine (MH) alleviated colonic bleeding and
diarrhea (P < 0.05).

Effects of Matrine on Serum Igs
As shown in Table 3, TNBS markedly reduced serum IgG level
compared with the N group (P < 0.05), while 5 and 10 mg/kg
matrine increased serum IgG level compared with the TNBS
group (P < 0.05). In addition, dietary supplementation tended
to enhance IgM production.

Effects of Matrine on Intestinal and
Colonic Expression of Proinflammatory
Cytokines
mRNA abundances of interleukin-1β (IL-1β), interleukin-10
(IL-10), interleukin -17 (IL-17), and tumor necrosis factor-
α (TNF-α) were determined in the jejunum, ileum, and
colon to evaluate gut inflammatory response (Table 4). In
the jejunum, TNBS treatment upregulated IL-1β expression
(P < 0.05), 5 and 10 mg/kg matrine alleviated TNBS-induced
IL-1β over-expression (P < 0.05). Meanwhile, compared with
the TNBS group, 10 mg/kg matrine markedly inhibited TNF-α
expression (P < 0.05).

In the ileum, TNBS treatment markedly increased IL-
1β and TNF-α mRNA abundances (P < 0.05), although
matrine failed to mediate TNF-α expression in TNBS-induced
murine colitis. Matrine (1, 5, and 10 mg/kg) significantly
alleviated the overexpression of IL-1β (P < 0.05). In the
colon, IL-1β, IL-10, and TNF-α were significantly upregulated
in TNBS group compared with the N group (P < 0.05), and
matrine (5 and 10 mg/kg) reduced IL-1β and TNF-α mRNA
abundances (P < 0.05).

Effects of Matrine on Intestinal and
Colonic Expression of TLR4/Myd88
TNBS treatment markedly upregulated ileal Myd88 expression
compared with the N group (P < 0.05) and matrine (5 and
10 mg/kg) inhibited ileal Myd88 expression (P < 0.05) (Table 5).
Meanwhile, the mRNA abundances of TLR4 and Myd88 were
significantly higher in the TNBS group than that in the N group
in the colon (P< 0.05), while 10 mg/kg matrine alleviated colonic
TLR4 activation (P < 0.05).

Effects of Matrine on Gut Microbiota in
TNBS-Induced Murine Colitis
16S rRNA sequencing yielded an average of 53,364 filtered
partial sequences per sample with an average length of ∼300 bp.
Alpha-diversity was tested by analyzing observed species, Chao1,
Shannon, and Simpson (Table 6). Observed species, Chao1, and
Simpson indexes were not altered in the TNBS and matrine
groups (P > 0.05). Shannon value in the TNBS-treated mice was
markedly lower than that in the normal group (P < 0.05), while
matrine tended to increase the Shannon index (P > 0.05).

The overall microbial compositions in the TNBS and
matrine groups were markedly changed at the class and family
levels (Table 7). At class level, TNBS treatment markedly
reduced the relative abundances of Bacilli and Mollicutes
(P < 0.05), while matrine significantly restored the reduction
of Bacilli and Mollicutes levels (P < 0.05). Meanwhile,
matrine enhanced Betaproteobacteria and Bacteroidia levels
compared with the N and TNBS groups (P < 0.05). At
family level, Peptostreptococcaceae, Erysipelotrichaceae,
Methylobacteriaceae, Sphingomonadaceae, and Lachnospiraceae
were markedly reduced in response to TNBS-induced
murine colitis, matrine treatment improved the relative
abundances of Peptostreptococcaceae, Methylobacteriaceae,
Sphingomonadaceae, and Lachnospiraceae (P < 0.05). Also,
Bifidobacteriaceae was increased and Mycoplasmataceae
was reduced in matrine-fed mice compared with the TNBS
group (P < 0.05).
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TABLE 4 | Effects of matrine on intestinal and colonic expression of proinflammatory cytokines.

Item N group TNBS ML MM MH

Jejunum

IL-1β 1.00 ± 0.14b 1.61 ± 0.17a 1.42 ± 0.16a 1.26 ± 0.06b 1.15 ± 0.11b

IL-10 1.00 ± 0.12 1.07 ± 0.12 0.96 ± 0.05 0.89 ± 0.12 0.82 ± 0.22

IL-17 1.00 ± 0.19 1.27 ± 0.19 1.13 ± 0.18 1.21 ± 0.14 1.09 ± 0.16

TNF-α 1.00 ± 0.13ab 1.32 ± 0.23a 1.24 ± 0.16ab 1.03 ± 0.11ab 0.84 ± 0.09b

Ileum

IL-1β 1.00 ± 0.07b 1.96 ± 0.15a 1.48 ± 0.24b 1.43 ± 0.10b 1.37 ± 0.23b

IL-10 1.00 ± 0.11 1.23 ± 0.19 1.12 ± 0.23 0.92 ± 0.07 1.22 ± 0.02

IL-17 1.00 ± 0.21 0.98 ± 0.11 1.07 ± 0.09 0.94 ± 0.05 1.63 ± 0.26

TNF-α 1.00 ± 0.17b 1.50 ± 0.27a 1.31 ± 0.05ab 1.28 ± 0.18ab 1.23 ± 0.11ab

Colon

IL-1β 1.00 ± 0.20b 1.93 ± 0.09a 2.26 ± 0.31a 1.35 ± 0.48b 1.28 ± 0.07b

IL-10 1.00 ± 0.13b 1.45 ± 0.09a 1.34 ± 0.29ab 1.17 ± 0.38ab 1.21 ± 0.16ab

IL-17 1.00 ± 0.20 1.16 ± 0.12 1.15 ± 0.17 1.07 ± 0.72 1.10 ± 0.40

TNF-α 1.00 ± 0.12b 1.93 ± 0.21a 1.73 ± 0.16a 1.26 ± 0.24b 1.28 ± 0.10b

Data are presented as mean ± SEM. The values having different superscript letters were significantly different (P < 0.05; n = 10).

TABLE 5 | Effects of matrine on intestinal and colonic expression of TLR4/Myd88.

Item N group TNBS ML MM MH

Jejunum

TLR4 1.00 ± 0.16 1.15 ± 0.17 1.14 ± 0.17 1.24 ± 0.15 1.13 ± 0.07

Myd88 1.00 ± 0.13 1.27 ± 0.18 1.29 ± 0.15 1.38 ± 0.16 1.34 ± 0.22

Ileum

TLR4 1.00 ± 0.18 1.31 ± 0.06 1.30 ± 0.18 1.26 ± 0.13 1.34 ± 0.13

Myd88 1.00 ± 0.08b 1.71 ± 0.09a 1.43 ± 0.13a 1.14 ± 0.09b 1.23 ± 0.07b

Colon

TLR4 1.00 ± 0.13b 1.52 ± 0.17a 1.55 ± 0.16a 1.34 ± 0.29ab 1.13 ± 0.22b

Myd88 1.00 ± 0.02b 1.72 ± 0.22a 1.42 ± 0.05a 1.64 ± 0.05a 1.23 ± 0.26ab

Data are presented as mean ± SEM. The values having different superscript letters were significantly different (P < 0.05; n = 10).

FIGURE 1 | Genome prediction of microbial communities by PICRUSt analysis. Data are expressed as relative abundance of genes. The values having different
superscript letters were significantly different (P < 0.05; n = 6).
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TABLE 6 | Effects of matrine on gut microbiota alpha-diversity.

Item N group TNBS MH

Observed species 609.33+76.19 587.38+61.25 594.82+53.46

Chao1 572.25+44.23 534.19+60.37 565.38+55.74

Shannon 4.62+0.32a 3.23+0.29b 3.75+0.43ab

Simpson 0.95+0.11 0.97+0.09 0.94+0.12

Data are presented as mean ± SEM. The values having different superscript letters
were significantly different (P < 0.05; n = 6).

TABLE 7 | List of significantly changed gut microbiota in response to TNBS and
matrine treatments.

Item N group TNBS MH

Class level

Bacilli 0.3052 ± 0.0899a 0.0620 ± 0.0155b 0.2474 ± 0.0580a

Betaproteobacteria 0.0058 ± 0.0025a 0.0058 ± 0.0014a 0.0032 ± 0.0011b

Bacteroidia 0.0042 ± 0.0008a 0.0043 ± 0.0013a 0.0026 ± 0.0004b

Mollicutes 0.0028 ± 0.0006a 0.0018 ± 0.0006b 0.0025 ± 0.0010a

Family level

Peptostreptococcaceae 0.0089 ± 0.0014a 0.0074 ± 0.0009b 0.0090 ± 0.0006a

Bifidobacteriaceae 0.0092 ± 0.0007ab 0.0087 ± 0.0006b 0.0099 ± 0.0014a

Erysipelotrichaceae 0.0048 ± 0.0006a 0.0041 ± 0.0009b 0.0041 ± 0.0005b

Methylobacteriaceae 0.0069 ± 0.0017a 0.0021 ± 0.0003b 0.0067 ± 0.0006a

Sphingomonadaceae 0.0087 ± 0.0026a 0.0019 ± 0.0005b 0.0066 ± 0.0009a

Mycoplasmataceae 0.0024 ± 0.0003ab 0.0041 ± 0.0024a 0.0015 ± 0.0005b

Lachnospiraceae 0.0028 ± 0.0003a 0.0019 ± 0.0003b 0.0027 ± 0.0005a

Data are presented as mean ± SEM. The values having different superscript letters
were significantly different (P < 0.05; n = 6).

PICRUSt was further used for genome prediction of microbial
communities and the results showed that cell motility, nucleotide
metabolism, and replication and repair were markedly altered
in the TNBS group, while matrine treatment significantly
affected cell growth and death, membrane transport, nucleotide
metabolism, and replication and repair (Figure 1).

DISCUSSION

Previous reports indicated that mice receiving TNBS
administration showed significantly increased clinical
scores of rectal bleeding score and diarrhea score and
body weight loss (Weiss et al., 2015; Zhang et al., 2015).
In this study, we found that TNBS influenced final body
weight, colonic weight and length, rectal bleeding score,
and diarrhea score, suggesting a colonic colitis model. In
addition, matrine exhibited a positive role in TNBS-induced
colonic injury.

Igs are glycoproteins and one of the vital components
of the immune system and previous reports suggested a
beneficial role of Igs in inflammatory response (Brimelow
et al., 2015; Elluru et al., 2015; Li et al., 2018). In this
study, we found that IgG involves in colonic colitis as
TNBS significantly inhibited serum IgG production. Meanwhile,
matrine enhanced the serum IgG level, suggesting a protective
role in TNBS-induced colonic injury. Matrine was demonstrated

to be an immune enhancer via inducing T cell anergy in
human Jurkat cells (Li et al., 2010). In this study, we firstly
reported that matrine regulates serum IgG in TNBS-induced
colonic injury.

IBD, including Crohn’s disease (CD) and ulcerative
colitis (UC), are characterized by intestinal inflammatory
response (Sands, 2015). In this study, TNBS caused
intestinal inflammation and matrine exhibited an anti-
inflammatory effect via mediating intestinal cytokines
expression. In asthmatic mice, matrine attenuates allergic
airway inflammation and eosinophil infiltration by suppressing
eotaxin and Th2 cytokine production (Huang et al., 2014).
In addition, matrine inhibits ovalbumin-induced airway
hyperresponsiveness, inflammatory cell infiltration, and goblet
cell differentiation via regulating Il-4, IL-13, and TNF-α
expression (Sun D. et al., 2016).

NF-κB plays critical roles in development, survival, oxidative
stress, inflammation and activation of B lymphocytes (Herder
et al., 2015; D’Addio and Fiorina, 2016; Sasaki and Iwai,
2016; Jin et al., 2018). NF-κB was identified as one of the
key regulators in the immunological setting. Its activation
is markedly induced in IBD patients and promotes the
expression of various pro-inflammatory genes (Atreya
et al., 2008; Ruhl and Landrier, 2016). Thus, inhibition or
inactivation of NF-κB serves as a potential therapy for IBD
patients. In this study, we found that dietary matrine inhibited
TLR4/Myd88 expression, the upstream signal of NF-κB.
TLR4 is widely expressed in the intestine. Once activated
by its ligands, TLR4 can activate NF-κB signaling pathway
linked to the transcription of many proinflammatory genes
(Tang et al., 2015). Compelling evidence has demonstrated
that matrine regulates TLR4 expression (Liu et al., 2015;
Sun N. et al., 2016). Furthermore, matrine can target
NF-κB signal to regulate gene expression. For example,
Lu et al. (2015) reported that matrine inhibits IL-1β-induced
expression of matrix metalloproteinases by suppressing
the activation of NF-κB in human chondrocytes in vitro.
Similarly, matrine has been demonstrated to inactivate
NF-κB signal in various cancer cells (Kim et al., 2013;
Li et al., 2014).

Various previous studies have confirmed the role of gut
microbiota in the pathophysiology of IBD (Peloquin and Nguyen,
2013; Gkouskou et al., 2014; Arora et al., 2018; Palamidi and
Mountzouris, 2018; Roelofs et al., 2018; Zhang et al., 2018). The
potential mechanism may be associated with the gut microbiota
and host metabolism interaction as gut bacteria often target host
metabolism, which further drive immune activation and chronic
inflammation (Weingarden and Vaughn, 2017). Similar to
previous studies, the current results showed that TNBS treatment
caused microbiota dysbiosis by reducing alpha-diversity and the
relative abundances of Bacilli and Mollicutes. Functional analysis
showed that cell motility, nucleotide metabolism, and replication
and repair were markedly altered in the TNBS group, while
matrine treatment significantly affected cell growth and death,
membrane transport, nucleotide metabolism, and replication
and repair. The microbiota plays a fundamental role on the
induction, training, and function of the host immune system and
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inflammatory response (Belkaid and Hand, 2014). Meanwhile,
NF-κB activity has been reported to be affected by gut microbiota
(Topol and Kamyshny, 2013). Thus, the gut microbiota might
serve as a potential mechanism of the protective role of matrine
in IBD models.

In conclusion, TNBS treatment induced colonic injury and
inflammatory response in mice. Dietary matrine exhibited
a protective role via enhancing serum IgG abundance and
alleviating intestinal cytokines expression. The mechanism
might be associated with gut microbiota as matrine
improved gut microbiota communities in TNBS-induced
murine colitis.
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