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Algorithmic reconstruction of glioblastoma network
complexity

Abicumaran Uthamacumaran1 and Morgan Craig2,3,4,*

SUMMARY

Glioblastoma is a complex disease that is difficult to treat. Network and data
science offer alternative approaches to classical bioinformatics pipelines to
study gene expression patterns from single-cell datasets, helping to distinguish
genes associated with the control of differentiation and aggression. To identify
the key molecular regulators of the networks driving glioblastoma/GSC and
predict their cell fate dynamics, we applied a host of data theoretic techniques
to gene expression patterns from pediatric and adult glioblastoma, and adult
glioma-derived stem cells (GSCs). We identified eight transcription factors
(OLIG1/2, TAZ, GATA2, FOXG1, SOX6, SATB2, and YY1) and four signaling
genes (ATL3, MTSS1, EMP1, and TPT1) as coordinators of cell state transitions
and, thus, clinically targetable putative factors differentiating pediatric and
adult glioblastomas from adult GSCs. Our study provides strong evidence of
complex systems approaches for inferring complex dynamics from reverse-engi-
neering gene networks, bolstering the search for new clinically relevant targets
in glioblastoma.

INTRODUCTION

Glioblastoma is the most lethal pediatric and adult brain tumor. Despite advances in treatment, recur-

rence will occur in all glioblastoma patients, and mean survival in adults is only 15 months (Alifieris

and Trafalis, 2015). Glioblastoma is a morbid disease that is driven by a high degree of heterogeneity

and phenotypic plasticity in response to the interactions with their tumor microenvironment (Jung

et al., 2019). The cell fate transitions and cellular decision-making in glioblastoma cell populations are

regulated by the dynamics of complex signaling networks (Suvà et al., 2014; Jia et al., 2017). Recent ad-

vances linking single-cell datasets and computational algorithms have improved our understanding of

these complex networks and their orchestration of cell fate decisions of glioblastoma transcriptional

states (phenotypes) (Jin et al., 2018; Iacono et al., 2019). Despite this progress, quantitative approaches

that reconstruct the information flow and dynamics of these complex networks remain under-applied. Pe-

diatric glioblastoma exhibits molecular patterns and collective behaviors which are fundamentally

different from those of adult glioblastoma (Paugh et al., 2010; Jones et al., 2017; Schwartzentruber

et al., 2012; Sturm et al., 2012). There is a greater epigenetic burden in pediatric glioblastoma marked

by specific histone H3.3 modifications and aberrant DNA methylation profiles (Schwartzentruber et al.,

2012; Sturm et al., 2012; Lulla et al., 2016; Harutyunyan et al., 2019). However, the complex signaling dy-

namics distinguishing pediatric and adult glioblastoma subgroups, and the similarities within the molec-

ular networks driving their cancer stemness, remain poorly investigated (Paugh et al., 2010; Jones et al.,

2017). Answering the question of whether the reconfiguration of these underlying signaling networks in

both glioblastoma groups steers their cell fate dynamics would allow for the prediction of causal patterns

in disease progression and therapeutic responses.

Glioma-derived stem cells (GSCs) are believed to be a small subset of glioblastoma cancer cells that largely

contribute to emergent glioblastoma adaptive behaviors such as phenotypic plasticity, clonal heterogene-

ity, self-renewal, aggressiveness (resilience), relapse/recurrence, and therapy resistance (Jung et al., 2019;

Xiong et al., 2019). However, many different phenotypes in the tumor microenvironment, including immune

cells, healthy cells, extracellular matrices, and blood vessels, form complex feedback loops with malignant

glioblastoma cells (Jung et al., 2019; Xiong et al., 2019). GSCs form complex networks with their tumor

microenvironment. Signaling dynamics within this microenvironment and its reconfiguration govern the

fitness and stemness of GSCs. A lack of quantitative understanding of the causal mechanisms (gene
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H3C 3J7, Canada

4Lead contact

*Correspondence:
morgan.craig@umontreal.ca

https://doi.org/10.1016/j.isci.
2022.104179

iScience 25, 104179, May 20, 2022 ª 2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:morgan.craig@umontreal.ca
https://doi.org/10.1016/j.isci.2022.104179
https://doi.org/10.1016/j.isci.2022.104179
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104179&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


expression patterns) underlying GSC cell fate choices and transitions to their mature phenotypes hinders

successful clinical interventions in the treatment of glioblastoma (Jung et al., 2019; Xiong et al., 2019; Yabo

et al., 2021).

Statistical approaches are traditionally used to study cell fate dynamics and infer complex networks from

large-scale single cell transcriptomics by differential expression analysis through a combination of single

cell data processing and clustering algorithms (Iacono et al., 2019). However, these algorithmic pipelines

are inadequate for capturing the complex patterns and emergent behaviors of cancer network dynamics.

Furthermore, fundamental limitations associated with the raw counts of the scRNA-Seq complicate the

inference of networks in complex diseases like glioblastoma. These limitations include drop out events

(zero counts), and the inherent noise and sparsity of single cell data. To extract quantitatively meaningful

differences between GSC and glioblastoma networks while retaining the essential information representa-

tive of their complex dynamics requires tools from the interdisciplinary paradigm of complex systems the-

ory. Thereby, the main objective of our study comprises complex systems reconstruction of cell fate deci-

sions and behavioral patterns in glioblastoma dynamics. Specifically, we employed complex systems tools

such as network medicine, attractor reconstruction, and statistical measures of complexity to decode

cellular dynamics in glioblastoma ecosystems and gain quantitative insights into the molecular drivers of

glioblastoma differentiation dynamics and their adaptive behaviors such as glioblastoma plasticity and

multiscale heterogeneity.

Complex systems theory, or complexity science, is the study of irreducible systems composed of many in-

teracting parts in which the systems exhibit emergent behaviors. Emergence denotes systems in which the

nonlinear interactions between the system and its environment give rise to complex patterns and unpre-

dicted collective dynamics (Wolfram, 1988; Shalizi, 2006). The presence of multi-scaled feedback loops,

in particular, is the defining feature of complex networks (Thurner et al., 2018). Traditional reductionist ap-

proaches are inadequate to quantify the properties and temporal behaviors of complex networks

(Wolfram, 1988; Shalizi, 2006). Complex systems theory advocates the use of computational algorithms

and tools from network science to dissect these complex networks (Thurner et al., 2018; Huang et al.,

2009; Barabási and Oltvai, 2004).

The molecular networks coordinating the emergence of GSC and glioblastoma phenotypes are such com-

plex networks. To reveal the mechanisms underlying GSC cell fate decisions and transitions to their mature

glioblastoma phenotypes, we deployed several approaches from complex systems theory on data from

single-cell RNA Sequencing (scRNA-Seq) count matrices. We compared pediatric glioblastoma to adult

glioblastoma to identify the signaling network patterns distinguishing pediatric and adult glioblastoma

from GSCs. For this, we relied on clustering algorithms, Waddington landscape reconstruction, multivar-

iate information theory, network science (graph theory), and machine learning algorithms to map possible

cell fate dynamics and identify robust expression markers (critical TFs and genes) driving the complex net-

works underlying glioblastoma/GSC cell fate control and regulation. We found that distinct gene expres-

sion signatures regulate the cell fate decisions in the glioblastoma and GSC patient groups we studied. In

particular, we identified a set of key gene targets as master regulators of cell fate decision dynamics in all

patient groups, and the critical drivers of GSC stemness networks. Mapping their energy landscape dy-

namics and cell fate trajectories in pseudotime (cellular transition dimension), we represented the GSC/

glioblastoma cell fate decisions as dynamical systems which allowed us to identify genes such as

GATA2, FOXG1, SATB2, YY1, and SOX6, amidst others, as master regulators of information flow in their

signaling networks. Our results help to understand how cellular fate decisions in glioblastoma, identify po-

tential drug targets for precision oncology, and provide a roadmap for data theoretic approaches to other

such complex systems.

RESULTS

Key driver genes mediating the cell fate transition dynamics in glioblastoma/GSC epigenetic

landscapes are identified using the scEpath algorithm

We applied our complex theory-based analysis to pediatric and adult IDH-wt glioblastoma single-cell

RNA-Seq (scRNA-Seq) datasets (Table 1). Waddington landscape reconstruction identified causal patterns

(attractors) to which the distinct transcriptional states within each patient group cluster (Figures 1A–1C).

Distinct patient group clusters were determined by the scEpath algorithm (colored by similarity in gene

expression (i.e., phenotypes) in Figure 1). Three and four meta-clusters were identified in the pediatric
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glioblastoma (Figure 1A) and adult glioblastoma (Figure 1B), respectively, whereas sub-populations are

observed within each meta-cluster indicating the presence of phenotypic heterogeneity and epigenetic

plasticity. Many genes encoding transcription factors (TFs) were identified as the transition genes required

for cells to transition from one attractor to another. We mapped the expressions of these transition genes

across the inferred cell fate trajectories (Figures 1D–1F) and found similarities in the gene expression sig-

natures and similar oscillatory patterns in EMP1, MTSS1, PHGDH and OLIG1/2 (Figure 2). These markers

were selected in the clustering and trajectory inference process as explained above. Their similarity was

assessed by their expression variation along the cell fate trajectories in pseudotime (Figure 2). We also

identifiedOLIG1/2 as critical transcription factors in the adult GSC phenotypic transitions (Figure 1F). Other

signatures such as EGFR and PDGFRA were observed in the top 2 PCA loadings of glioblastoma samples in

both Seurat and BigSCale clustering. However, they were not expressed as highly in all clusters and hence,

only a few genes were found be relevant during filtering when imposing the condition that the gene marker

must be expressed in all patient groups and all cell clusters in TSNE/UMAP pattern space (Figure S1).

Pseudotime expression dynamics identifies oscillatory patterns in critical gene targets

Given the key driver genes and transcription factors identified by scEpath trajectory inference, we next

sought to infer similarities in gene expression dynamics during cell fate transitions within each patient

group amongst the identified critical gene markers. Using clustering algorithms (see STAR Methods), we

found that PTPRZ1 and S100B showed nearly identical expression dynamics in pediatric glioblastoma along

both cell fate trajectories on the Waddington landscape, whereas genes such as EMP1, MTSS1, and

PHGDH had more complex dynamics and exhibited oscillations during cell fate dynamics in pediatric glio-

blastoma and adult GSC (Figures 2A and 2C). The expression metric used to compare the dynamics of the

different pseudotime-dependent genes correspond to the cubic spline smoothened average normalized

expression along the pseudotime interval of [0,1].

In adult glioblastoma, NACA and PABPC1, and TPT1 and PSAP had similar expression patterns across all

four differentiation paths (Figure 2B). S100B, OLIG1, and PHGDH all had a broad expression profile in path

4 (Figure 2B). Furthermore, the presence of four cell clusters in adult glioblastoma landscape (Figure 1B) is

in good agreement with previous classifications of four molecular subtypes of adult glioblastoma (Verhaak

et al., 2010). The expression of EGFR and PDGFRA were distinctly higher in one of the four cell fate clusters/

attractors (Figure S4B). However, the expression of IDH1 exhibited oscillatory dynamics in all four paths/

attractors (data not shown). In adult GSC, many of the identified markers had similar gene expression pro-

files in pseudotemporal ordering (Figure 2C). For instance, PTPRZ1, NACA and PABPC1, were all found to

have similar expression dynamics in both transition paths (Figure 2C). Notably, OLIG 1 and OLIG2 were

found to have similar expression patterns in all three patient groups across all cell fate transition trajec-

tories of the landscape (Figures 2A–2C).

Notably, we identified that genes such as STMN3, MTSS1 and TAZ are critical regulators in one transition

pathway, while PSAP, TPT1, and PTPRZ1 are relevant for the other transition trajectory on the pediatric glio-

blastoma’s Waddington landscape (Figures 2A and S4A). The same trends in pseudotemporal gene

expression patterns in STMN3 and PTPRZ1 have also been found in the adult GSC cell fate trajectories

Table 1. Summary of single-cell datasets

Patient Group

Single-Cell

Dataset

# Patient Samples

(n) and Single-Cells

(N) for Seurat/

BigSCale

# Patient Samples

(n) and single-cells

(N) for scEpath

Analysis

# of Cell Fate

Trajectories in

scEpath Waddington

Landscape

Pediatric

glioblastoma

Neftel et al. (18) n = 7

N = 1850

n = 7

N = 1850

2

Adult

glioblastoma

Neftel et al. (18) n = 18

N �21,500

n = 7

N = 2221

4

Adult GSC Richards et al. (19) n = 28

N�69, 000

n = 13

N = 1504

2

The total number of patient samples (n) and number of single-cells within each patient group (N) used for each step of the

clustering and single-cell trajectory inference process are shown.
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(see Figure S4C in the Supplementary Information). In all three patient groups, OLIG1, OLIG2, PHGDH, and

TIMELESS had similar expression profiles within the distinct cell fate transition paths indicating potentially

some network coordination or collective oscillations. Some signals (e.g., BCAN and CLU) were found to

exhibit oscillations that may be indicative of complex dynamics with time-series expression analysis (Sup-

plementary Information). These findings suggest that the identified markers involved in glioblastoma/GSC

cell fate decisions exhibit similar patterns in their expression dynamics, and that the identified critical genes

are functionally putative master orchestrators of cell fate transitions/differentiation of the heterogeneous

phenotypes within a glioblastoma patient’s tumor.

PIDC network inference algorithm reconstructs the regulatory network configurations

driving glioblastoma/GSC cell fate transitions

We next reverse engineered the signaling networks coordinating the information flow in glioblastoma and

GSC using Partial Information Decomposition and Context (PIDC). In graph theory, each link (edge) of a

network has a weight capacity, a threshold, above or below which a state-transition can occur in the

Figure 1. Reconstructing pseudotime dynamics in glioblastoma/GSC cell fate decisions of the Waddington

landscape

Average normalized gene expression in cells plotted along pseudotime after fitting with a cubic smoothing spline (black

line). Cells are colored according to cell clusters defined by scEpath. The expression patterns of the top genes identified

by scEpath and BigSCale algorithms (via correlation metrics) showed significant changes along the pseudotime trajectory

inferred by scEpath algorithm. Selected gene markers in (A) pediatric glioblastoma, (B) adult glioblastoma, (C) adult GSC.

(D-F) Heat maps of the critical transcription factors involved in the differentiation and cell fate transitions between the

distinct attractors (phenotype clusters) of the glioblastoma/GSC Waddington landscape. The color gradient represents

the intensity of the gene expression in pseudotime trajectory, where blue implies low expression and red implies high

expression of the gene (TF) during the cell fate choices along the cell differentiation trajectories. The path corresponds

to the inferred trajectories in between the cell state attractors on the Waddington landscape for D) pediatric

glioblastoma, E) adult glioblastoma, and F) adult GSCs. Additional results are reported in Figure S3 in the Supplementary

Information.
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network’s topology resulting in changes in its behaviors (dynamics) (Latora et al., 2017; Rodrigues, 2019).

The connectivity/topology of the graph and the transitions/updating of the PID scores (weights) creates

a flow pattern characterizing the network dynamics. The transfer of information across the network is

defined as information flow (Latora et al., 2017; Rodrigues, 2019). The information flow can cause topolog-

ical transitions (rearrangements) of the network configuration, and hence, result in adaptive cell fate behav-

iors or correspond to the emergence of distinct cancer phenotypes.

Though the network topography may seem similar, the arrangement of the interactions from highest influ-

ence on the information flow (i.e., top PID scores) to those of the weakest interactions (lowest PID scores)

vary for each patient group. As seen in Figure 3A, OLIG1 and OLIG2 have the highest PID score of 1.9508,

followed by S100B and PTPRZ1 interaction with a PID score of 1.9303 in pediatric glioblastoma, suggesting

a strong relationship between these two genes in the complex network steering their cell fate decisions

(Figure 3A). We found that S100A10 and EMP1 have the highest interaction in adult glioblastoma with a

PID score of 1.9517 (Figure 3B), whereas NACA and TPT1 had the highest interaction in adult GSC with

a PID score of 1.9628 (Figure 3C). A distinct pattern was observed in the PIDC regulatory network of adult

GSC sample BT127 (highest quality GSC cells). The highest interaction was observed between PHGDH and

TIMELESS at a PID score of 2.762. Other top interactions identified for the TF networks (Figures 3E–3G) had

Figure 2. Reconstructing pseudotime dynamics in glioblastoma/GSC cell fate decisions of the Waddington landscape

Average normalized gene expression in cells plotted along pseudotime after fitting with a cubic smoothing spline (black line). Cells are colored according to

cell clusters defined by scEpath. The expression patterns of the top genes identified by scEpath and BigSCale algorithms (via correlation metrics) showed

significant changes along the pseudotime trajectory inferred by scEpath algorithm. Selected gene markers in (A) pediatric glioblastoma, (B) adult glio-

blastoma, (C) adult GSCs.
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similar pseudotemporal expression dynamics (Figures S4A–S4C in the Supplementary Information). ATF3

and DDIT3 were the top interactionmarkers from the critical TFs identified for pediatric glioblastoma with a

PID score of 1.971 (Figure 3E). EGR1 and FOSB in the adult glioblastoma group (Figure 3F), and YBX1 and

HMGB1 were identified as the top interaction TF markers, with PID score of 1.992 (Figure 3G). These results

suggest the reconfiguration of the nodes within the same complex signaling networkmay characterize GSC

cells from glioblastoma cells and distinguish pediatric glioblastoma from adult glioblastoma cell fate

dynamics.

Figure 3. Mathematical modelling identifies key regulatory genes driving glioblastoma networks

Gene regulatory networks of (A) pediatric glioblastoma, (B) adult glioblastoma, (C) adult GSC, (D) adult GSC sample BT127, E) pediatric glioblastoma

transcription factors, (F) adult glioblastoma transcription factors, and (G) adult GSC transcription factors. In each, the signaling networks show the

information flow between critical signals required for the complex cell fate dynamics. The GRN networks identified by Seurat and BigSCale are colored in

violet nodes (A–D) whereas the scEpath TF networks are colored in teal (E–G). The ranks were assigned a priority index by the PID content as indicated by the

numbers on the nodes. A high PID content implies a high mutual information (dependence) of those gene interactions in the information flow network. The

number index on the nodes of the network correspond to the PID score in a decreasing order, where rank 1 denotes the top (highest) value. As shown in the

legend, the nodes with the highest PID score are colored in green with a red shadow. In addition, three different colored rings are used to identify the nodes

of the networks with the highest network centrality measures as identified in Figure 4. See Figure S5 in the Supplementary Information for additional results.
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Network centrality measures identify master regulators of information flow across the

regulatory networks underlying glioblastoma/GSC cell fate decision-making

Centrality is a key property of complex networks that influences the network dynamics and information flow

(Iacono et al., 2019). The nodes (genes or TFs) with the highest centrality in the regulatory networks are the

most biologically important signals. Bymeasuring network centrality, we identified the primary genes regu-

lating communication flow across each of the pediatric and adult glioblastoma, and adult GSC networks

(Table 2). In particular, we calculated the global clustering coefficient that measures the total number of

closed triangles (link density) in a network. A clustering coefficient at its maximal value of 1 indicates

that the neighbors of the gene (node) i form a complete graph (i.e., they all connect to each other) versus

the converse for a clustering coefficient of 0 (Barabási and Posfai, 2016). We observed a lower clustering

coefficient of 0.94 for the BT127 network in Figure 3D. In the transcription factor networks reconstructed

from the scEpath heatmaps (italic columns, Table 2), the GSC TF network had the highest diameter whereas

the glioblastoma networks (both pediatric and adult) had smaller diameters. The diameter is relatively in

the same order of magnitude for the PIDC networks reconstructed from the Seurat-BigSCale markers

(bold columns, Table 2) as they correspond essentially to the same set of genes interactions. The degree

of centrality of all networks in Figure 3 was 1.0 at all nodes, except for the BT127 PIDC network which had a

degree centrality of value of 1.0 only at nodes 1, 5, 10, 12, 13, and 16, and a clustering coefficient of value

0.96. The degree centrality of nodes 2, 7, and 8 were 0.89, the degree centrality of nodes 14 and 15 were

roughly 0.5, and the remaining nodes had a degree centrality of 0.95.

The closeness centrality identified genes/TFs occupying a central position in a network (Iacono et al., 2019).

The nodes corresponding to the highest closeness centrality for each GRN network were found to be Node

6 (EMP1) for pediatric glioblastoma, Node 14 (ATL3) for adult glioblastoma, Node 18 (ATL3) for GSC BT127,

and Node 19 (TAZ) for GSC with closeness values of 1.398, 1.361, 1.006, and 1.184, respectively (Figure 4A).

Nodes corresponding to the maximal closeness in the pediatric glioblastoma, adult glioblastoma, and

adult GSC TF networks were found to be node 12 (GATA2), node 32 (MECOM), and node 31 (FOXG1),

respectively with closeness measures of 1.761, 2.563, and 1.478 respectively (Figure 4B).

Betweenness centrality indicates the presence of regulatory bottlenecks (Iacono et al., 2019; Latora et al.,

2017; Rodrigues, 2019). In our analyses, the highest betweenness measures for the pediatric glioblastoma,

adult glioblastoma, BT127 adult GSC, and adult GSC GRN networks were node 16 (ATL3), node 14 (ATL3),

node 18 (ATL3), and node 19 (TAZ), respectively with betweenness values of 0.3947, 0.5842, 0.2690, and

0.4678, respectively (Figure 4C). The trends in maximal betweenness values (Figure 4C) were in good

agreement with the nodes contributing to the maximal closeness values discussed in Figure 4A, indicating

that identified nodes are critical targets governing the information flow in these complex networks. The

highest betweenness values for the TF networks were found to be node 12 (GATA2) for pediatric glioblas-

toma, node 11 (SOX6) for adult glioblastoma, and node 31 (FOXG1) for adult GSC, with values of 0.3801,

0.2279, and 0.1539, respectively (Figure 4D). The highest values of eigenvector centrality, a measure of in-

formation flow across the network, for the GRNs were found to be node 8 (MTSS1) for pediatric glioblas-

toma, node 5 (MTSS1) for adult glioblastoma, node 10 (EMP1) for BT127, and node 2 (TPT1) for GSC,

with measures of 0.2796, 0.2827, 0.2909, and 0.2805, respectively. The eigenvector centrality, also known

as the prestige score or authority score, measures the influence of a node on all other nodes in the network

in directing the information dynamics (i.e., the PID scores) (Rodrigues, 2019). In our case, a high eigenvector

centrality node implies the node is connected to many other nodes with high PID scores.

Table 2. General properties of inferred complex networks

Network

Properties

Pediatric

GBM Adult GBM Adult GSC

BT127

(Adult GSC)

Pediatric GBM

(TF Network)

Adult GBM

(TF Network)

Adult GSC

(TF Network)

G(V,E) (21,210) (21,210) (20,190) (20,174) (20,190) (50, 1225) (37,666)

Center 16 14 19 18 8 15 31

Diameter 3.037 3.283 3.490 3.106 1.869 1.474 3.936

Global Clustering Coefficient 1.00 1.00 1.00 0.94 1.00 1.00 1.00

G(V,E) denotes the graph with the number of vertices V (the genes) and number of edges E for each inferred GRN network. The center values designate to the

node index (gene) acting as the center of the simple weighted network. The clustering coefficient captures the degree to which the neighbors of a given node link

to each other.
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The maximal eigenvector is a measure of the hub-score, i.e., the highest authority node of hub networks

(Latora et al., 2017; Rodrigues, 2019). The maximal eigenvector centrality of the TF networks was found

to be node 6 (SATB2) for pediatric glioblastoma, and node 29 (YY1) for adult glioblastoma, and node 1

(YBX1) for GSC, with values of 0.2594, 0.1874, and 0.2322, respectively. SATB2 is a nuclear matrix-associated

protein involved in chromatin remodeling and transcription regulation during neuronal differentiation

(Gyorgy et al., 2008). Interestingly, all transition genes with high centrality measures identified in our

network analyses, including EMP1, MTSS1, ATL3, and TPT1 have a TF-binding site for YY1 (Stelzer et al.,

2016; GeneCards, 2021) (see Table 3).

We also performed fractal analysis on the attractors (cell clustering patterns) in the scEpath Waddington

landscapes. The fractal dimension scores obtained on the cell state attractors on the energy landscape

were compared across all groups (pediatric glioblastoma (n = 7), adult glioblastoma (n = 18), and GSC

(n = 28)). The mean fractal dimension scores of the pediatric glioblastoma, adult glioblastoma, and adult

GSC groups were 1.502G 0.099, 1.509G 0.091, and 1.588G 0.051, respectively (Figure 4G). The FD scores

of the two glioblastoma groups were nearly identical whereas a statistically significant difference was

observed from the GSC group. The multifractal spectrum f(a) was extracted from the multifractal spectra

of the individual cancer samples energy landscape (n = 54) (Figure 4H). Only the difference between

GSC versus adult glioblastoma was found to be statistically significant (p = 0.0201) by a Kolmogorov-Smir-

nov test. The pediatric glioblastoma, and adult glioblastoma and GSC groups had a maximal multifractal

spectrum f(a)value of 1.499 G 0.092, 1.462 G 0.066, and 1.521 G 0.075, respectively.

DISCUSSION

Here we applied a collection of data theoretic and complexity science approaches to single cell RNA-seq

data from pediatric and adult glioblastoma, and adult GSCs to distinguish genes regulating communica-

tion within these cellular populations. Our findings demonstrate the application of these tools for decipher-

ing glioblastoma/GSC signaling networks to understand how network configuration orchestrates informa-

tion flow and determines cell fate dynamics.

Multiple clustering algorithms were deployed to cross-validate their findings and ensure that the differen-

tial markers extracted for network analysis were robust, complementary, and of high importance in cell fate

transition/differentiation mapping. There is a high degree of heterogeneity displayed by glioblastoma

stem cells. The complementarity of our results in our independent and orthogonal approaches are outlined

in Table 3 by the associations identified between the transition genes and the scEpath TFs. Our approach

using distinct clustering techniques and verifying their matching or complementary results was deployed to

minimize the effects of expression heterogeneity and validate our findings (Krieger et al., 2020).

Using scEpath, we identified three and four meta-clusters in the pediatric glioblastoma (Figure 1A) and

adult glioblastoma (Figure 1B), respectively, while sub-clusters within each meta-cluster indicated the pres-

ence of phenotypic heterogeneity and plasticity. However, the number of meta-clusters was ambiguous in

the adult GSC landscape (Figure 1C), as shown by the continuous progression from the higher energy state

clusters (stem-like fates) to the lower energy states indicating the potential presence of a complex attractor.

An alternative measure to assess the significance of the scEpath clustering is the transition paths (cell fate

Figure 4. Centrality measures distinguish master regulators of information flow in glioblastoma networks

Three network centrality measures are assessed on the reconstructed glioblastoma/GSC networks. Three different network centralities were computed on

the reconstructed networks: closeness, betweenness, and eigenvector centrality. The genes (nodes) occupying the highest of these centrality measures

correspond to critical nodes steering the information flow in the complex signaling networks governing glioblastoma/GSC cell fate transition dynamics.

(A) Closeness centrality of inferred GRNs.

(B) Closeness centrality of TF networks.

(C) Betweenness centrality of gene regulatory networks.

(D) Betweenness centrality of transcription factor networks.

(E) Eigenvector centrality of gene regulatory networks.

(F) Eigenvector centrality of transcription factor networks.

(G) Fractal dimension of cell state attractors on scEpath energy landscapes.

(H) Multifractal analysis of cell fate attractors on scEpath Waddington landscapes.

A p value of 0.0031 between the adult GSC and adult glioblastoma, and p = 0.0011 between adult GSC and pediatric glioblastoma was calculated for the

box-count algorithm’s fractal dimension scores using the Kolmogorov-Smirnov test. Multifractal analysis of cell fate attractors on scEpath Waddington

landscapes.
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trajectories). We predicted that the number of clusters identified in the pediatric glioblastoma group cor-

responds to the neuronal, astrocytic-mesenchymal, and oligodendrocytic lineages, mirroring the healthy

brain’s neurodevelopmental hierarchy (Jessa et al., 2019; Couturier et al., 2020). Similarly, the four clusters

identified in the adult glioblastoma group correspond to the four groups identified by Neftel et al. (2019),

namely the OPC-like (oligodendrocytic progenitor cell), NPC-like (neuronal progenitor cell-like), AC-like

(astrocytic cell-like), and MES-like (mesenchymal cell) lineages. Furthermore, the infiltrated immune cells

(i.e., T-cells and macrophages) grouped into the MES-like state (Neftel et al., 2019). Pediatric glioblastoma

cells showed less differentiation than the adult glioblastoma samples, as indicated by the higher energy

cell-states, suggesting a closer resemblance to the GSC sample. The two cell fate trajectories observed

in the adult GSC sample may correspond to the transcriptional gradient of two cellular states observed

in the original study by Richards et al. (Figure 2C), which were shown to mirror normal neurodevelopment

and inflammatory wound responses (Richards et al., 2021).

The cell fate trajectories along the scEpath Waddington landscape (Figures 1A–1C) were determined by

the transition probabilities of the probabilistic directed graph reconstructed from the cell fate clusters,

where the weighted edges of the networks correspond to the average normalized gene expression (see

STAR Methods for additional details). scEpath used the minimum directed spanning tree to find the

maximum probability flow and minimal number of edges along the network, since cell fates transition to

lower energy states during differentiation. The resulting tree approximates the cell state transition network

and infers the observed developmental trajectories/lineage structures. The weighted edges of the cell

state transition network were found to be proportional to the gene expression values seen in Figure 3,

where the number of developmental trajectories inferred are indicated by the path numbers in Figure 1.

Thus, two cell fate trajectories were detected in the pediatric glioblastoma and adult GSC samples whereas

four developmental trajectories were observed in adult glioblastoma.

In pediatric glioblastoma, the expression of transcription factors in pseudotime was shown to be highly

nonlinear. Certain genes, including GATA2, were even found to be oscillatory in one trajectory while

demonstrating an increasing or decreasing gradient of expression along the other cell fate trajectory. Like-

wise, patterns of other critical transition genes (TFs) were identified along the attractor dynamics between

the distinct transcriptional states of adult glioblastoma and adult GSC cells. Furthermore, we found that

genes such as EMP1, MTSS1, PTPRZ1 and S100B exhibited distinct gene expression oscillations in one dif-

ferentiation trajectory (path) over the other(s) (Figure 2). These genes were also found to have TF-binding

sites for the scEpath identified TFs with the highest network centrality measures in our downstream analysis

(Figure 3). Together, these findings are indicative of a highly interconnected network of gene-TF interac-

tions governing glioblastoma/GSC cell fate decisions, and further suggest that the information flow across

the inferred networks may steer cell fate decisions towards complex attractors on the glioblastoma/GSC

Waddington landscape. The fractal dimension measure was used to quantify the complexity/roughness

of the cell fate patterns (attractor) on the Waddington landscape reconstruction. Our findings revealed

that the cell fate differentiation patterns of adult GSCs had a higher fractal index, followed by pediatric

glioblastoma, whereas adult glioblastoma exhibited the lowest fractality. We predict a higher fractal index

Table 3. Interactions between transition genes and transcription factors identified in network analysis

Transition Genes Transcription Factors

ATL3 YY1, FOSB, SOX6, GATA2, ATF3, EGR1, MYC

MTSS1 YY1, ATF3, MYC

EMP1 YY1, FOSB, GATA2, ATF3, MYC

TPT1 YY1, ATF3, FOSB, SOX6, EGR1, OLIG1/2

PTPRZ1 YY1, YY2, EGR1, NANOG, POUF51

S100B YY1, GATA2, EGR1, SOX6, MYC

Amidst the critical transition genes listed, the first four were identified as the central regulators of information flow across the

glioblastoma/GSC regulatory networks, while PTPRZ1 and S100B were other differential markers identified in our analyses.

The list is not inclusive of all possible gene-TF interactions but restricted to the analysis of only the high importance (i.e., high-

est network centrality measures) scEpath TFs identified in our findings. The TF-gene interactions were identified using the

GeneCards human gene database (GeneCards, 2021).
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may be a signature of phenotypic plasticity or aggressivity, and lower control predictability in cancer

systems.

Using network centrality measures, we identified OLIG1/2, TAZ, GATA2, FOXG1, SOX6, SATB2, YY1, and

gene targets ATL3, MTSS1, EMP1, and TPT1 as critical genes governing the cell fate dynamics of glioblas-

toma and GSC cells (Figures 4A–4F). The graph-theoretic measures allowed for the identification of key

driver genes/markers controlling glioblastoma differentiation dynamics. Many of these signals are neuro-

developmental transcription factors involved in healthy brain development, essential for conferring and

maintaining cancer stem cells (GSCs). Maximal centrality scores indicated that they are key regulators of

the network information flow in both glioblastoma groups and GSCs. The functional significance of these

transcription factors (see Supplementary Information) suggests their critical role in stem cell decision-mak-

ing and differentiation dynamics. Our findings indicate that these genes may be strong candidates for ther-

apeutic interventions points for the treatment of glioblastoma. Other signaling interactions such as PTPRZ1

and S100B were identified in our analyses as potent clinically druggable targets in the treatment of glio-

blastoma. Furthermore, we predicted that GATA2 andMTSS1 may provide a common ground for interlink-

ing leukemogenesis, the complex signaling dynamics of leukemia/lymphoma affecting children, and pedi-

atric glioma/glioblastoma (Menendez-Gonzalez et al., 2019; Schemionek et al., 2015).

Although the graph theoretic network centrality measures identified the critical genes governing glioblas-

toma differentiation dynamics, BDM was used to distinguish which of the differential network markers can

accurately classify/differentiate the three patient group samples (see STAR Methods and Supplementary

Information). We identified FOSB, HMGB1 and EGR1 as differential signatures which can accurately predict

the patient groups in our single-cell analyses (see Supplemental Information). The algorithmic complexity

measured by the BDM allowed for the identification of critical network genes differentiating glioblastoma

and GSC phenotypes with the minimal information. The rationale for using gene/TF markers’ BDM as a

phenotypic discriminant is that the algorithmic complexity denotes the shortest algorithm or minimal set

of information within the complex networks inferred required to classify the distinct patient groups. As

such, the identified genes/TFs may be useful biomarkers for prognostic screening and disease phenotyp-

ing in clinical medicine.

From the transcription factor (TF) networks identified by scEpath (Table 3), we distinguished some TFs to

form interactions with some of the differential gene markers, suggesting cellular reprogramming targets

for controlling glioblastoma cell fate dynamics. Our study therefore quantifies how these markers’ expres-

sions vary in the cell fate transitions from stem-like tomature phenotypes. For a discussion on the biological

significance of key genes and transcription factors identified in our analyses, see the Supplementary Results

in the Supplementary Information.

The cell fate transition markers identified in our study, including PTPRZ1, EMP1, S100B, and MTSS1, are in

good agreement with the findings from the original studies (SCP393 and SCP503). Although some of the

signatures we identified overlap with the differential expression patterns of the original studies, they did

not compare the co-expression of these markers between GSC and glioblastoma. Markers differentiating

distinct cellular states have been previously investigated (for instance, the original study by Neftel et al.

identified copy number amplifications of the CDK4, EGFR, and PDGFRA loci and mutations of the NF1 lo-

cus, each favoring one of the four glioblastoma phenotypes (Neftel et al., 2019)). Our study instead

analyzed the expression patterns which fluctuate or form a differentiation gradient across the distinct

cell states. Furthermore, whereas previous studies have associated the differentiation markers of glioblas-

toma progression identified here, our study demonstrates their novel integrated application to elucidate

the roles of these network biomarkers in glioblastoma cell fate decisions and differentiation dynamics.

Indeed, whereas many of the identified genes or TFs have been previously studied in the context of neuro-

developmental regulation and glioma cell fate dynamics, most of those selected in our analyses are not yet

documented in glioblastoma cell fate control. As such, we propose the identified interactions in Table 3

may provide clinically relevant glioblastoma-specific precision therapeutics, and that our network analyses

provide a quantitative tool to characterize which of the markers were of high importance (i.e., high central-

ity measures) in cell fate control, plasticity regulation, and transition dynamics. Future studies should

exploit tools from algorithmic complexity theory including algorithmic network perturbation analysis

(i.e., quantify the BDM changes across a network by node or link deletion) to better elucidate the inferred

network dynamics in cancer cell fate control and regulation.
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Although previous glioblastoma gene regulatory network inference methods vary from our approaches,

our findings are consistent with their results. For example, Sun et al. found 15 hub genes in glioblas-

toma-specific miRNA-TF networks, including PDGFRA and SOX11, and 6 hub TFs (including GATA1) as

key regulators of glioblastoma dynamics (Sun et al., 2012). In our study, we also identified PDGFRA and

SOX11 as hub genes of the inferred glioblastoma networks, and found that GATA2, an alternate isoform,

overlapped with these findings. However, Sun et al. (2012) did not compare glioblastoma of different age

groups nor consider glioblastoma-derived stem cells for reconstruct their differentiation networks. Simi-

larly, a network inference study by Ping et al. (2015) revealed 17 hub genes in glioblastoma networks,

including EGFR and PDGFRA, as gene signatures of the proneural glioblastoma subtype, both of which

were identified in our analyses. In another study, GSEA and IPA-based gene enrichment pathway analysis

discovered TAZ as a key regulator of glioblastoma networks (Bozdag et al., 2014), which was also identified

as a master regulator of glioblastoma differentiation dynamics in our analyses.

Usingmulti-omic analyses, Suva et al. distinguishedOLIG2, POU3F2 SALL2, and SOX2 as hub genes of glio-

blastoma stemness networks critical for their tumor-propagation potential (Suvà et al., 2014). Our findings

identified OLIG2 as a master control gene of glioblastoma differentiation dynamics and established a

connection between SOX2 expression and the critical hub gene FOXG1. Furthermore, some epigenetic

profiling studies have shown that aberrant histone modifications and methylation profiles are molecular

signatures driving pediatric glioblastoma and distinguishing them from their adult counterparts (Jones

et al., 2017; Lulla et al., 2016; Sturm et al., 2012). Sturm et al. (2012) revealed that the TFs OLIG1, OLIG2

and FOXG1 are the master regulators of the hub gene networks driving these oncohistone pediatric glio-

blastoma variants (i.e., K27M and G34 V/R). Similar findings were recently reported by Wang et al. (2021),

who identified the same set of TFs as critical drivers of pediatric high-grade gliomas’ epigenetic land-

scapes. We identified all three TFs reported by Sturm et al. and Wang et al. in our network approaches

as critical regulators of glioblastoma cell fate dynamics and behavioral patterns. Thus, our findings recapit-

ulate the complex network dynamics driving the oncohistone variants of pediatric glioblastoma and vali-

date and extend previous findings.

It should be noted that there is a good deal of heterogeneity within the single-cell datasets across and with

the patient groups. The original datasets contained 8 pediatric glioblastoma samples, 20 adult glioblas-

toma samples, and 28 adult GSC samples. For the initial clustering (i.e., differential discovery using Seurat

and BigSCale), samples–two adult glioblastoma and one pediatric glioblastoma–with the highest drop-out

rate (i.e., zero counts) were removed as a data filtering and quality control step before normalization. Sub-

sequently, the number of adult glioblastoma samples in the scEpath analysis was randomly selected to

closely match the cell count numbers of the adult GSC patient groups. The down-sampling of GSC samples

was necessary since scEpath analysis has a computational limitation on the number of samples which can

be processed (roughly 2500 cells). As noted in the Methods, selecting a different combination of GSC sam-

ples did not change the results and including the removed samples did not change the differential marker

discovery or expression analyses. Indeed, the global clustering patterns remained the same although there

was greater dispersion in the local sub-clusters in the Seurat and BigSCale pattern space. However,

including all n = 8 pediatric glioblastoma patient samples generated a shorter list of transition genes

with abrupt transitions between the distinct phenotypes.

This proof-of-concept study provides a comprehensive method to dissect the cybernetics of cancer cellular

ecosystems and their cell fate dynamics. Current bioinformatic pipelines in cancer data science largely fail

to reconcile the complex dynamics and temporal features of glioblastoma transcriptional states, as they

either take a reductionist approach to inferring gene expression patterns or rely on statistical correlation

methods. In contrast, our framework provides a pipeline for causal pattern discovery and thereby allows

the prediction/forecasting of how the differentially expressed transition genes control and regulate cell

fate decision-making. Furthermore, our approach allows for the mapping of these cancer cell fate behav-

iors to information flow across the inferred complex networks. Thus, these causal inference tools shed light

on emergent behaviors in cell fate decisions such as transcriptional heterogeneity from a dynamical sys-

tems perspective. As such, we propose our methodological framework may provide a complementary

and potentially more useful means to assess how the heterogeneous cancer phenotypes exhibit adaptive

(emergent) behaviors and help forecast their dynamic response to drug/therapeutic perturbations at the

level of molecular interactions.
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CONCLUSION

This study demonstrates the use of complex systems approaches in deciphering the cybernetics of glio-

blastoma/GSC networks, and shows how signaling dynamics differ between pediatric glioblastoma, adult

glioblastoma, and adult GSC populations. By identifying transcription factors and genes, our combined

approach serves as one part of the precision medicine toolbox for the treatment of glioblastoma, suggest-

ing both precision therapeutic targets and glioblastoma reprogramming factors.

Prospective studies should explore the use of artificial neural networks, including deep learning algorithms,

for single-cell transcriptomic analyses. Further, causal inference-based network inference methods such as

Bayesian networks and algorithmic information dynamics should be investigated for glioblastoma regula-

tory networks reconstruction. The epigenetic regulation of our identified transcriptional networks must be

explored using high-throughput multi-omics datasets. Our network approaches should be extended to

protein-protein interaction networks, epigenetic networks, and metabolic networks to investigate multi-

omic levels of glioblastoma heterogeneity, including oncohistone variants (i.e., K27M, K36M, G34 V/R)

and IDH1/2-mutants observed in pediatric gliomas (glioblastoma).

LIMITATIONS OF THE STUDY

A limitation of our study is that we did not have access to pediatric GSC cells, given that adult GSC data

have only recently been described (Richards et al., 2021). There may be other hidden causal interactions

interconnecting the nodes of the complex networks we inferred that were not identified because of lack

of data. Furthermore, the lack of time-series scRNA-Seq counts is a barrier to understanding the complex

dynamics of glioblastoma/GSC networks. The pseudotemporal dynamics consist of inferred cell fate trajec-

tories in a dimensionality-reduced data space (i.e., PCA space) by transcriptional similarity of cell fates. Ri-

bosomal proteins and certain cytoskeletal markers (housekeeping genes) were also not pooled with the

differential expression signatures for network inference (Figure S1).

Furthermore, although shown to be insightful in identifying robust network patterns controlling glioblas-

toma cell fate dynamics, PID is considered a weak statistical method which raises a key issue with respect

to the problem of causal inference in network medicine (Zenil et al., 2016, 2019). Generally, the choice of a

network inference metric is limited to statistical measures such as PID, which are considered to outperform

other weaker methods such as mutual information and correlation metrics. Prospective studies should

exploit BDM as a network metric followed by BDM-based network perturbation analysis should be consid-

ered (Zenil et al., 2019). However, BDMmethods are not optimized for more complex networks in fuzzy sys-

tems and are currently limited to binary information networks, wherein the scRNA-Seq counts (and thus the

network weights/edges) must be binarized at a chosen threshold. Prospective studies should also consider

exploiting soft computing methods in cancer network inference.
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SimpleWeightedGraphs.jl

SciKit-learn https://github.com/scikit-learn/scikit-learn

FracLac v2.5 https://imagej.nih.gov/ij/plugins/fraclac
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Archived version: 10.1016/j.cell.2019.05.031

Programming language: R

License: GNU Public License (GPL 3.0)

BigScale

Project name: BigScale V2

Project home page: https://github.com/iaconogi/BigSCale2

Archived version: 10.1186/s13059-019-1713-4

Programming language: R

Other requirements: C++

scEpath

Project name: single-cell Energy path (scEpath)

Project home page: https://github.com/sqjin/scEpath

Archived version: 10.1093/bioinformatics/bty058

Programming language: MATLAB

Other requirements: C++

OACC

Project name: Online Algorithmic Complexity Calculator V3

Project home page: https://github.com/algorithmicnaturelab/OACC

Archived version: 10.1016/j.isci.2019.07.043

Programming language: R

License: GNU Public License (GPL 3.0)

Network inference

Project name: NetworkInference.jl and Partial Information Decomposition (PID)

Project home page: https://github.com/Tchanders/NetworkInference.jl

Archived version: 10.1016/j.cels.2017.08.014

Programming language: Julia

License: MIT "Expat" License

Julia LightGraphs

Project name: LightGraphs.jl V1.3

Project home page: https://github.com/JuliaGraphs/SimpleWeightedGraphs.jl

Programming language: Julia

Other requirements: Jupyter Notebook and HTML

License: MIT "Expat" License

SciKit-learn

Project name: Scikit-learn

Project home page: https://scikit-learn.org/ or https://github.com/scikit-learn/scikit-learn

Archived version: http://jmlr.org/papers/v12/pedregosa11a.html

Operating system(s): Plat-form independent

Programming language: Python (RV3.7)

Other requirements: NumPy (R1.14.6), SciPy ((R1.1.0), joblib ((R0.11), threadpoolctl ((R2.0.0),

Google Colab or Jupyter Notebook
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License: 3-Clause BSD license

FracLac

Project name: FracLac V2.5

Project home page: https://imagej.nih.gov/ij/plugins/fraclac

Programming language: Java

License: National Institute of Health (NIH) Public License

METHOD DETAILS

General methodological framework

To understand glioblastoma network complexity, we integrated several pediatric and adult IDH-wt glio-

blastoma single-cell RNA-Seq (scRNA-Seq) datasets in an analytical pipeline that combines several

network reconstruction and analysis tools (see subsections below). Details of the datasets used are pro-

vided in Table 1. Single-cell datasets were first filtered and normalized in a quality control step, and patient

samples were removed from the scRNA-Seq counts expression matrix due to low unique molecular iden-

tifier (UMI)/high drop-out rates.

Next, gene expression matrices were analyzed independently using the various clustering and trajectory

inference algorithms discussed below. Here we provide a short summary.For the Seurat algorithm, the

top 10 principal component analysis (PCA) loadings were used for the differential marker discovery; the

top 25 PC loadings were used for the BigScale analysis. To identify the differential markers expressed in

all clusters, the top 10 markers within these PC loadings were pooled and analyzed on the UMAP/tSNE

patterning space of the cell fate clusters for each patient group. Similarly, the top 2 PCA loadings were

used by the scEpath pseudotime analysis. The normalized scRNA-Seq counts of the discovered markers

from the Seurat and BigSCale algorithms were pooled together, and separately analyzed for each patient

group. The expression counts of these markers were then run through the PIDC Network Inference algo-

rithm to obtain gene receptor networks. The differential transcription factors identified in the pseudotem-

poral progression heatmaps were selected for scEpath analysis. Only the markers specific to each patient

group were selected for the PIDC network inference. Lastly, complex networks analysis was performed on

the reconstructed networks using transitivity and centrality scores to assess the network structure and dy-

namics (information flow) to identify key regulators of glioblastoma/GSC cell fate decisions. Further, algo-

rithmic complexity measures (see below) were used to identify gene markers which could accurately

discriminate the patient groups by machine learning classifiers. Within the established gene networks,

algorithmic complexity was used to identify robust discriminants that could accurately distinguish the three

patient groups (i.e., pediatric glioblastoma, adult glioblastoma, and adult GSC), based on the performance

of machine learning classifiers on their algorithmic complexity scores (see Supplementary Information).

Single-cell datasets

Gene expression matrices for pediatric glioblastoma, adult glioblastoma, and adult GSC were obtained

from the SingleCell Portal repositories from Neftel et al. (2019) and Richards et al. (2021) (Table 1). Briefly,

glioblastoma patient samples from Neftel et al. (2019) contained the single cell RNA-Seq counts of four

phenotypes (or cellular states): macrophages, malignant glioblastoma cells, oligodendrocytes, and

T-cells. Adult GSC consisted only of stem cells. Overall, our dataset included 28 adult GSC datasets, 7 pe-

diatric glioblastoma, and 18 adult glioblastoma scRNA-Seq expression count matrices.

As a quality control measure for the Seurat and BigSCale clustering, two adult glioblastoma samples and

one pediatric glioblastoma sample were dropped in the filtering process (prior to clustering) due to high

zero-counts (i.e., low UMI). Importantly, we confirmed that our findings were insensitive to the number of

patient samples within each patient group: including these removed samples did not change the differen-

tial expression analysis. To further validate this finding, one sample was randomly chosen and dropped

from the total number of samples from each patient group to verify whether the clustering analysis changed

(i.e., leave-out-one cross-validation) and we confirmed the clustering results were identical. Beyond 2500

cells, the computational time complexity of the scEpath algorithm increased. Thus, the total cell counts

of all three patient groups were kept at the maximum computational threshold for the scEpath analysis

(see GitHub link in Data and code availability in the key resource table). Further, to visualize the cell fate

ll
OPEN ACCESS

iScience 25, 104179, May 20, 2022 19

iScience
Article

https://imagej.nih.gov/ij/plugins/fraclac


attractor dynamics at the same fine-scale resolution for all patient groups, cell counts were kept roughly the

same for each glioblastoma type. Selecting a different combination of adult GSC samples did not change

the scEpath landscape or results, as the trial of multiple random selections (>6 distinct combinations) re-

produced identical results.

Smart-seq2 whole transcriptome amplification, library construction, and sequencing were taken from (Nef-

tel et al., 2019). For a subset of samples in (Neftel et al., 2019), single cells were processed via the 103Chro-

mium 30 Single Cell Plat-form using the Chromium Single Cell 30 Library, Gel Bead and Chip Kits (103Ge-

nomics, Pleasanton, CA). 7,000 cells were added to each channel of a chip partitioned into Gel Beads in

Emulsion (GEMs), followed by cell lysis and barcoded reverse transcription of RNA in droplets-Seq. De-

emulsion was followed by amplification, fragmentation, and addition of adaptor and sample index (Neftel

et al., 2019). Similar treatment conditions were applied for the GSC count matrices with >69,000 adult GSC

cells extracted from 26 patients (Richards et al., 2021).

Among filtered cells, an average of 5,730 genes per cell were found as a quality measure. Expression levels

were quantified as Ei; j = log 2
�
TPMI; J

10 + 1
�
, where TPM i,j refers to transcript-per-million for gene i in sample

j, as calculated by RSEM (Neftel et al., 2019). TPM values were divided by 10 given that the complexity of

single cell libraries was estimated to be on the order of 100,000 transcripts. For the remaining cells, the

aggregate expression of each gene was calculated as,Eai = log 2ðaverage ðTPMI; JÞ + 1Þfor i = 1. n (Neftel

et al., 2019), then defined the relative expression over the remaining cells by centering the expression levels

per gene, i.e.,Eri; j = Ei; j � average½Ei �

Clustering techniques

Clustering algorithms were used to identify differential markers co-expressed within all patient groups and

distinguish a robust network regulating the cell fate dynamics across all phenotypes.

Seurat algorithm

scRNA-Seq count matrices were pre-processed to obtain normalized and binarized count expressions.

Seurat initially performs a cluster analysis by principal component analysis (PCA) dimensionality reduction

followed by a graph-based clustering (k-nearest neighbor (kNN) graph) based on the Euclidean distance of

the 10 PCA loadings using the FindNeighbors function and Louvain community detection algorithm

(modularity optimization) using the FindClusters function (parameter can be tuned between 0.4 and 1.2

for optimal results), to cluster cells by their Jaccard index-expression similarity (see Seurat Clustering tuto-

rial in GitHub code). All clustering parameters were kept to their default settings. Next, the cells within the

graph-based clusters were visualized on Uniform Manifold Approximation and Projection (UMAP) or t-

Distributed Stochastic Neighbor Embedding (TSNE) space (i.e., unsupervised nonlinear dimensionality

reduction techniques) (Stuart et al., 2019). Differential markers from the top 10 PCA loadings were visual-

ized in UMAP space (analysis does not vary for TSNE space) using the FindAllMarkers function with param-

eters: min.pct = 0.25 and logfc.threshold = 0.25. We clustered similarly expressed cells together in the low

dimensional space by finding differentially expressed features/markers corresponding to the highest ten

PCA loadings in the graph-based clusters. To identify markers that govern disease progression and tran-

scriptional dynamics, we imposed the condition that selected markers for the network reconstruction must

be expressed in all clusters of the three patient groups (pediatric glioblastoma, adult glioblastoma, and

adult GSC).

BigSCale algorithm

BigSCale is a framework for clustering, phenotyping, pseudotiming, and inferring gene regulatory and pro-

tein-protein interaction networks from single-cell data (Iacono et al., 2019). A SingleCellExperiment class

was created from the scRNA-Seq raw count matrices for BigSCale processing, and counts were replaced

by z-scores. Cellular clustering was established by first computing all pairwise cell distances using the Pear-

son correlation to generate a distance matrix. Following, cells were assigned to cluster groups via the

Ward’s linkage/method (an agglomerative hierarchical clustering algorithm). Iterative differential expres-

sion analysis was performed between the clusters of cells and the differential markers within the identified

clusters were assessed using the getMarkers function (see BigSCale 2 tutorial in Github code). The markers

specific to a cluster were sorted from the highest (most significant) to the lowest (least significant) z-score

for the selection of cluster-specific differential and co-expressed gene markers within the top 25 PCA
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components. A z-score threshold of 5.0 was used as a cut-off threshold while the min_ODscore parameter

was kept default at 2.33. This imposed cut-off acts as a filtering mechanism to retain only the markers with

significant expression changes per cluster. As in the Seurat analysis, we imposed the condition that

selected markers for the network reconstruction must be expressed in all clusters of the three patient

groups.

ScEpath algorithm

We applied single cell Energy path (scEpath) to reconstruct the 3D-energy landscape of cells and infer reg-

ulatory relationships from their transcriptional dynamics (Jin et al., 2018). scEpath is a Waddington Land-

scape reconstruction algorithm with an unsupervised clustering framework for cell lineage hierarchy map-

ping and studying the pseudotemporal transcriptional dynamics in cell fate decisions. In this trajectory

inference algorithm, information flow and network reconfiguration underlying the cellular decision-making

steer the topography of cell populations’ energy landscapes (also referred to as a cell fate landscape, at-

tractor landscape, or Waddington’s epigenetic landscape (Waddington, 1957)). A cell state (cell fate) cor-

responds to a specific transcriptional (gene expression) program and phenotype of a given cellular popu-

lation. Cell clusters higher on the energy landscape correspond to stem-celllike states (unstable attractors)

with higher differentiation potency, while cell states stuck in lower energies (valleys, or stable attractors)

correspond to differentiated (mature) phenotypes with lower potency/plasticity (Figure 1).

scEpath allows for the visualization of cell fate transition probabilities in the population, mapping of cell

lineage trajectories in pseudotemporal ordering, and inference of cell fate decisions from patient-derived

scRNA-Seq datasets using the following steps: (i) preprocessing of scRNA-seq count matrix, (ii) gene reg-

ulatory network (GRN) inference, (iii) single cell energy (scEnergy) calculation, (iv) 3D energy landscape

reconstruction via principal component analysis and structural clustering; (v) Transition probabilities calcu-

lation, (vi) Inference of cell lineage hierarchy via a probabilistic directed graph, (vii) pseudotime trajectory

inference and, (viii) downstream analyses of identifying critical transcription factors (TFs) governing the cell-

fate commitments (Jin et al., 2018). A detailed description of the scEpath algorithm is provided below.

To perform the scEpath analysis on our data, we first pre-processed the log-normalized (within patient-

groups) count matrices with respect to their gene expression values by filtering out zero counts. The differ-

ential markers were selected from the first two significant PCA components. We then ran the scEpath

MATLAB code from Jin et al., 2018on these processed datasets. GSC patient samples BT127, BT48, and

BT84 from Richards et al. (2021) were used for all scEpath analyses on GSC. Seven pediatric glioblastoma

samples from Neftel et al., 2019 and seven adult glioblastoma samples, selected to match the cell count of

the pediatric patient group, from Neftel et al., 2019, were analyzed. We confirmed that the number of pa-

tients did not influence the results and analysis by selecting different random sets of adult glioblastoma

samples. We then ran energy (Waddington) landscapes reconstruction on the following population sizes:

pediatric glioblastoma: n = 7, N = 1850 cells; adult glioblastoma: n = 7, N = 2221 cells; adult GSC: n = 3, N =

1504 cells.

scEpath smooths the average normalized expression of each gene using cubic regression splines to map

the pseudotemporal gene expression dynamics along the inferred trajectories of the cell fates on the land-

scape, leading to smoothed gene expression along a lineage path (Jin et al., 2018). Leveraging this, we in-

ferred key regulatory TFs for the cell fate differentiation by considering all PDG genes with a standard de-

viation >0.5 and a Bonferroni-corrected p value below a significance level a = 0.01 for the expression

greater than a threshold (e.g., log2(fold-change) > 1). The probabilistic-directed graph network and the

cell lineage hierarchy inference parameters were kept at default settings (quick_construct = 1; tau = 0.4;

alpha = 0.01; theta1 = 0.8). The pseudotime-dependent genes were identified using parameters

sd_thresh = 0.5; sig_thresh = 0.01; nboot (see Hyperparameter-optimized code in GitHub link).

scEpath Waddington Landscape reconstruction algorithm

The scEpath algorithm performs principal component analysis (PCA) analysis on the energy matrix E = (Eij)

and fits a potential energy surface using piecewise linear interpolation over the first two PCA components

and the single cell energy (scEnergy) of each cell. Cells are then colored according to unsupervised

ll
OPEN ACCESS

iScience 25, 104179, May 20, 2022 21

iScience
Article



clustering which groups cells with similar gene expression patterns (transcriptional states). The energy of

each cell state (scEnergy), Ej, on the Waddington landscape is computed according to:

EjðyÞ =
Xn

i = 1

EijðyÞ= �
Xn

i = 1

yij ln
yijP

k˛Ni
ykj

where yijrepresents the normalized gene expression level (between 0 and 1) of gene iand cell j, and N(i) is

the neighborhood of node-i in the network. Each gene is assigned a local energy state Eij (Jin et al., 2018).

The scEnergy is combined with a distance-based measure and structural clustering to reconstruct the 3D

energy landscapes.

The cell-state on the scEpath energy landscape corresponds to which discrete bin its mRNA levels fluctuate

within (Jin et al., 2018). The cell states distribution on the scEnergy landscape can thus be defined as attrac-

tors, a term from dynamical systems theory used to describe a causal pattern to which the cell state dy-

namics are bound. Assessing the fractal dimension of this attractor (cell state patterns) for each patient

group’s energy landscape provides key insights into the complexity of the cell states and the transition

gene dynamics governing their cellular decision-making.

Mapping pseudotemporal ordering and cell lineage bifurcations in glioblastoma/GSC cell

fates

scEpath performs PCA on the energy matrix and uses the first two PCA components as the reaction coor-

dinates followed by structural clustering of cells via an unsupervised cell-cell similarity metric called single-

cell interpretation via multikernel learning (SIMLR) (Jin et al., 2018). To infer cell lineages, scEpath con-

structs a probabilistic directed graph in which nodes represent phenotypic clusters (attractors), with edges

weighted by cell state transition probabilities (Figure S2). By default, scEpath defines the cell clustering

patterns as the set of cells occupying 80% percent of the total energy in each cluster. The cell state transi-

tion probability such that a cell state will be in cell cluster k with a particular scEnergy was calculated using

the Boltzmann–Gibbs distribution by the scEpath algorithm (Jin et al., 2018). The directions of the proba-

bility flow are determined by the energy flow with significant changes from high to low. scEpath learns the

maximum probability flow in the probabilistic directed graph defined by a weighted matrix Wdetermined

by the gene expression counts. This problem is equivalent to finding the minimum directed spanning tree

by setting the edge weights to be 1-W. Thus, scEpath implements Edmonds’ algorithm to determine the

minimum directed spanning tree (MDST) connecting the cell clusters (attractors) and hence, the candidate

cell lineage bifurcations of cell fate decisions (Jin et al., 2018).

Fractal and multifractal analysis

We applied fractal analysis to quantify the complexity of the phenotypic patterns on the scEpath cell fate

attractor landscape. Fractals are signatures of complex systems (Mandelbrot, 1982), and the fractal dimen-

sion is a non-integer, fractional dimension characterizing the statistical self-similarity and roughness of a

pattern. A higher fractality in tumor structuresmay imply that the tumor is more complex, resilient (i.e., with-

stands environmental perturbations), aggressive, and difficult to treat (Coffey, 1998; Baish and Jain, 1998).

As such, the fractal index provides a quantitative measure of the cell fates’ phenotypic plasticity (i.e., higher

for stem cell-like fates) and disease progression.

We used ImageJ plugin FracLac (v2.5) to compute the fractal dimension (FD) of analyzed samples using the

BoxCount algorithm on the cell state attractors (patterns of cellular distributions on the scEpath energy

landscapes). To calculate the fractal dimension, landscape images were converted to black and white. At-

tractor fractal dimensions reconstructed from the cell fate landscapes found to be non-integer were

considered to exhibit a fractional dimension in phase-space. Higher fractal indices indicate more complex

dynamics that are irregular and asymptotically unpredictable, since in dynamical systems theory, patterns

of systems exhibiting deterministic chaos have a fractal dimension (i.e., strange attractors) (Strogatz, 2015).

Partial Information Decomposition and Context network inference

Using the differential expression markers identified by the various approaches discussed above, we recon-

structed the underlying complex networks driving the glioblastoma/GSC cell state dynamics on the Wad-

dington energy landscapes. Network inference tools study the statistical dependencies between genes

amidst distributions of expression levels in populations of sampled cells (Chan et al., 2017) by inferring a
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graph-theoretic representation of the functional relationships between the drivers of complex behaviors

such as cell fate transitions, thus allowing for the quantification of the relationships between identified dif-

ferential transition markers and tracking how these relationships change across distinct phenotypes. Partial

Information Decomposition and Context (PIDC) networks have been suggested to outperform traditional

gene regulatory network inference approaches using correlation metrics, mutual information, Boolean net-

works, or Bayesian inference methods for network reconstruction (Chan et al., 2017). We used this PIDC

network inference algorithm to obtain a network structure of glioblastoma and GSC samples.

The Julia packages InformationMeasures.jl and NetworkInference.jl were used to reconstruct the GRN net-

works. PIDC network inference uses partial information decomposition (PID) to infer regulatory interaction

networks from gene expression datasets. We used the NetworkInference.jl package to establish the (undi-

rected) networks from the multivariate information measure (PID) calculated from the gene expression

matrices. Gene expression counts were first discretized via Bayesian blocks discretization and the

maximum likelihood estimator (Chan et al., 2017). The PIDC network pattern is the simplest network the

algorithm can construct such that the distance between the nodes (genes or TFs) are minimized given their

weights (PID score). Network measures characterizing the structure, properties, and information flow of

these complex networks were then computed and the most differentially expressed genes were identified

by the clustering algorithms using PID scores.

We used Julia LightGraphs to infer the PIDC network. This algorithm works by constructing undirected sim-

ple weighted graphs that optimize the shortest path of vertices/nodes based on the weights of the network

(i.e., the PID scores). The network nodes are ordered by the top PID scores in decreasing order. Given three

variables (genes) x, y, and zon the network, partial information decomposition (PID) maps the information

obtained from a source set of genes S = {x, y} about the target gene z. The information is redundant, syn-

ergistic, and unique. PID is an information-theoretic similar to pairwise mutual information, taking into

consideration the information dynamics between three-variables at a time (instead of pairwise-correla-

tions) (Chan et al., 2017). Thus, the PID score between the source gene set S and the target gene Z is given

by:

IðX ; X; Y Þ = SynergyðZ ; X ; Y Þ+UniqueY ðZ ; XÞ+UniqueXðZ ; yÞ+RedundancyðZ ; X ; Y Þ
where (Z; X) is the unique information between the source gene X and target gene Z when the other source

gene is Y. The PIDC inference algorithm calculates the PID scores.

The PIDC inference algorithm may be simply defined as follows. PID values are estimated for every gene

triplet (with each gene treated as the target gene in the others), and from these the proportional unique

contribution (PUC), represented as Ux, y (as defined below), is estimated for every pair of genes. For

each gene X, an empirical distribution fx(u) is estimated. The confidence of an edge between a pair of

genes depends on the corresponding cumulative distribution functions fx(u) (assumed as either a Gamma

or Gaussian empirical probability distribution, for each gene within the pair). These confidence scores are

then used to rank all possible network edges. The Julia LightGraphs algorithm uses the cumulative prob-

ability distributions for each gene to obtain a final confidence score for network edges (Chan et al., 2017).

The corresponding PID scores are obtained as output of the algorithm.

We define the PUC between two genes X and Y as the sum of this ratio calculated using every other gene Z

in a network:

UX ; Y =
X

Z ˛ Sðx; yÞ

UniquezðX ; Y Þ
IðX : Y Þ +

X
Z ˛ Sðx; yÞ

UniquezðX ; Y Þ

This measure captures the mean proportion of mutual information (MI) between two genes X and Y. Using

an unsupervised Louvain community detection algorithm, the PID network is then inferred from the PID

scores of the genes. Such network analyses coupled to the scEpath algorithm helped us identify genemod-

ules which may exhibit oscillatory dynamics in gene expression as cells under-go state transition, and pu-

tative gene interactions which may be involved in regulating glioblastoma/GSC cell fate choices.

Block Decomposition Method calculations

We evaluated the algorithmic complexity of key nodes (genes) of the inferred signaling networks to further

identify robust markers distinguishing glioblastoma and GSC. Algorithmic complexity is a complementary
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measure that identifies the minimal amount or set of information in our inferred complex networks which

regulate the phenotypic plasticity dynamics across the patient groups, and as such the genes/TFs with

highest algorithmic complexity could be robust disease screening tools in precision oncology. The

K-complexity of a string S, K(s), also known as Kolmogorov or algorithmic complexity, is the shortest com-

puter program length needed to output that string. This can also alternatively be interpreted as the length

of the shortest description of a system (Zenil et al., 2016). Since K(s) does not depend on a choice of prob-

ability distribution like Shannon entropy, it is more robust for the assessment of system complexity (Zenil

et al., 2016, 2019). Formally, the Kolmogorov complexity of a discrete dynamical system is given by

KðsjeÞ = min
���p�� : U�p; e� = s

�
;

for a string or array s, where pis the program that produces s and halts running on a universal Turing ma-

chine U with input e. Then, K(s) is a function that takes a string or matrixs to be the length of the shortest

program pthat generates s. However, K(s)is in principle incomputable andmust be approximated using the

coding theorem method (Zenil et al., 2019). We therefore used the Block Decomposition Method (BDM) to

approximate the K(s) of a dataset, which provides local estimates of the algorithmic complexity (Zenil et al.,

2016). BDM is available in the online algorithmic complexity calculator [OACC] and its R-implementation

(see Availability of Data and Material). The BDM is defined as

BDM =
Xn

i = 1
KðblockiÞ+ log 2ðjblockijÞ;

where the block size must be specified for the n-number of blocks. When the block sizes are higher, better

approximations of the K-complexity are obtained (Zenil et al., 2016, 2019).

To calculate the BDM, we selected scRNA-Seq counts of seven randomly chosen patient samples from each

of the three patient groups. String length was kept the same for all gene candidates from each sample.

Accordingly, we chose the cell count expressions of 46 cells from each patient sample for this analysis.

The R-implementation of the Online Algorithmic Complexity Calculator was used to compute the BDM es-

timates of K-complexity for each expression string. scNA-Seq counts of the top gene interactions with high-

est PID scores were selected from each network and binarized.We then performed BDMon these binarized

strings using a block size of 12 and alphabet size of 2 bits to estimate the K-complexity (i.e., BDM score) (see

Supplementary Information for BDM Results).

Machine learning and block decomposition analysis

Binary classification was performed using Google Colab using Scikit-learn on the BDM scores of three clas-

sification groups (pediatric glioblastoma, adult glioblastoma, and GSC). The linear support vector machine

(SVM) and AdaBoost random forest (RF) classifier modules (with hyperparameter tuning to optimal learning

rates) from Scikit-learn were trained using both an 80:20 and a 50:50 training: testing size split with the BDM

scores of the gene markers with the top PID scores identified in the PIDC networks for both the GRNs and

TF networks. Seven patient samples were selected for each of the three groups for the classification training

and validation, as defined above. GraphPad Prism 8.4.3 was used for additional statistical analyses.
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