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Abstract: Maintenance of integrity and function of the gastric mucosa (GM) requires a high
regeneration rate of epithelial cells during the whole life span. The health of the gastric epithelium
highly depends on redox homeostasis, antioxidant defense, and activity of detoxifying systems
within the cells, as well as robustness of blood supply. Bioactive products of lipid peroxidation, in
particular, second messengers of free radicals, the bellwether of which is 4-hydroxynonenal (HNE),
are important mediators in physiological adaptive reactions and signaling, but they are also thought
to be implicated in the pathogenesis of numerous gastric diseases. Molecular mechanisms and
consequences of increased production of HNE, and its protein adducts, in response to stressors
during acute and chronic gastric injury, are well studied. However, several important issues related
to the role of HNE in gastric carcinogenesis, tumor growth and progression, the condition of GM after
eradication of Helicobacter pylori, or the relevance of antioxidants for HNE-related redox homeostasis
in GM, still need more studies and new comprehensive approaches. In this regard, preclinical studies
and clinical intervention trials are required, which should also include the use of state-of-the-art
analytical techniques, such as HNE determination by immunohistochemistry and enzyme-linked
immunosorbent assay (ELISA), as well as modern mass-spectroscopy methods.

Keywords: 4-hydroxynonenal; lipid peroxidation; redox balance; oxidative stress; stomach;
peptic ulcer; gastritis; Helicobacter pylori; gastric cancer; non-steroid anti-inflammatory
drugs-induced gastropathy

1. Introduction

The gastrointestinal tract (GIT) represents a highly specialized interface between the environment
and an organism’s internal medium, aimed primarily to digest food, and absorb nutrients and water.
In addition, it fulfils a wide variety of other functions, including, but not limited to, immune defense,
excretion of metabolic waste/detoxification, secretory and regulatory functions, and as a physical
barrier. Last but not least, it is a vital niche for gut bacteria [1]. The GIT has to withstand harsh
conditions, due to exposure to food/chyme, digestive enzymes, different, often very aggressive
pH conditions, and numerous bacteria; therefore, high efficiency of protection and regeneration is
required for its maintenance and function. This is particularly important in the case of the stomach,
whose lumen contains aggressive hydrochloric acid, often reaching pH values of 1–2, and proteolytic
enzymes, such as pepsin [2]. Toxins, which may be ingested together with food, as well as some
drugs, may contribute to damaging the gastric mucosa (GM). Furthermore, in more than half of the
human population worldwide, Helicobacter pylori (H. pylori) bacteria [3] persist in the GM, and may
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cause chronic gastritis and peptic ulcer, thus being a major contributor to the pathogenesis of gastric
adenocarcinoma and mucosa-associated lymphoid tissue (MALT)-lymphoma [4].

The redox balance is a major homeostatic parameter and a regulatory factor for the metabolic
functions of the whole organism and also the GIT [5]. Redox imbalance, often referred to as
“oxidative stress”, may be caused either by excessive exposure to oxidants, or by decreased activity
of counter-regulatory enzymatic systems and a lack of antioxidants [6]. A certain degree of
lipid peroxidation may take place in many cellular processes under physiological conditions, but
redox imbalance that is observed in many diseases very often leads to excessive accumulation
of oxidized lipids and their degradation products. Among such products of lipid peroxidation,
4-hydroxy-2-nonenal (HNE) is ubiquitous, and one of the most studied compounds, also considered
as a “second messenger of free radicals” [7]. HNE is generated from omega-6 fatty acids. Along
with its role in the pathogenesis of multiple diseases, it has been shown to be involved in various
signaling pathways. It contributes to the regulation of energy metabolism, detoxification, cell
proliferation and differentiation, maintenance of the cytoskeleton, and metabolic adaptations to
redox derangements [8–10].

Considering the sophisticated functions of the mucous membrane and the wide variety of
damaging exposures, the maintenance of the redox balance in GM is particularly challenging [5].
In order to sustain the lifelong function of the GIT, the cells of the mucosal epithelium have a high
rate of proliferation, and an exceptional regenerative potential. However, this system is prone to
derangements, which can result in gastritis, peptic ulcer, and gastric cancer. Gastrointestinal diseases
cause severe health problems and overall socioeconomic damage [3]. Progress in understanding the
roles of lipid peroxidation and its reaction product, HNE, in health and disease, stimulated studies
focused on specific diseases of the GIT. This review is aimed at addressing important issues related to
the role of HNE in normal functioning and in the development of diseases of the stomach.

2. Approaches to Determine HNE in Samples of Patients Suffering from Stomach Diseases

Along with conventional approaches to measure the concentrations of substances of interest
in biological liquids like blood (serum, plasma, and whole blood), urine, cerebrospinal fluid, etc.,
with several other options available in the case of stomach diseases. First, the stomach is accessible to
endoscopy, which is a routine clinical intervention. During endoscopy, it is possible to obtain biopsies
of the mucous membrane from different parts of stomach for further morphological studies. Second,
gastric juice can be obtained for chemical analysis. Third, a number of “breath-tests” (determination of
metabolites of ingested reagents in exhaled air) are available for gastroenterological diagnostics. Finally,
feces samples can be taken, for example, to test H. pylori bacterial contamination [3]. The researchers
have to keep in mind that blood flows from stomach through the portal vein to the liver; many
substances, such as xenobiotics, lipid peroxidation products, some hormones, and cytokines, may
be degraded there and, thus, may be measured in the peripheral blood within normal concentration
ranges, despite evidence of toxicity/inflammation [11].

HNE and other lipid peroxidation products, including acrolein, malonic dialdehyde, and many
others, can be measured as biomarkers of redox imbalance [7]. However, their high reactivity
and capacity for interactions with multiple functional groups of macromolecules, as well as their
transfer to blood and/or urine from other compartments of the organism, may significantly lower
steady-state concentrations of free lipid peroxidation products. Most of the detectable HNE are found
to be conjugated to proteins or glutathione (GSH). Through a Michael-type reaction of nucleophilic
addition, HNE binds covalently to cysteine, lysine, and histidine residues within proteins [12].
Development of specific antibodies against HNE–histidine adducts facilitated further research and
enabled implementation of respective analytical methods [13,14].

In this regard, HNE-immunohistochemistry (qualitative/semiquantitative evaluation) is a widely
used method of HNE determination, in order to map tissue or intracellular distribution of respective
HNE-conjugates in human samples obtained by gastric biopsy [12]. A variety of HNE-ELISAs have
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been introduced that are applicable for quantitative evaluation of the levels of HNE-adducts in
biological fluids, like blood serum, urine, or gastric juice [15]. Other antibody-based methods, which
are often applied successfully, include immunofluorescence, immunogold electron microscopy, and
immunoblotting [16]. However, since the use of antibodies for analytical purposes is often associated
with technical problems, such as inaccessibility of some epitopes and/or their alterations, this may
result in incomplete quantification [15]. Furthermore, higher degrees of protein modification can
decrease the epitope recognition (non-linear dependence); therefore, the results of analyses based
on antibody-dependent techniques should be interpreted very carefully. For clinical purposes,
in particular, when histological samples are evaluated, the use of semiquantitative methods for
HNE detection may be particularly reasonable [17–20]. Free HNE can be accurately determined by
high performance liquid chromatography, and a number of modifications of mass spectroscopy-based
methods [21]. However, due to the high reactivity of free HNE and its low steady-state levels,
the determination of HNE conjugates reveals more biologically/clinically relevant information,
and may have substantial advantages [12]. The formation of protein conjugates is proportional
to the mean levels of free HNE; therefore, antibody-based methods of staining and quantitative
determination of HNE are considered to be quite accurate and reliable, especially if HNE–histidine
adducts are monitored [12]. The last generation mass spectrometric techniques and instrumentations,
in combination with enrichment and separation techniques, have been successfully applied to the
determination not only of HNE, but also of its adducts with amino acids in proteins [22–24].

3. HNE in the Stomach under Physiological Conditions

In the lumen of the stomach, ingested food is exposed to low pH (hydrochloric acid) and
proteolytic enzymes, such as pepsin, contributing to denaturation and degradation of proteins.
However, a highly acidic medium facilitates, also, a variety of chemical reactions between different food
components [1,2]. Modeling of chemical processes taking place during gastric digestion reveals the
possibility of iron- or metmyoglobin-catalyzed generation of substantial amounts of hydroperoxides
and other lipid peroxidation products from components of common diets containing meat and
unsaturated fats at low pH in the presence of water-dissolved oxygen. Notably, the ingestion of
food rich in polyphenols dramatically lowers the generation of hydroperoxides, which may be,
at least in part, responsible for the preventive effects of fruits and vegetables [2]. On the other
hand, accumulation of lipid peroxidation products in the GM may be enhanced by consumption of
large amounts of unsaturated fats that may be a part of many “healthy” diets or popular supplements
containing polyunsaturated fatty acids (PUFAs) [25]. Therefore, food products containing significant
quantities of PUFAs should be carefully processed and properly stored, in order to prevent their
oxidation. Steady-state levels of HNE in the GM result from the rates of their generation/absorption
and utilization [26]. The acidity of the chyme may also influence the stability of hydroperoxides
and the likelihood of Michael addition within the gastric lumen, whereas the cells of the gastric
epithelium are well protected from the acidic content by mucus. Noteworthy, H. pylori bacteria produce
ammonia to provide protection from hydrochloric acid [27,28] and, therefore, create an alkaline local
microenvironment at infection sites, that is more favorable for Michael reactions (Figure 1).

Formation of HNE conjugates with glutathione and adducts with proteins may have
heterogeneous consequences for the cells, depending on the role of respective residues. Depletion of
reduced glutathione may increase vulnerability of the cells to oxidants and shift the redox balance
to the pro-oxidant side. Addition of HNE to cysteine residues may alter function of proteins, and
may have significant regulatory consequences, whereas binding to other sites (for example, histidine
or lysine residues) may have not much effect on function, and can rather reflect the degree of HNE
accumulation and possible oxidative damage [12,29,30] (Figure 2).
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Figure 1. Schematic presentation of major sources of 4-hydroxynonenal (HNE) in gastric mucosa and 
the ways of its further transformations. Free HNE is a highly reactive molecule, capable of reacting 
with numerous targets within cells. HNE interfering with redox-sensitive pathways (for example, by 
binding to cysteine residues) may affect the function of redox-sensitive proteins. Conjugation of HNE 
with histidine or lysine residues of peptides and proteins are thought to be less important for 
signaling. However, even in these cases, HNE may bind enzymes, cytokines, and receptors, so they 
may have important regulatory roles. Hence, such aldehyde-protein adducts can represent a source 
of HNE and cause secondary oxidative stress, while they can also be used as biomarkers for 
immunochemical detection of HNE, denoted as advanced lipoxidation end products (ALEs). 

A certain degree of accumulation of HNE–histidine adducts in the mucosa of gastric corpus and 
antrum was demonstrated for the majority of healthy volunteers [19]. Notably, almost all the samples, 
obtained from asymptomatic apparently healthy subjects, regardless of whether the patients have 
been H. pylori-positive or not, have shown mild to moderate HNE-immunopositivity in the cytoplasm 
of the gastric glandular epithelium, with only a few HNE-negative samples [19]. A likely explanation 
of these findings suggests that HNE may play a role in normal signaling and regulation of cellular 
functions in the GM under physiological conditions. HNE levels appear to be strictly maintained 
within a homeostatic range, providing adaptations to adverse factors, like metabolic or emotional 
stress, exogenous toxins that are occasionally ingested with food, or latent H. pylori infection. Only 
excessive and/or prolonged oxidative stress may cause GM injury and inflammation, as discussed 
below (Figure 2). 

Interestingly, most of the H. pylori-positive subjects never experience clinically overt forms of 
gastritis, peptic ulcer, or gastric cancer [31]. This observation is in line with observations that 
apparently healthy H. pylori-positive subjects show no difference in HNE–histidine conjugates in GM 
compared to controls, despite occasional presence of inflammatory cells in the samples [19]. It is likely 
that asymptomatic subjects have sufficient compensatory power to cope with the negative influence 
of the pathogen. Only excessive virulence of certain H. pylori strains or lowered resistance of the host 
may result in clinically significant manifestations. In this regard, it is known that sedentary lifestyle 
may cause deleterious metabolic changes associated with activation of sympathetic tone (with 
subsequent parasympathetic impairment) [32]. Genetic defects, psychoemotional stress, and a 
number of other factors, may also contribute to autonomic imbalance that may lead to increased 
vulnerability of the GM [33–35]. It has been reported that patients with chronic peptic ulcer disease 
show altered autonomic function, as measured by Holter electrocardiogram monitoring [36]. The 
relationships of heart rate variability alterations with endothelial dysfunction [37], as well as 
oxidative stress [38], were earlier noticed. Hence, not clearly intuitive, the relationships of autonomic 
function and redox balance attract growing attention. For example, an anti-inflammatory action of 

Figure 1. Schematic presentation of major sources of 4-hydroxynonenal (HNE) in gastric mucosa and
the ways of its further transformations. Free HNE is a highly reactive molecule, capable of reacting
with numerous targets within cells. HNE interfering with redox-sensitive pathways (for example,
by binding to cysteine residues) may affect the function of redox-sensitive proteins. Conjugation of
HNE with histidine or lysine residues of peptides and proteins are thought to be less important for
signaling. However, even in these cases, HNE may bind enzymes, cytokines, and receptors, so they may
have important regulatory roles. Hence, such aldehyde-protein adducts can represent a source of HNE
and cause secondary oxidative stress, while they can also be used as biomarkers for immunochemical
detection of HNE, denoted as advanced lipoxidation end products (ALEs).

The epithelium of the GIT is highly proliferating and, depending on the location, it is completely
renewed every 3–10 days. Therefore, the immunohistochemical pattern of HNE adducts mainly reflects
the metabolic conditions within the mucosa (e.g., oxidative stress, exposure to xenobiotics) during the
last few days before taking the sample. Different HNE levels may occur rather as a result of recent
alterations, than due to accumulation (for example with age), and are likely to depend on both the
renewal rate of epithelial cells and the rate of lipid peroxidation.

A certain degree of accumulation of HNE–histidine adducts in the mucosa of gastric corpus
and antrum was demonstrated for the majority of healthy volunteers [19]. Notably, almost all the
samples, obtained from asymptomatic apparently healthy subjects, regardless of whether the patients
have been H. pylori-positive or not, have shown mild to moderate HNE-immunopositivity in the
cytoplasm of the gastric glandular epithelium, with only a few HNE-negative samples [19]. A likely
explanation of these findings suggests that HNE may play a role in normal signaling and regulation
of cellular functions in the GM under physiological conditions. HNE levels appear to be strictly
maintained within a homeostatic range, providing adaptations to adverse factors, like metabolic
or emotional stress, exogenous toxins that are occasionally ingested with food, or latent H. pylori
infection. Only excessive and/or prolonged oxidative stress may cause GM injury and inflammation,
as discussed below (Figure 2).

Interestingly, most of the H. pylori-positive subjects never experience clinically overt forms of
gastritis, peptic ulcer, or gastric cancer [31]. This observation is in line with observations that apparently
healthy H. pylori-positive subjects show no difference in HNE–histidine conjugates in GM compared
to controls, despite occasional presence of inflammatory cells in the samples [19]. It is likely that
asymptomatic subjects have sufficient compensatory power to cope with the negative influence of the
pathogen. Only excessive virulence of certain H. pylori strains or lowered resistance of the host may
result in clinically significant manifestations. In this regard, it is known that sedentary lifestyle may
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cause deleterious metabolic changes associated with activation of sympathetic tone (with subsequent
parasympathetic impairment) [32]. Genetic defects, psychoemotional stress, and a number of other
factors, may also contribute to autonomic imbalance that may lead to increased vulnerability of
the GM [33–35]. It has been reported that patients with chronic peptic ulcer disease show altered
autonomic function, as measured by Holter electrocardiogram monitoring [36]. The relationships of
heart rate variability alterations with endothelial dysfunction [37], as well as oxidative stress [38], were
earlier noticed. Hence, not clearly intuitive, the relationships of autonomic function and redox balance
attract growing attention. For example, an anti-inflammatory action of cholinergic (parasympathetic)
signaling [39,40], adrenergic pathways’ interference with H2O2-mediated insulin signaling [41] and
thermogenesis in adipose tissue [42], were demonstrated. Moreover, the link between redox balance
and autonomic function was hypothesized [43], and is further confirmed by a recent observation
that selective Nrf2 deletion in the rostral ventrolateral medulla in mice evokes hypertension and
“sympatho-excitation” [44].

Numerous epidemiological observations associate H. pylori-positivity with so called extra-gastric
manifestations that include, but are not limited to, atherosclerosis, insulin resistance/diabetes type 2,
diseases of liver and pancreas, and others [45–49]. Proposed pathogenesis mechanisms include initial
damage of GM caused by H. pylori and its virulence factors, oxidative stress and lipid peroxidation,
local inflammation, release of pro-inflammatory cytokines and other bioactive mediators to the blood
circulation, causing systemic effects and metabolic derangements [4,50–52]. Indeed, in H. pylori-positive
healthy male subjects with a sedentary lifestyle, higher levels of fasting insulin and elevated
homeostatic model assessment index (HOMA-index) were observed, compared to H. pylori-negative
matches [47]. Another study showed significantly increased heart rate and sympathetic tone in
H. pylori-positive asymptomatic volunteers. However, levels of the water-soluble HNE derivative
1,4-dihydroxynonane mercapturic acid (DHN-MA), iso-PGF2, pro- and anti-inflammatory cytokines,
C-reactive protein, and a number of selected hormones, were not different between the groups,
indicating that either the degree of local mucosal damage was not strong enough to cause marked
elevation of studied parameters, or their mild/moderate elevation is obscured by the passage of blood
through the liver [52].

4. HNE in Patients with H. pylori-Associated Gastritis and Peptic Ulcer

Despite its recent decline, the prevalence of H. pylori infection is still very high worldwide,
ranging from rates between 20% and 40% in Western countries, to over 90% in many developing
countries [3]. There is clear evidence that this microorganism is a causative factor for chronic gastritis
type B and peptic ulcer. However, as mentioned above, most H. pylori-positive subjects are clinically
healthy, and never develop gastritis or ulcer, suggesting that besides H. pylori and its virulence factors,
conditions of the host organism play a crucial role in the outcome of this complex host–microbe
interaction [4,53]. This idea fits well into the framework of the classical concept of balance of factors
of “aggression” and “cytoprotection” in GM. On the cellular level, this paradigm is consistent with
our current understanding of the principles of redox balance maintenance under stress conditions [6].
GM injury and subsequent inflammation may take place when the capacity of antioxidant mechanisms
is not sufficient to protect the cells from the damaging factors and related oxidative stress [5].

Peptic ulcer and gastritis are, for a long time, known to be associated with redox imbalance
and excessive lipid peroxidation [54], as confirmed in numerous studies and with different study
models [55]. Clinical studies are less abundant, and only a few of them address the issue of oxidative
stress and lipid peroxidation in GM. The use of gastric endoscopy enables obtaining of mucosal tissue
samples for further histological examination. In the group of H. pylori-positive peptic ulcer patients,
significantly higher accumulation of HNE–histidine adducts in GM compared to control group was
clearly demonstrated [19]. In some cases, severe immunopositivity of nuclei and perinuclear spaces,
along with diffuse accumulation of HNE–histidine conjugates in cytoplasm of the cells was observed,
pointing to an impaired redox balance in the GM of these patients [18,19].
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in these patients, as an integral part of ulcer disease, contributes to pathogenesis of gastric injury 
independent of persisting H. pylori occurrence. The combination of these two as well as any additional 
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interaction [34,66]. Thus, it depends on the power of intrinsic cytoprotective mechanisms (genetics, 
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Figure 2. Physiological and pathophysiological effects of HNE on the gastric mucosa depend on the
HNE concentration. Steady-state HNE levels inversely correlate with the cellular redox status, and are
a function of the rate of its generation and metabolization. HNE content is regulated by the activities
of alcohol and aldehyde dehydrogenases, and of glutathione S-transferases, depending mostly on
the level of reduced glutathione and affinity to cellular proteins [56]. The overall pathophysiological
consequences of HNE generation reflect the tissue/cellular redox (im)balance, and depend on the type
of cells and the reaction of neighboring cells to the onset of lipid peroxidation. The cells often behave
as individuals, not as a homogenous population, which is relevant for carcinogenic effects of HNE and
for its involvement in (regulation of) host defense against cancer [57–60].

The pharmacological approach to treat chronic gastritis and peptic ulcer via eradication of H. pylori
proved to be very successful from the clinical point of view, as it allows most of the patients to be cured
of these diseases [61]. In addition, there are reasons to expect that eradication of this microorganism
may be useful for prevention and/or treatment of other diseases associated with H. pylori, including
metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, or atherosclerosis [62–64]. How
an infection with H. pylori may result in systemic pathological effects, as well as the biochemical
mechanisms that may contribute to metabolic deteriorations in H. pylori-positive patients, needs to be
further elucidated.

Despite obvious clinical efficiency, there are reports indicating persistence of HNE–histidine
adducts, hyperaccumulation in peptic ulcer patients, even after successful eradication of H. pylori, at
least in the period of 4 weeks after completing antimicrobial treatment [18]. This is consistent with
clinical observations that some patients still have symptoms (epigastric pain, nausea, reduced appetite,
etc.) for several months after treatment [65]. It might be possible that metabolic dysfunction in these
patients, as an integral part of ulcer disease, contributes to pathogenesis of gastric injury independent
of persisting H. pylori occurrence. The combination of these two as well as any additional factors is
known to increase the risk of ulcerations. In this regard, smoking, psychoemotional stress, unhealthy
lifestyle, and suboptimal nutrition may be crucial for the outcome of host–microbial interaction [34,66].
Thus, it depends on the power of intrinsic cytoprotective mechanisms (genetics, sufficient blood
microcirculation in stomach, effective autonomic regulation) and exogenous factors (H. pylori, ingestion
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of toxins, and products of PUFA peroxidation), and may vary from long-term asymptomatic carrying
to chronic gastritis type B, with the periods of exacerbation and remission, peptic stomach ulcers,
and/or duodenum or transformations in the form of MALT-lymphoma or gastric adenocarcinoma.

5. HNE in Gastric Carcinogenesis

The GM is exposed to different types of exogenous chemical agents, and reactive species are
generated in the stomach during digestion. Some of them may be toxic and cause damage to the gastric
epithelium, and some may also be carcinogenic [2]. Chronic inflammation and oxidative stress caused
by H. pylori infection are also major contributors to malignant transformation of the cells of GM [50,67].
The idea to eradicate H. pylori in all carriers, even in asymptomatic ones, is gaining popularity, as
some recently published trials showed positive results [68]. Moreover, eradication of H. pylori seems
to be reasonable also in patients with early stages of gastric cancer undergoing endoscopic resection,
since it decreases the rates of metachronous cancers compared to control group [69]. In this context,
genotoxicity of supraphysiological levels of HNE and other lipid peroxidation products may be
important for carcinogenesis, as well [70,71].

The role of HNE in malignant transformation and growth is ambiguous. On the one hand, HNE
can diffuse from the site of generation into the nucleus and bind, covalently, to DNA molecules, causing
mutations and supporting carcinogenesis [71], while, on the other hand, it is influencing pathways
regulating proliferation, differentiation, and apoptosis of transformed cells. Depending on the activity
of detoxifying systems in cancer cells, HNE may be toxic to them or can stimulate their growth and
enforce resistance to cytostatic drugs [72].

While, in the case of acute and chronic GM injury caused by H. pylori and gastrotoxic agents,
oxidative stress and increased lipid peroxidation is well documented, in case of gastric cancer, it is not.
As it was shown by Ma et al. (2013), serum levels of major lipid peroxidation products, such as HNE,
malonic dialdehyde, conjugated dienes, and 8-iso-prostaglandin F2α, were all decreased in cancer
patients compared to control group [73]. Hence, though not statistically significant, lower levels of
HNE were also observed in H. pylori-positive vs. H. pylori-negative patients, that may support the
idea that moderate (or local) activation of lipid peroxidation may stimulate systemic activation of
detoxification mechanisms through, for example, Nrf2-dependent mechanisms [72].

6. HNE in Alcohol- and Non-Steroid Anti-Inflammatory Drug (NSAID)-Induced Gastropathy

Alcohol and a rapidly growing use of NSAIDs are, jointly, the second most important cause
of gastric injury after H. pylori [66]. Evidence from well-established animal models of GM injury
suggests two principal mechanisms responsible for tissue damage. The first, a direct toxic effect on
GM, and the second, limitation of gastric microcirculatory blood flow that is essential for a proper
rate of proliferation, mucus secretion, etc., through decreased levels of gastroprotective prostaglandin
E2 with subsequent endothelial dysfunction and autonomic dysregulation, that may cause oxidative
stress [74,75]. Both mechanisms contribute to the development of severe local oxidative stress, excessive
lipid peroxidation, and accumulation of its products, including HNE, mostly covalently bound to
proteins [54].

The important role of autonomic dysregulation is often ignored in case of diseases of stomach. It is
known that an elevated sympathetic tone limits blood flow in the organs of gastrointestinal tract, and
caused endothelial dysfunction, which is crucial for gastroprotection; therefore, autonomic imbalance
may significantly potentiate the damaging effects of alcohol and NSAIDs [76,77].

7. Pharmacological and Non-Pharmacological Approaches to Reduce Redox Imbalance in GM

Considering multiple etiologic and pathogenic factors that may interact with each other and
contribute to GM damage, there are a number of different approaches in order to prevent or treat
gastric injuries (Table 1).
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Eradication of H. pylori with a combination of two antibiotics and proton pump inhibitors has
been proven to be effective in most of the H. pylori-positive patients suffering from gastritis and peptic
ulcer [61]. However, in some of these patients, elimination of the microbial factor is not sufficient,
and symptoms, as well as redox imbalance, may persist long after completion of the treatment [18,65].
Moreover, eradication of H. pylori does not significantly lower the risk of gastric cancer, at least within a
few years after eradication, and the statistical difference becomes significant only after 8–10 years [78].
Therefore, other approaches are also needed in order to overcome these limitations and to address
other aspects of GM injury pathogenesis.

Table 1. Selected pharmacological and non-pharmacological interventions and their effects on HNE
production/utilization in gastric mucosa.

Intervention Target Process/Pharmacological Effect References

Proton pump inhibitors, H2
histamine receptor inhibitors

Reduction of acidity, decreased proteolytic activity of gastric
juice/decreased gastric injury (production of HNE) [61,66]

Antibiotics H. pylori eradication/decreased gastric injury (production
of HNE) [61,66]

NO, CO, H2S-releasing
NSAIDs

Release of CO, NO, and/or H2S modulates redox signaling,
improves endothelial function, and improves

microcirculation/reduced production and improved
utilization of HNE

[75,76]

Antioxidants/polyphenols
present in food

Reduced lipid peroxidation of PUFAs in stomach/reduced
absorption of exogenous HNE [2,79]

Phytochemical and
phytotoxins with moderate

prooxidant action

Nrf-2 activators induce expression of antioxidant genes and
increase detoxification of HNE [20,80]

Interval hypoxic training Improvement of autonomic control of microcirculation and
function of internal organs [81,82]

Exercise, intermittent fasting,
caloric restriction

Activation of autophagy, reduction of systemic
inflammatory response, improvement of protein quality

control and autonomic regulation
[83]

Ulcer-healing drugs
(actovegin, solcoseryl etc.)

Mechanism unknown, suggested influence on
microcirculation and/or endothelial function [84,85]

Since substantial amounts of gastrotoxic substances may be ingested with food or generated
during digestion, the idea to use drugs, supplements, or certain types of food able to neutralize toxins
or reduce the rate of lipid peroxidation was actively explored. Indeed, subjects consuming more fruits
and vegetables show lower incidence of gastric diseases, especially gastric cancer [86]. Studies also
show that polyphenols reduce the formation of hydroperoxides in stomach and in in vitro models
of gastric digestion [2,79]. Pre- and probiotics [87], as well as a number of plant-derived traditional,
medicines or extracts, were also shown to be protective against gastric and intestinal mucosal damage
and may improve redox balance in mucous membranes in different parts of the GIT [20]. Thus, a
number of natural compounds present in fruit and vegetables (e.g., phenolic flavonoids, lycopenes,
carotenoids, glucosinolates) act as radical-trapping antioxidants, and they represent not a only useful
and convenient beneficial health-promoting approach, due to their natural occurrence and abundance,
but also a model for the development of novel drugs aimed to modulate redox balance [88].

The molecular mechanisms underlying protective effects of beneficial compounds are often
not yet elucidated, but at least some of them may act via a hormetic response, when moderate
prooxidant action causes the activation of defense mechanisms (for example, by induction of target
genes of the Nrf-2 transcription factor) [72]. Alternatively, they may contribute to increased mucosal
microcirculation through improvement of endothelial function or parasympathetic tone, as it has been
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shown for Actovegin, which has been used as an anti-ulcer drug for several decades [85]. Among
non-pharmacological interventions that showed some efficiency in the case of peptic ulcer disease
is also interval hypoxic training [81]. Exact gastroprotective mechanisms in this case are not clear as
well, but it is likely that the mechanism includes improvements of autonomic balance and enhanced
microcirculation [82].

Therapeutic use of NSAIDs is overwhelming, and in order to reduce their gastrotoxicity, a wide
range of new formulations are introduced or are under development [89]. For example, a number
of nitric oxide (NO)-, carbon monoxide (CO)-, or hydrogen sulfide (H2S)-releasing derivatives of
acetylsalicylic acid and other NSAIDs were shown to be as pharmacologically effective as traditional
drugs, but have preventive effects against NSAID-induced gastrotoxicity via improvement of
endothelial function, and anti-inflammatory and cytoprotective effects [75,76]. Protective actions
of these drugs may be also closely related to HNE signaling pathways and maintenance of redox
balance in GM.

8. Conclusions

The integrity, high functional activity, and sufficient regeneration rate of GM in harsh conditions
is very challenging. The health of gastric epithelium highly depends on the efficiency of redox
balance maintenance, antioxidant defense, and activity of detoxifying systems within the cells, as well
as robustness of blood supply. The products of lipid peroxidation, in particular, of HNE and its
protein/histidine adducts, are important mediators in physiological adaptive reactions, cell signaling,
and are also implicated in pathogenesis of numerous gastric diseases. Hence, while the mechanisms
and consequences of HNE generation in response to strong stressors during acute and chronic gastric
injury are well studied, many other important issues related to gastric carcinogenesis, tumor growth
and progression, the condition of GM after eradication of H. pylori, and many others, still need
extensive studies and new comprehensive approaches.
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