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Abstract: Recently, droplet-based microfluidic systems have been widely used in various biochemical
and molecular biological assays. Since this platform technique allows manipulation of large amounts of
data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over
the last decade a range of basic biochemical and molecular biological operations have been transferred
to drop-based microfluidic formats. In this review, we introduce recent advances and examples of
droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology
research including genomics, proteomics and cellomics. Their advantages and weaknesses in various
applications are also comprehensively discussed here. The purpose of this review is to provide a
new point of view and current status in droplet-based microfluidics to biochemists and molecular
biologists. We hope that this review will accelerate communications between researchers who are
working in droplet-based microfluidics, biochemistry and molecular biology.

Keywords: droplet-based microfluidic; biochemistry; molecular biology; digital PCR; biochip;
biosensor; digital quantification; microfluidic; single cell analysis

1. Introduction: Biochemistry and Molecular Biology for Droplet-based Microfluidics

In the past three decades, biochemistry and molecular biology have been developed in various
basic research areas and applications in which microfluidics have played one of the most common
roles [1,2]. It has been a key goal to search for high throughput results while reducing the amount
of sample and reagents required for the experiment, and to increase the sensitivity and precision of
the assay over the last decade. However conventional experimental approaches suffer from their
limitations in terms of low throughput, large sample consumption and false positive (or negative)
errors from the assays with complex biological samples.

In recent years, droplet-based microfluidic (DMF) technologies have been focused on reducing
fluids to the nano-to-femtoliter scale. This reduction makes the flow in the channels become laminar,
represented by a low-Reynolds number, which gives derivate properties like the immiscibility of
the different phases of the fluid. It changes the fluid’s properties as the flow in the channels will be
laminar, represented by a low-Reynolds number, which gives derivate properties like the immiscibility
of the different phases of the fluid. Under the aforementioned conditions the samples are divided into
droplets for better manipulation of the properties of the assays [3]. To prevent the coalescence of the
droplets, surfactants is important depending on the goal of the assay. In particular, there is a great
variety of different surfactants for hydrocarbon oil or silicon oil [4]. The techniques derived from this
field have emerged as potential high throughput platforms for performing various biochemical and
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molecular biological experiments. The term DMF sometimes can make reference to digital microfluidics
which not only includes systems based on droplets in microchannels but also to electrowetting on
dielectric (EWOD) referring to those microfluidic devices that manipulate the droplets by electric
signals [5]. In this review, we will focus only on droplet-based microfluidics without further details
on EWOD. DMF systems provide tools to precisely manipulate and simultaneously analyze single
biological molecules within femto-to-nanoliter droplets in an ultrahigh throughput manner (Figure 1).
Compartmentalization of biological molecules within microdroplets provides numerous advantages
over conventional approaches, in terms of higher target concentration and also low number of
background molecules [6]. These advantages reduce the reaction time, and increase the sensitivity
and selectivity that enable low false positive and false negative rates [7]. DMF systems also offer the
reduction of equipment, portability and facile integration of functional components [2,8,9].
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droplet-based microfluidics (DMFs).

Genes, proteins and cells are fundamental building blocks of life and have been tremendously
studied in biochemistry and molecular biology to understand the mechanism of life. In this review,
we briefly introduce selected recent advances of DMF technologies for biochemistry and molecular
biology, with particular emphasis on genomics, proteomics and cellomics, then highlighting also the
possibilities in biological applications.
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2. Droplet-based Microfluidics for Genomics

Complete genomic studies of organisms in all other respects, including whole genome sequencing,
directed evolution, quantification of DNA/RNA, and even epistatic, pleiotropic and heteroidal
interactions of genes, are the most important in understanding the function of genes in biochemistry
and molecular biology fields. In recent years, DMF technologies have been merged with molecular
biology approaches for the understanding and also for engineering genetic information through whole
genome sequencing and quantification of nucleic acids [10]. This special interest has enabled advances
in amplification and analysis of DNA and RNA within microdroplets, as well directed evolution
approaches, and have found a great tool to improve their efficiency. Very recently, DMF also applied
the study of multiplex chromatin-interaction analysis based on single-molecule precision chromatin
interactions that can provide topological insight into transcription [11].

2.1. DNA Sequencing

Among the different techniques used in genomics, DNA sequencing is probably one of the
most important tools for understanding genetic information. DMF technologies have advantages in
terms of throughput, sample amount and assay time for the identification of DNA and also for the
single cell-based study. Single-molecule droplet barcoding (SMDB) is one of excellent examples of an
ultrahigh-throughput method to barcode long DNA molecules for short-read sequencing [12]. Using
DMFs, barcoded-single DNA molecules are isolated in aqueous droplets by one million times smaller
than conventional well plates. The Single Cell genome-sequencing (SiC-seq) technology is used for the
encapsulation of a single bacterial cell within micro-sized hydrogels to lyse bacteria and merge them
individually with a barcode for template fragmentation and barcoding [12,13]. Theoretically, all sizes
can be amplified, but inefficiencies have been reported with templates over 3 kb. Another example for
DNA sequencing is the use of a Förster resonance energy transfer (FRET) ligation assay with probes
targeting different sequences for detecting polymorphisms of single-base mismatch discrimination [14].
Kogawa and colleagues recently introduced a new analytical tool named “Cleaning and Co-assembly of
a Single-Cell Amplified Genome (ccSAG)” that combined with parallel single-cell genome amplification
obtains composite single-cell genomes. In this approach, multiple single-cell amplified genomes
(SAGs) can be obtained with low contamination, (less than 1.25%) from the bulk DNA of single gut
microbial cells [15]. Petukhov and co-workers also developed a single-cell RNA sequencing protocol
(dropEst) using DMFs that can provide accurate estimates of molecular counts in individual cells by
correcting sequencing errors affecting molecular and cellular barcodes [16]. Single cell sequencing has
an increasing importance in biotech procedures related to diagnosis and personalized medication [17].
Recently, throughput of DMF-based single cell sequencing was achieved single cell RNA sequencing
from 15,000 cells within an hour (Figure 2a) [18]. Zilionis and co-workers introduced the inDrops
methods which has the capability of analyzing the mRNA transcriptome from thousands of individual
cells by single-cell encapsulation with barcode-conjugated hydrogel beads. Antibiotic-resistance
genes, virulence factors and phage sequences were also determined from a single-cell for analysis
of the microbial communities distribution, present in environmental samples [19,20]. More recently,
Taqman PCR and molecular beacons were merged into DMF technologies to validate single nucleotide
polymorphism (SNP) and it provides a single cell-based genotyping approach [21,22].

2.2. Identification and Digital Quantification of Target DNA

PCR (polymerase chain reaction) technology has been evolved with the use of DMF technologies
for the precise detection and absolute quantification of the nucleic acid of interest (Figure 2b). Basically,
single-target DNA or target RNA could be encapsulated within nanoliter to picoliter droplets with
low-copy numbers of background DNA (or RNA). The advantage of DMF-based digital PCR is
the small reaction volume that provides (1) higher target concentration per reaction (microdroplet),
(2) accumulation of amplified signal within microdroplets and (3) less background molecules by
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partitioning large volumes of sample into nanoliter to picoliter droplets. The other advantage of
DMF-based digital PCR is that it does not require normalization using a standard curve because a
digital PCR reaction is basically targeting single copy of DNA within microdroplets and it provides
absolute quantification.

Zhao and co-workers recently introduced oil-saturated polydimethylsiloxane (PDMS) chip (OSP)
for the on-chip droplet digital PCR (ddPCR) that was used for absolute quantification of lung cancer
related microRNA and pathogenic bacterial DNA [23,24]. Eastburn and co-workers used ddPCR
for cell-type identification among a heterogeneous population of mammalian cells based on gene
expression [25]. In their approach, reverse transcription PCR and DMF technology were integrated
for monitoring prostate cancer-related RNA from single-cell encapsulated droplets. ddPCR has been
proven useful with numerous examples in the detection of circulating tumor DNA (ctDNA) in blood,
urine and also solid tumor samples [26–41]. Joensson and coworkers integrated ddPCR with fluorescent
color-coded Luminex®beads for multiplex detection of pathogen DNA biomarkers [42]. Droplets were
generated with three different Luminex bead sets coupled to target-specific capture oligos to detect
the three microorganisms infecting poultry (avian influenza, infectious laryngotracheitis virus and
Campylobacter jejuni) through hybridization with a DNA mixture containing pathogenic DNA. Then,
target DNA was amplified with fluorescently labeled target-specific primer within picoliter droplets
and Luminex bead were collected for the analysis in the Luminex instrument.
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reproduced with permission from [18], published by Springer Nature, 2016. (b) Digital PCR for the
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droplets. Then, a number of target molecules can be quantified by counting fluorescent droplets.

Isothermal Amplification

Nucleic acid amplification is a key procedure for the detection and quantification of biomarker nucleic
acids. Conventional PCR amplification requires repeated cycles of three or two temperature-dependent
steps during the amplification processes which requires a thermocycler. In contrast, isothermal
amplification methods have no need for thermal cycling that can be used in simplified-microfluidic
systems including DMF-based ddPCR. Various isothermal amplification methods have been developed
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and merged in DMF for precise detection and absolute quantification of the nucleic acid of
interest (Figure 3).

Rolling circle amplification (RCA) consists of an isothermal enzymatic process where a long single
stranded DNA or RNA is formed using a circular template for the amplification of a short primer
(Figure 3a). The product of RCA is a concatemer which contains tens to hundreds of pair repeats that
are complementary to the circular template [43]. Knudsen and co-workers demonstrated detection of
malaria (Plasmodium) in blood and saliva by integration of DMF with RCA [44]. Leong and coworkers
also applied RCA in DMF for the monitoring Plasmodium topoisomerase I (pTopI) in the saliva of the
patient [45].

Multiple displacement amplification (MDA) allows massive parallel amplification of single cell
genomes while maintaining the accuracy and specificity of the sequence (Figure 3b). Takeyama and
co-workers introduced whole genome amplification (WGA) for single-cell sequencing using DMF [46].
Tens of thousands of single cells were individually encapsulated in millions of picoliter droplets and
then subjected to lysis and WGA in DMF. This approach enables single-cell based high-throughput
acquisition with contamination-free sequencing that results in 21,000 single-cell sequencing within
an hour. Another group presented a droplet digital MDA (ddMDA) technique where the division
of the DNA template into thousands of sub-nanoliter droplets reduces the competition among DNA
fragments for primers and polymerase, greatly reducing amplification bias [47].

Loop-mediated isothermal amplification (LAMP) uses multiple primer sets for a single nucleic
acid target. It consists of an auto-cycling strand displacement DNA synthesis that is catalyzed by DNA
polymerase with high strand displacement (Figure 3c) [48]. Rane and colleagues recently reported an
integrated-microfluidic system for digital nucleic acid detection through droplet generation, incubation
and in-line detection for digital LAMP within a single device [49]. Also, a hydrophilic PDMS that allows
LAMP to be performed in a self-driven DMF device has been announced [50]. For the detection of
influenza A virus [51] and Zika virus [52], reverse transcriptase loop-mediated isothermal amplification
(RT-LAMP) has also been merged with DMF technologies.
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Continuous-flow digital LAMP is another innovation for the integration of this amplification technique
with droplet-microfluidics, which has been already utilized for ultrasensitive DNA detection [49]. The group
of Giuffrida and colleagues described a combined method for detecting microRNA-210 sequences using
digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement
polymerization (ICSDP) [53]. The same group also show a new method for the detection of nanoliter
droplets of nucleic acids, specially microRNA sequences in a picomolar scale [54].

Helicase dependent amplification (HAD) consist of using a probe with a hairpin structure that
bears the transcription factor binding site to convert the protein signal to the DNA signal. Cao and
colleagues demonstrated a simple method for the detection of a transcription factor. In the absence of a
transcription factor zero background signal can be achieved due to the digestion of excess probes by
the exonucleases and the subsequent one primer-triggered high fidelity amplification [55].

Recombinase-polymerase amplification (RPA) uses two oligonucleotide primers specific to
the target, which binds to the template DNA assisted by a recombinase in combination with
strand-displacement DNA synthesis (Figure 3d). Recently, this method has been integrated into
DMF technologies [56] including Slip chip [57], centrifugal step emulsification droplets [58] and a
chip-based picoliter well array [59].

3. Droplet-based Microfluidics for Proteomic

Understanding proteome, structure and function of proteins in tissues is the next generation
challenge in molecular biology. In particular, throughput is one of the important factors in the study of
protein expression and its structure, and this is due to the vast amount of data from various tissues and
cells [60]. Recently, DMF technology has been applied for proteomics and also for the identification of
protein structure and its function [61]. Diversity of assays in the field of proteomics require the control
of a large number of parameters due to the complexity of the samples, and since a wide variety of
proteins can be found in the small amount of sample, there is a necessity of precise methods of analysis.
In particular, protein crystallization requires exquisite control of the parameter and DMF technology
integrated here for precise manipulation of complex procedures. Within a single microfluidic device,
multiple functions such as separation of the nucleation from growth stages by stopping the flow and
combination of high-concentration protein with precipitant solutions to form droplets are included.
Then, the flow stops to proceed with the incubation to generate seed crystals. When the precipitant
solutions are combined with lower-concentration protein droplets containing lower supersaturated
solutions are formed to produce crystal growing, then each growth droplet that contains seed crystals
flows through a glass capillary and is incubated (Figure 4a) [62]. In recent years, it has been seen how
DMF technology provide new perspectives and solutions in these different fields of proteomics but
there are still many challenges such as the implementation in point of care devices.

3.1. Identification and Structure of Protein

The structure of proteins has been studied in molecular biology and biochemistry for a long time
and even nowadays it is one of the most common topics in this field. Protein crystallization at a droplet
scale allows the use of reagents and protein samples to be minimized which contributes to reducing
the cost of the process and at the same time to controlling the diffusion of molecules and the nucleation
of crystals [63–65]. Maeki and colleagues suggested that the droplet size and the diffusion are the most
common factors for the nucleation of proteins [66]. For evaluating protein crystallization conditions,
another group presented a droplet-based composite PDMS/glass capillary microfluidics system using
microbatch and vapor-diffusion methods with on-chip X-ray diffraction [67]. The use of picoinjection
and Venturi junction can generate droplets of supersaturated solution to eliminate the problem of
unspecific precipitation [68].

Protein quantification methods increased their efficiency and sensitivity using DMF as it has been
demonstrated with the development of digital amyloid quantitative assay (d-AQuA). The d-AQuA
uses DMFs for absolute quantification of single insulin paragons at a single molecule sensitivity with a
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phase of amplification by serial dilutions. This approach is being possible to be used for the monitoring
of protein misfolding and aggregation (PMA) diseases [69]. Quantitative characterization at the
single cell level can be a challenge due to the small amount of target protein within complex samples
and a DMF-based barcoding approach allows cells to be distinguished by the protein expression
profile, with limitless multiplexing [70]. More recently, advanced-multiplexing detection methods have
been shown based on DMF-based up-conversion nanoparticles (UCNPs) [71]. In other detection and
quantification methods such as chromatography of complex mixtures, one of the issues is a coelution
due to their complexity and peak dilution is also inevitable because of molecular diffusion during
sample transfer. It causes the remix of separated peaks and band broadening, which produces the
degradation of achievable resolution. To address this issue, DMF technology has been integrated
with liquid chromatography and capillary electrophoresis [72]. In this droplet-interface 2D system,
the HPLC effluent is fractionated into nanoliter droplets and collected in a tube right after performing
the chromatography and before proceeding to the analysis of the drops (Figure 4b).

3.2. Functionality Study

Protein–protein interaction studies, immunoassays and enzymatic assays are the main examples
of how DMF technologies have been utilized to determine the functions of proteins. Enzymes are
challenging to engineer due to the complexity of relationship between the sequence and biochemical
properties. DMF technology can provide ultrahigh-throughput methods for mapping the enzyme
sequence–function relationship by combining droplet microfluidic screening with next-generation
DNA sequencing [73].

Immunoassays are one of the most common tools in molecular biology and biochemistry,
for identification and quantification of different pathogens and markers in biological samples which
makes it a common assay for diagnosis. DMF technologies can provide new advances in this technique
like avoiding the washing steps at same time as reducing the time of the assay and the sensitivity,
as proven in the microfluidic bead based immunoassay detecting even 0.01µg mL−1 of C-reactive
proteins [74]. Performing immunoassays like ELISA for the detection of single exosomes can be a very
useful tool for cancer diagnosis, and combined with DMF technology, it can encapsulate 1 exosome
per droplet requiring a very low concentration of exosome in the samples [75]. An automated DMF
device for high temporal resolution studies on hormone secretion has also been developed; this
device performs fluorescence imaging at same time the droplets are forming [76]. The use of surface
enhanced raman scattering (SERS) with droplet microfluidics can also be applicable to the detection of
biomarkers like prostate specific antigen (PSA). The combination of four compartments for generating
microdroplets, separating immunocomplexes droplets and another for collecting unbound SERS
nanotag droplets for detection allows the immunoassay for PSA to be performed. It contains five
compartments including 1) droplet generator, where magnetic immunocomplexes are formed and
2) droplet sorting with magnetic field. Following this, 3) larger droplets are generated containing the
supernatant for SERS detection and 4) unbound nanotags are separated by droplet fission from the
small droplets containing the sandwich immunocomplex. 5) The SERS intensity is measured in both
droplet cases showing high signal for the immunocomplex compared to the low signal of the unbound
nanotags (Figure 4c) [77].

The activity of enzymes as well as their structure are fields of study that require control of the
environment; DMF allows the control of all the different parameters and the study of various classes
of enzymes like hydrolases, aldolases, proteases, amino-acid dehydrogenases and polymerases [78].
Also, cell-secreted enzymes have been used to demonstrate a high-throughput screening method
combining optical and fluorescence microscopy with MALDI-MS in a single platform. It has a potential
to quantify and characterize the enzymes that secreted from single cell but it also required creating
small-size droplets for single cell-based absolute quantification of enzyme [79]. The use of hydrogel
immunosensors is another approach for single-cell multiplexed secretion analysis that has been proven
recently [80]. The main approach to study enzymes is probably directed evolution assays.
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Directed evolution allows proteins and RNA with properties which are not found in nature
due to random mutations of the genes that encode the targeted protein to be obtained. A good
example of the application of DMF technology to directed evolution, is the absorbance activated
droplet sorter (AADS) that sorts microdroplets based on an absorbance readout up to 300 droplets
per second. The efficiency of AADS on protein engineering was proven by improving the activity of
phenylalanine dehydrogenase toward its native substrate after two rounds of directed evolution [81].
Enzymatic properties such as chemospecificity and enantiospecificity can be generated within droplet
and it can be manipulated using a Droplet Microfluidics Droplet Sorter (DMDS) with a dual channel
fluorescence–activated droplet sorting (DC-FADS). This is an effective method that can be useful for
drug development. After several rounds of mutagenesis and screening, specific enantiomers can be
selected [82]. For fluorescence based assays, hydrophilic rhodamine-based enzymatic substrates have
been used in DMF systems that can prevent the chromophore transfer between droplets, making the
sorting of the droplets due to their fluorescence signal more effective [83]. The picoinjection of the
fluorogenic substrate to the droplets to modify the incubation period depending on the kinetics of the
enzyme of study allows the analysis of 106 variants in one hour. This screening platform consists of
different steps, starting with the encapsulation of Escherichia coli previously transformed with CotA
(active enzyme) and ∆CotA (frameshifted enzyme) in different strains, with induction medium. In the
next step, the emulsion is incubated off-chip to induce the expression of the different enzymes within
the droplets. After the incubation step, fluorogenic substrate was introduced into pre-generated
droplets with a picoinjection microchannel and droplets were off-chip incubated for the enzymatic
reaction. Then, florescent droplets were sorted out to isolate target-cells based on the enzymatic activity
and they were recovered from the sorted droplets by droplet breakage reaction. Recovered cells can
be used for determining the enrichment with the active enzyme or follow another round of selection
(Figure 4d) [84].
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Figure 4. Droplet-based microfluidics for proteomics. (a) Separating the stages of nucleation and growth
in the crystallization of “severe acute respiratory syndrome (SARS) protein” yields single crystals,
reproduced with permission from [62], published by John Wiley and Sons, 2006. (b) A droplet-interfaced
2D nano liquid chromatography-capillary electrophoresis (LC-CE) system. The HPLC effluent is
fractionated into a series of nanoliter droplet units right after chromatography (panel (i)), and collected
and stored in a tube (panel (ii), tube inside diameter: 0.38 mm), before drop-wise analyzed in capillary
electrophoresis (CE) (panel iii), reproduced with permission from [72], published by Elsevier, 2015.
(c) Schematic illustration of the surface enhanced raman scattering (SERS)-based microdroplet sensor
for wash-free magnetic immunoassay, reproduced with permission from [77], published by Royal
Society of Chemistry, 2016. (d) A flexible droplet-based micro-fluidic platform that can be used
for high-throughput screening of Escherichia coli cells for measuring the CotA enzymatic activity,
reproduced with permission from [84], published by Royal Society of Chemistry, 2014.

3.3. Protein Engineering and Directed Evolution

Protein engineering is the process of developing polypeptides or proteins by modification of
amino acid sequences that are found in nature, and have become a common tool for the development
of proteins applied to industry and the clinic [85]. Combining DMF systems with other techniques
such as mass spectrometry provides great improvement in protein engineering [86]. Directed evolution
has become one of the most common strategies of protein engineering to improve valuable proteins for
various bio-industries including bioenergy, biomass-processing and bio-sustainability [87]. Merging
DMF systems with directed evolution assays reduces the volume of sample needed from 100 µL to
6 pL, enabling the analysis of more than 1 × 108 reactions/day compared to the 73,000 reactions per
day that can be analyzed with previous technologies [81]. However, success of this approach depends
on a diversity of combinational libraries and it requires an efficient method for the high-throughput
screening approach for large libraries of variants [88]. DMF technology has the ability to generate
uniform droplets and is also suitable for encapsulating single cells or for in vitro expression of single
genes within pico to nanoliter water-in-oil droplets [89]. Due to the uniformity and tiny size of droplets,
this approach provides quantitative assays in a high-throughput manner and another advantage is
the ability for sorting target droplets simultaneous and continuously in real-time. Other groups have
presented droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding the
polymerase function by employing an optical sensor to monitor the activity of the polymerase inside
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the microenvironment of a uniform synthetic compartment generated by microfluidics to engineer
natural polymerase to replicate unnatural genetic polymers. Hosokawa and colleagues used agarose
gel based DMF technology for the screening of lipolytic enzyme genes from the metagenomic library
constructed from soil by E. coli that is transformed with a metagenome [90].

4. Droplet-based Microfluidics for the Study of Other Metabolites

Recently, awareness of the importance of lipids has been increasing. In particular, studies
on structure and roles of the lipidome have been diverse in biochemistry and molecular biology.
The relationship between structure and behavior of membranes is a traditional research topic in
molecular biology and also one of the most popular topics in biotechnology because the mimic of
membranes is playing a new interesting role. DMF technology has recently become a tool to precisely
manipulate lipid-based membranes for various approaches.

DMF allows the precise control of the environment where the planar lipid bilayer membranes
are placed which facilitates the study of their properties [91]. The production of lipids by microalgae
can be measured by combining DMF technology with Raman spectroscopy to characterize microalgae
lipid production in a PDMS device with a method using FC-40 carrier oil to overcome the high Raman
background of PDMS (Figure 5a) [92].

Another type of study performed recently was the real-time digestion kinetics based on triglyceride
droplets that contained various lipophilic micronutrients. Whilst being monitored with a confocal
fluorescence microscope, oil droplets were generated and trapped in the PDMS chip, facilitated by the
hydrophilic property of the PDMS. This experiment was focused on the digestion of beta-carotene
and observing its degradation, but the method can be applied to various studies related to toxicology,
pharmacology and nutrition [93]. The study was extended to other oils and pro-vitamins as well as the
effect of the gastric phase of digestion on the intestinal phase [93].

Coacervates are spheres formed by liquid–liquid phases divided by membranes. Coacervates have
been studied for a few decades and a new strategy has been presented to construct single monodisperse
coacervate using liposome-microdroplets via a bottom-up approach to construct protocells. In this
approach, DNA is sorted and released from the encapsulated coacervates as well as localized
transcription. The encapsulation is produced by fusion of small coacervates into big coacervates in
liposomes and then the release or storage of the DNA within liposome droplets can be analyzed
over time depending on the temperature changes. DNA was stored at a higher temperature and
then transcription was monitored with a Spinach 2 aptamer and 3,5-difluoro-4-hydroxybenzylidene
imidazolinone (DFHBI) (Figure 5b) [94]. Wang and colleagues developed a polyethyleneglycol
(PEG)-based triblock copolymers to assemble coacervate in a DMF-based noncovalent method [95].

The study of carbohydrates with DMF technology is focused mainly on glucose metabolism
related to cancer and the lactate release. Multiplexing single-cell measurements of the uptake and
release of carbohydrates by cancer cells can be of great importance to help better understand cancer
metabolism [96,97], but also the measurement of glucose is a topic widely studied with DMF technology.
One of the examples is of monitoring glucose using a microhydrogel biosensor. This technique is based
on the bi-enzymatic reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). The gluconic
acid is generated by GOx and it causes the quenching of carbon dots. The size reduction of carbon dots
is induced by the –OH radicals that are produced by HRP (Figure 5c). The electrochemical detection
approach also can be used to measure glucose concentration by coupling with DMF technology and
GOx produced H2O2 that provides −2e− (Figure 5d) [98–102].
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Figure 5. Droplet-based microfluidics for metabolites. (a) Overview of Raman spectroscopy integrated
with a polydimethylsiloxane (PDMS) droplet microfluidic platform for on-chip droplet formation,
culture and in vivo cellular lipid analysis, reproduced with permission from [92], published by
Royal Society of Chemistry, 2017. (b) Encapsulation of coacervates into liposomes. The microfluidic
preparation of water/oil/water (W/O/W) double emulsions with coacervates, reproduced with permission
from [94], published by Wiley-VCH Verlag GmbH and Co. KGaA, 2017. (c) The prepared fluorescent
hydrogel glucose biosensor (FHGB) droplets showed a dual response to glucose of carbon dot
fluorescence quenching and droplet size reduction upon bienzymatic reaction with glucose, reproduced
with permission from [98], published by American Chemical Society, 2018. (d) Schematic illustration of
the principle of concentration gradient generation, the sensor is based on the electrochemical detection
of glucose in a droplet, reproduced with permission from [99], published by Elsevier, 2014.

5. Droplet-based Microfluidics for Cellomics

The study of cells and their properties as well as their interactions requires a controlled environment
with appropriate conditions for the growth, culture or assembly of artificial cells. Detection of single
cells can be a powerful tool for diagnosis of various kinds of diseases. DMF technologies have emerged
as a great solution for various studies in cellomics including single cell proteomics and single cell
engineering. DMF technology improves the performance of single cell analysis and sorting among
other applications increasing the amount of cells that can be analyzed from 1536 cells in one assay to
more than 300 droplets per second, which greatly increases the throughput of the experiments [103].
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5.1. Single Cell Analysis

Precision in characterization and in the study of biochemical reactions and interaction of cells
is essential to every analysis in cellomics. DMF technology provides a cell-to-droplet approach that
increases the sensitivity of single cell phenotype analysis, as well as more specific analysis like the
specific binding of antibodies to target cells [104]. A common tool for the analysis of single cells is
the implementation of SERS on droplet microfluidics. Multiple examples have been demonstrated
like the detection of PC3 cells in a well for droplet interrogation after encapsulating these cancer cells
with wheat germ agglutinin (WGA) [105]. The detection of various bacteria and eukaryotic cell lysate
have also been reported [106–108]. For the identification of leukemia cell lysate, a new approach
was presented which uses SERS-active silver nanoparticles and a droplet-based microfluidic chip.
Injecting silver nanoparticles, KCl as aggregation agent and cell lysate containing cell constituents,
such as nucleic acids, carbohydrates, metabolites and proteins into a continuous flow of mineral oil
can generate droplets of eighty nanoliter size [108]. DMF technologies have been implemented also for
the detection of different concentrations of reagents by using gold nanoflowers in a multilayer chip
that allows the gradients of the reagents to be deteceted with SERS by Jeon and colleagues [109].

DMF technology is also used as a tool to study the mechanism of viral infection, probing the
viral fusion using influenza A to measure the kinetics of fusion of virions with target liposomes.
Monitoring the kinetics of fusion was identified by analyzing pH-sensitive fluorescence intensity with
the presented method in which virions and liposome were encapsulated within droplets and acidic
conditions triggered fusion [110].

Single cell analysis of mRNA is a great approach to compare the heterogeneity of biological
samples. To improve its performance, microfluidic based DNA-functionalized hydrogel beads which
form a matrix to capture mRNA from lysed single cells were developed. To ensure that the mRNA
quantification is free of pre-amplification bias, padlock probes and rolling circle amplification (RCA)
is used, followed by hybridization with fluorescent probes. The number of transcripts in every cell
is assessed by simply counting fluorescent dots inside gel beads [111]. DMF technologies can also
provide a tool to simultaneously measure protein expression at a single cell manner. Protein expression
can be analyzed from encapsulated individual cells by co-encapsulation with various sensing elements
including enzymatic substrates based on color Förster resonance energy transfer (FRET) [112].

A DNAzyme sensor has also been employed to analyze single bacteria within droplets of
unprocessed blood. Encapsulated single E. coli was lysed with lysozyme and the intracellular target
cleaved the DNAzyme sensor which triggers fluorescence. Then, fluorescent droplets are quantified by
using the 3D fluorescent particle counter, allowing the single-droplet detection in a few milliliters of
unfluorescent droplets (Figure 6a) [113]. Ng and colleagues demonstrated a multiplexed assay for
simultaneous monitoring of six different protease activities from individual cells in a high throughput
manner (≈100 cells per experimental run) [112]. Cell signaling is one of the most important processes for
both intracellular and extracellular communications to coordinate cellular functions. Currently, much
of our knowledge about cell signaling comes from the information obtained from bulk experiments
using traditional population-average approaches such as Western blotting assays [114]. While these
approaches have been useful to understand intracellular mechanisms, understanding of intracellular
phenomena at a single-cell level is one of the challenges and it will provide key information of molecular
mechanism within cells. For example, genetic changes, environmental differences and changes in
cellular properties produce phenotypic and functional heterogeneity among cancer cells within the
same tumor. Droplet microfluidic technology also recently emerged as powerful tool that allows for a
high-throughput single cell kinase signaling assay with exceptional sensitivity [115].

DMF technology has been also implemented for the analysis of protoplasts to quantify the
levels of chlorophyll and GFP. This application of DMF technology on plant cells analysis can open
the opportunity for on-chip fluorescence-based selection of individual plant cells that can be used
in targeted regeneration. Combining DMF technology with RNA libraries and gene editing tools
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like CRISPR-cas9 endonuclease can also improve the academic and industrial research in plant
biotechnology [116].

5.2. Single Cell Sorting

Fluorescence activated cell sorting (FACS) is one of the most popular technologies for single cell
based biological experiment because it can be used to sort single cells according to their size and
fluorescence intensity. However, some issues are raised due to their size, cost and complexity for
users which makes it difficult to use frequently. Recently DMF technology has provided an alternative
approach for single cell sorting which can be potentially used as a cheaper and easier method.

The analysis and sorting of single mammalian cells is one of the most common procedures in
molecular biology research. Cells can be manipulated and the sorting might be divided into active when
an external force like magnetic, acoustic or electrical are used for the sorting [117] or passive sorting if
it relies only on the interaction with the fluid properties [118]. Cell sorting has been improved since
microfluidic technologies were applied to cellomics and various approaches can be used depending
on the natural differences of tissue or organ. DMF-based cell sorting approaches include complex
steps such as single cell encapsulation, analyzing fluorescence intensity at a single droplet sensitivity
within microchannel and intelligent sorting. DMF technologies can improve the throughput of the
sorting and analysis but also can give solutions for cell culture, like the use of hydrogel microcapsules
that will be a biocompatible niche for three-dimensional in vitro cell culture, where morphology, size
and other biochemical properties can be tuned [119] and base the detection in image recognition [120].
Among mammalian cells various types can be detected and sorted like T-cells [121]. Circulating
tumor cells are difficult to detect and measure. To improve the detection, new methods based on the
Warburg effect had been developed, measuring the levels of lactate and pH on previously encapsulated
A549 lung cancer cells, which will not be altered in a blood sample but by reducing the experiment
to the picoliter/nanoliter scale can be detected with a pH dye. In clinical assays more experiments
are needed to assure that the cells detected are indeed cancer cells [122]. Abate and co-workers
recently introduced DMF-based single cell sorting and sorted cells were arrayed for the cultivation.
This approach provides a potential tool to construct a large number of relevant single-cellular and
multicellular assays [123]. Basically, all kind of cells can be sorted by droplet-microfluidic techniques
like bacteria, viruses, and fungi. Even producing single-cell-derived microalgal clones in monodisperse
gelatin microgel compartments, growing them and sorting them by staining specific metabolites in
microgel beads is another possible application of droplet microfluidics that might be useful in the
industry of bioproducts (Figure 6b) [124]. Some sorting methods like PCR-activated cell sorting have
been developed where the fluorescence is activated by a TaqMan probe, allowing any kind of cell to
be sorted based on its genome or to some specific mutation [125]. The cell type composition can be
determined by single-nucleus RNA-sequencing which can analyze transcriptional states in vivo and
cell fixation methods contribute to a better resolution [126,127].

DMF high-throughput screening combined with mutagenesis strategies allowed the identification
of vitamin-secreting lactic acid bacteria, using roseoflavin-resistant mutant of L. lactis strain MG1363,
JC017, which secreted low levels of riboflavin. Using fluorescence-activated droplet sorting, it has been
shown that various mutants that secreted riboflavin more efficiently than JC017 were readily isolated
from the mutagenesis library, then candidates with as few as 1.6 mutations per million base pairs (Mbp)
were isolated with a highly efficient screening [128]. Other methods for single-cell isolation have been
used for genome analysis and cultivation of various microorganisms [129]. The identification of a
single type of bacteria and its functionality, by combining FACS, HLPC and mass spectrometry can
be another application [130]. A DMF platform has been developed for studying the interaction of
the Bacillus strains present in the oral microbial community of the Siberian bear, which shows that
profiling the activity of microbiota by DMF technology can improve how to quantify the influences on
the microbiome as well as for discovering new antibiotics [20].
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Virus can be sorted by DMF devices like Lance and colleagues who introduced a method to isolate
a virus from heterogeneous populations that provides advantages compared to FACS. PCR-associated
virus sorting needs only 100 bp to generate TaqMan probes. This method also can detect virus
present within host, bacteria and eukaryotic cells, encapsulating host cells with the virus and then the
lysate undergoing PCR, producing a positive signal if the virus is present in the host [131]. Another
application is the sorting of HIV-1 particles in a single-virus DMF platform, with an efficiency higher
than 99%, identifying, sorting and analyzing the neutralizing epitopes that might be antigenic features
for HIV vaccine candidates [132].
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Figure 6. Digital-based microfluidics of cellomics. (a) Blood samples and DNAzyme sensors are
mixed and then encapsulated in hundreds of millions of micrometer-sized droplets. DNAzyme
sensors produce an instantaneous signal in the droplets that contain the bacterium, reproduced
with permission from [113], published by Nature, 2014. (b) Encapsulation of single microalgal cells
within monodisperse gelatin microgel compartments using microfluidic techniques, reproduced with
permission from [124], published by John Wiley and Sons, 2018. (c) Droplet-based microfluidics
screening platform. The screening platform for Aspergillus niger was composed of two distinct
microfluidic devices, the first one for compartmentalization of spores and the second for sorting them,
reproduced with permission from [133], published by Scientific Reports, 2016.
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Sorting of fungi is usually high cost and low throughput, however, DMF technologies were used for
a screening based in an enzymatic assay reducing the off-chip manipulation of fungi and the time and
cost of the procedure by adjusting to nanoliter-volume droplets. Combining microfluidic and the robotic
microtiter-plate High-throughput screening (HTS) the group of Thomas Beneyton, compartmentalized
in droplets single fungal spores together with a fluorogenic α-amylase substrate. Enzyme secretion was
coupled with the fluorogenic α-amylase reaction, and the substrate was completely consumed in many
droplets. The throughput of microfluidic HTS allows the screening of highly mutated libraries, which
are composed mainly of inactive clones, but also the higher mutation rate increases the chance of hitting
target genes which lead to a high probability of finding beneficial mutations, compartmentalizing
the single spores and performing amylase. Recently, a DMF-based approach has been used to study
amylase that was produced by the fungi through hydrolyzing the starch backbone and unquenching the
fluorophores inducing fluorescence (Figure 6c) [133]. Fungi sorting can be useful in biotechnological
industry processes like the pharmaceutical or food industries, and droplet microfluidics can be a useful
tool for monitoring the enzyme production by fungi [134]. The DMF approach also can provide a
method for single cell array at a high throughput manner. Cole and colleagues presented a printed
DMF that provides a programmable and robust technology to build arrays of defined cell and reagents
combinations and allows the integration of multiple measurement modalities together in a single
assay [123].

5.3. Single Cell Engineering

Last years, modification and even synthesis of complete cells has been a major tool for research in
which reducing the scale allowed better approaches and results. DMF technology has been proved as a
very effective tool for the development of new cell engineering techniques. Among them CRISPR is
probably one of the most exciting topics in molecular biology that has emerged these last few years;
combined with droplet microfluidics tools, the delivery of CRISPR has been used for gene therapy to
knock down the TP53BP1 gene from K562 cells [135,136]. DMF technology can also improve plasmid
transfection to single cells; monodisperse lipoplexes are included with single cells in the droplets
using plasmid pcDNA3 for the transfection which improved efficiency from 5% to 50% [135] as well as
lentivectors [137].

A very interesting application of DMF technology is the construction of synthetic cells.
The assembly of unilamellar vesicles and compartmentalization by pico-injection, merging lipid
vesicles and copolymers-stabilized droplets for generating stable cell-like compartments, have been
called droplet-stabilized giant unilamellar vesicles (dsGUVs) [138]. A double emulsion precursor form
has been utilized to improve the storage limitations of all kinds of cell-sized lipid vesicles (CLVs).
The therapeutic potential of these lipid vesicles has been demonstrated utilizing them to present
transmembrane proteins like neuroligin-2 to pancreatic β-cells, stimulating insulin secretion with the
formation of cell–cell synapses [139].

DMF technology can produce monodisperse droplets controling the size precisely and tailoring
the internal structure to incorporate different cells in designed locations. For example, Chen and
colleagues reported a new method for the development of organ-on-a-chip for the first time producing
highly monodisperse structures that enable multiple types of cells to arrange them to create an artificial
liver in a drop [140].

6. Droplet-based Microfluidics for the Field Applications

Recently, biochemist and molecular biologist have particular interest in accomplishing the
challenge of providing useful technologies which can be used in real life problems such as biomedical
diagnosis and among other fields like drug screening and development. Probably one of the most used
tools in these diagnostic field is PCR. DMF technologies update this procedure like we have already
discussed in this paper. Digital PCR can provide a robustness and convenience which can mitigate the
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effects of PCR inhibitors in diluted samples, regardless of the form of template (i.e., cells or genomic
DNA) for forensic short tandem repeat (STR) typing at the single-cell/molecule level [141].

6.1. Diagnosis

Among all the possible applications of DMF technology, clinical diagnosis is one of the most
promising fields which can benefit from this technology by increasing the throughput and reducing
the time needed to obtain the results which is of paramount importance when we turn to diagnosis.

The detection of RNA and DNA levels in DMF devices is a powerful tool for diagnosis of various
diseases like infections or cancer; several examples have been shown such as controlling the levels of
overexpression of genes in various cell lines [142].

Sensing biomarkers is another application that has improved these past few years, showing
various examples like detecting the levels of glucose which can be sensed more precisely with
DMF electrochemical sensors using platinum-black electrode generated by micro deposition of Pt
nanoparticles on bare Pt microelectrode. The levels of glucose oxidase can be detected up to 43.5 mM
offering possibilities for developing droplet-based highly sensitive and low consumption sensors [99].
Multiplex detection of different biochemical markers has been obtained by the integration of microvalves
for the control of droplet generation. This platform utilizes a colorimetric and fluorescence-based
assay to detect at same time biomarkers like lactate dehydrogenase (LDH), bile acid and glucose in a
device connected to a cell culture system which contains hepatocytes. It makes it possible to integrate
multiplexed sensing in organ-on-a-chip devices [143].

In the past decade, DMF technology has been integrated in devices already commercialized
like the Bio-Rad digital droplet PCR system which has been used for multiplex DNA targets
quantification [144]. Raindance technology®developed a digital PCR based device that can interrogate
mutations in 50 oncogenes, as well as tumor suppressors and drug resistance markers, generating
8 million picodroplet reactions per well. Velox Biosystems also commercialized IC3D, a system
that provides a rapid (less than 3 h) and highly sensitive detection technology for a specific type of
bacteria in unprocessed blood. Quanterix®designed a fully automated immunoassay system for
multiplexed and customized assay capability and the Mission bio Tapestri commercialized single
cell-encapsulation technology that divides thousands of cells into individual droplets, enabling
thousands of individual reactions simultaneously, from cell lysis and protease digestion to access to
DNA for further amplification.

6.2. Drug Screening

Drug screening is one of the applications which can benefit greatly from DMF technologies allowing
the performance of high-throughput screenings in a shorter time. There are various DMF-based
approaches have been developed and widely applied for drug screening. Recently for the screening of
more than 56 conditions and 20 replicates on different pancreatic cell lines, regulating the flow of the
different 16 syringes to produce different combinations [145]. In their approach, live tumor cells were
used for drug screening, without an ex vivo cultivation step, that provides higher sensitivity profiles
against drug candidates. With this DMF-based approach, the entire work flow can be completed within
48 h, with a cost of $150 each assay per patient. It will provide an emerging tool for rapid determination
of optimal personalized medication for cancer patients. The on-demand trapping and releasing of
droplets controls the pressure in the channel networks which can be applied to the screening [146].
Another trapping array device for the study of cell-penetrating peptides (CPP) in population-based
analysis has been developed allowing single-cell fluorescence imaging of CPP [147]. A DMF device
based on PDMS was used for conducting drug screening with suspended and attached cancer cells
screening. A similar approach was utilized in a drug susceptibility test for MCF-7 cells where even
80,000 cells could be sorted [148]. Even the release of drugs controlling the surface texture of the
polymer [149]. DMF has been utilized also for the development of diffuse large B cell lymphoma
(DLBCL) immunogenic spheroids where it can determine the cell adhesion, aggregation, proliferation
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and interaction between cancer cells, fibroblasts and lymphocytes providing a high-throughput that
facilitates the study of the drug effects over the whole immunogenic tumor microenvironment [150].

7. Conclusion

Recent advances in DMF technologies for biochemistry and molecular biology have been
introduced and discussed in this review. It can be seen that biochemistry and molecular biology
have found in DMF a technology for improving the sensitivity, accuracy, speed and throughput of
experiments (Table 1).

Table 1. Comparison of throughput and sensitivity of droplet-based microfluidics and selected
conventional approaches.

Selected
Applications

Throughput Limit of Detection

Conventional Methods DMF Conventional Methods DMF

Single-cell DNA
sequencing 384 cells/assay [136] 50,000 cells/run [12]

10–20 kb templates [13]
(Minimum size of DNA

that can be analyzed)

3 kb can be analyzed [13]
(Minimum size of DNA

that can be analyzed)

PCR 1 reaction/20 µL [21] 2 million
reactions/nL [21]

One mutation in
20,000 wild-type of

background DNA [151]

One mutation in
5 million wild-type of

background DNA [151]

ELISA 96 or 384 reaction/assay
[74]

500 reaction/assay
[74] 0.1–0.2 µg/mL [74] 0.01 µg/mL [74]

Single-cell sorting 1536 cells/assay [152] 100,000 droplets/s
[113] 80 cells/mL [153] 10 cell/mL [113]

Directed evolution 73,000 reactions/day [81] 1 × 108 reactions/day
[81]

NA NA

Drug screening 3328 cells/screening [148] 80,000 cells/screening
[148]

1 × 105 cells [148]
(Minimum requirement of

cells for screening)

10–100 cells [148]
(Minimum requirement

of cells for screening)

The advances in sequencing and detection, and protein and single cell detection in DMF can be a
great boost for basic research and clinical purposes. However, more advances in the development of
devices for point of care testing has to be achieved, integrating DMF devices in complete instruments
will be one of the challenges for the next few years in the field [154] (Table 2). DMF also became a
powerful tool for bioengineering at a single-cell level by combining with classic techniques like plasmid
transfection to recently-developed technologies such as CRISPR [135]. These applications are the proof
of the many possibilities that DMF gives not only for research in academic laboratories, but also opens
opportunities to develop new techniques in diagnosis and also for the personalized medication. There
are already various DMF-based powerful tools, but it will be expected that MDF technologies will be
continually developed to solve the hurdles faced by biochemists and molecular biologists.

Table 2. Advantages and disadvantages of droplet-based microfluidics for selected applications.

Selected Applications Droplet Microfluidics

Advantages Limitations

Single-cell sequencing Rapid (21,000 cells/h) [47]

Requires specific microfluidic
device and instrument for

droplet sorting

PCR Sensitivity (1–1011 copies per reaction) and accurate
(<2% standard deviation) [22]

ELISA Reduction of sample and reagent volume, decrease
operation time, no need for purification steps [74]

Single-cell sorting Reduced amount of reagent (10 cells/mL), faster
sorting time (100,000 droplets/s) [113]

Directed evolution Reduced amount of reagent (<6 pL) and Increased
efficiency (1 × 108 reactions/day) [81]

Drug screening
Increased the number of drugs and cell samples

tested (80,000 cells/screening), low reagent
consumption (<3 mL) [145,148]
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