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Probing Limits of Information 
Spread with Sequential Seeding
Jarosław Jankowski   1, Boleslaw K. Szymanski   2,4, Przemysław Kazienko   3, 
Radosław Michalski   3 & Piotr Bródka   3

We consider here information spread which propagates with certain probability from nodes just 
activated to their not yet activated neighbors. Diffusion cascades can be triggered by activation of 
even a small set of nodes. Such activation is commonly performed in a single stage. A novel approach 
based on sequential seeding is analyzed here resulting in three fundamental contributions. First, we 
propose a coordinated execution of randomized choices to enable precise comparison of different 
algorithms in general. We apply it here when the newly activated nodes at each stage of spreading 
attempt to activate their neighbors. Then, we present a formal proof that sequential seeding delivers 
at least as good spread coverage as the single stage seeding does. Moreover, we also show that, under 
modest assumptions, sequential seeding performs provably better than the single stage seeding using 
the same number of seeds and node ranking. Finally, we present experimental results comparing 
single stage and sequential approaches on directed and undirected graphs to the well-known greedy 
approach to provide the objective measure of the sequential seeding benefits. Surprisingly, applying 
sequential seeding to a simple degree-based selection leads to higher coverage than achieved by the 
computationally expensive greedy approach currently considered to be the best heuristic.

Making decisions is often difficult; this is why it is often worth to split it into consecutive stages to reduce potential 
risk. Such approach gives the decision maker an opportunity to learn the outcomes of the previous stages and 
adjust accordingly the current stage. This approach applies also to influence maximization and information spread 
in complex networks. One of the main challenges there is the selection for initial and activation network nodes 
referred to as seeds, to maximize the spread of information within the network1. Various factors affecting the dif-
fusion and social influence in complex networks were analyzed including the role of different centrality measures 
in selection of initial influencers2, impact of homophily for successful seeding3 and others4. While most of the 
relevant research is related to marketing, the problem is more generally defined as a target set selection in com-
binatorial optimization in theoretical computer science5–7. The influence maximization problem is also explored 
in physics from the perspective of network structures8. Some other studies discuss the role of communities9 or 
propose to use optimal percolation10. Initial research has been carried out to identify seeds for temporal11,12,  
and multi-layered social networks13. Several comparative studies on seeding strategies were presented in14,15. 
Since the seed selection process is NP-hard1, several heuristics have been proposed. Most of them use network 
structural properties like degree or eigenvector measure to rank seed candidates14.

Seeding strategies have been applied to word-of-mouth marketing, social and political campaigns and diffu-
sion of information in social media. Vast majority of them are based on the assumption that all seeds are activated 
at the beginning of the process or campaign and then diffusion starts and continues naturally without any addi-
tional support14. Some recent research proposes to apply adaptive approaches with two-stage stochastic model 
exploring the potential of neighboring nodes16, further extended towards more scalable approach17. Using some 
seeds after the first stage was preliminary proposed in18,19, and potential of multi-period spraying for routing in 
delay-tolerant networks was discussed as an effective solution for propagation in computer networks in20.

On top of that, the concept of sequential seeding was introduced21. It takes the advantage of delayed seeding 
by interweaving activating seeds with diffusion. Here we firm the foundations of sequential seeding and address a 
number of research questions that have not been studied before21–23. First, we prove formally and confirm exper-
imentally on real networks that the sequential seeding is at least as good as the single stage method and under 
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modest conditions, it is provably better. Then, we evaluate the realistic benefits of this method by comparing its 
capabilities to both greedy and optimal (maximal) solutions to obtain some measure of improvements provided 
by this approach. Finding optimal seed sets and computing the maximal coverage for various scenarios allow us 
to represent gains from sequential seeding as a fraction of the space between coverage of other algorithms and 
the maximal coverage. This has been investigated empirically for directed and undirected networks using inde-
pendent cascades model1.

In the first phase, we ran simulations on six real complex networks with sizes in the range of 1.5k–17k nodes. 
The visualization of the networks and their basic properties are provided in the Supplementary Material. The 
independent cascades model (IC)1 was used with a given propagation probability PP(a, b) that node a activates 
(influences or infects) node b in step t + 1 under the condition that node a was activated at time t24. The results 
for undirected networks assume that PP(a, b) = PP(b, a) for all edges. This simplification allowed us to obtain the 
optimal seed set through the complete search even for largest networks among those used for experimentation. 
To explore the directed networks without this assumption, another large set of extensive experiments were per-
formed on the smaller network, for which it was also possible to compute optimal solutions, see the next section.

With the independent cascades model (IC) even a single seed can induce diffusion (which is crucial for 
sequential approaches), while in the linear threshold model1 (LT), a small seed set could have no effect. For that 
reason, experiments were carried out on the IC model.

Results achieved by sequential seeding (SQ) were compared with the single stage approach (SN) and the 
maximum coverage (Max) for the same setup, including both the network and parameters: the propagation prob-
ability, the seeding percentage, and the seed ranking strategies: degree, greedy and random. The sequential cov-
erage CSQ was on average 7.1% better than the single stage coverage CSN. The positive gain of SQ over SN was also 
confirmed by statistical tests, see Section Material and Methods.

Results for greedy based ranking for 50,000 simulations represented as percentage of maximum coverage 
CMax averaged over individual configurations and ordered by the ratio CSN/CMax are presented in Fig. 1(A). 
Additionally, the upper bound CGreedySN*e/(e − 1)1 is for many configurations up to 50% greater than real maxi-
mum value observed, see Fig. 1(A1). These results demonstrate that upper limit derived from greedy approach 
is not tight. Sequential methods always outperform single stage ones, if we consider averaged coverage, for any 
strategy as well as for every configuration. Moreover, degree SQ is able to cover more nodes than greedy SN, espe-
cially for configurations with coverage significantly lower than CMax, as shown in Fig. 1(A1).

There were 8,100,000 individual simulation cases defined during simulation initialization, each case by its N, 
PP, SP, and binary random choice selected for each edge to propagate information or not across this edge. These 
cases are ordered by coverage obtained in the single stage method. The resulting plots demonstrate that CSQ per-
forms better than CSN in almost every case. The greatest increase is observed for CSN ∈ [30%, 85%]; simply the 
space for improvement is larger in such cases.

Figure 1.  Undirected networks: (A) The averaged performance of sequential SQ and single stage seeding 
SN with greedy based nodes selection as a fraction of the maximum coverage CMax and as a function of the 
network size N, probability of propagation PP across each edge, and the fraction of nodes selected as seeds 
(seed selection percentage) SP; see (A1) Performance of sequential SQ and single stage seeding SN with degree-
based ranking in comparison with maximum coverage and the upper bound as a function of the individual 
configurations, each defined by N, PP, SP, and the random binary choice made at simulation initialization 
for each edge to propagate or not information across this edge; (B) Coverage of sequential method SQ as 
percentage of CMax placed between single stage seeding SN and Max for greedy nodes selection; (B1), (B2) 
Sequential seeding performance SQ between single stage seeding SN and Max for random and degree-based 
node selection, respectively; (B3) Performance of sequential SQ and single stage seeding SN represented by 
percentage of activated nodes within network (coverage) for random seed selection, degree-based ranking and 
greedy seed selection in comparison with maximum coverage as a function of the individual configurations; 
(C) Gain for different propagation probabilities PP averaged over all cases; (D) Gain for different seeding 
percentages SP; (E) Gain for node ranking strategies based on random, greedy and degree selection; (F) Gain 
for networks N1 - N6.
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The global results for all networks, strategies, parameters and random binary choices for each edge to prop-
agate information or not across this edge made at the simulation initialization yield better values of CSQ than of 
CSN in 96.7% of cases. The increase over 5% was achieved in 20.2% of cases. The results were dependent on node 
ranking strategy with 96.0% better results for random rankings, 100% for degree based rankings and 93.9% for 
greedy approach based ranking. The improvement over 5% was observed for 11.2% cases for random strategy 
and as much as 38.7% cases for degree-based selection and 10.9% for greedy method. It should be also noted that, 
surprisingly, the random selection performs slightly better than the expensive greedy selection.

Results for individual cases with respect to maximum coverage are presented in Fig. 1(B). The sequential 
results are localized above the single stage border, filling the space towards maximum (100%). The dispersion is 
the highest for degree based rankings Fig. 1(B1). The lowest dispersion of results is observed for random based 
node selection, see Fig. 1(B2). Moreover, if the single stage coverage is at least at the level of 90%, all strategies 
are able to provide sequential cases very close to maximum. For lower coverage, only degree-based rankings can 
improve results so much.

The results revealed an important phenomenon: sequential seeding based on degree selection in 92.2% of 
cases outperforms single stage greedy approach. A similar improvement is also observed for the averaged values. 
It means that sequential approach almost always is able to boost performance of the simple degree-based ranking 
over computationally expensive greedy heuristic. Moreover, CdegreeSQ is greater than CgreedySQ in 62.6% of cases but 
for single stage methods such superiority can be observed in only 0.01% of cases.

Hence, the main finding is that the computationally ineffective greedy strategy is suitable for single stage 
approach, while degree based selection for sequential seeding is significantly better than other selection methods.

In general, the obtained results were dependent on the network profile and parameters of the diffusion. Space 
between the maximum coverage CMax and the single stage seeding CSN is an area in which sequential approaches 
deliver improvement. This area on average is (CMax − CSN)/CSN so only 25%, of the all simulation cases.

To evaluate the improvement, a gain measure G was defined; it is based on average coverage values: 
G = ((CSQ − CSN)/(CMax − CSN)) * 100%. It shows what part of the improvement area is reachable by sequential 
approach. Depending on process parameters and network, the gain varies from 30% to 83%. In general, the 
greater propagation probability value, the greater coverage and gain, see Fig. 1(C). The same phenomenon arises 
for seeding percentages, as seen in Fig. 1(D). Regarding node selection strategies, the highest average gain 74% 
was observed for degree based selection, while for greedy and random strategies it is much lower: 27% and 33% 
respectively, as shown in Fig. 1(E). The gain strongly depends on network structure, see Fig. 1(F). The highest gain 
(83%) was achieved for network N6, whereas the least gain (30%) was achieved for network N3.

Results
Experimental results for directed networks.  As in case of undirected networks, coordinated execution 
experiments for a real directed network were run to analyze gain from sequential seeding compared to greedy 
approach and maximal possible coverage. Since they requires computationally expensive search for the optimal 
seed sets, only a small network with 16 nodes and 58 edges was used25. Following the coordinated execution 
principles, 10k instances of the network were randomly generated to assign binary choices of propagation or not 
for each directed edge, i.e., independently for a → b and b → a activation. One of these instances is presented in 
Fig. 2. For each instance and propagation probability PP, an optimal 4-node seed set was computed to estimate the 
maximum coverage for this instance and PP. Results for all probabilities and ranking strategies (degree, greedy, 
random) show that the highest increase of coverage was observed for the sequential degree based selection, see 
Fig. 3(B,D). Moreover, the sequential approach with the degree rankings delivered better results than greedy-
based selection regardless if used in single stage or sequential mode, as shown in Fig. 3(A,D). It means that the 
degree approach should be among the first choices considered when selecting the node ranking method.

The average performance (gain in coverage) is strongly dependent on propagation probabilities (PP) and 
it increases with PP values, see Fig. 3(C), even though higher probabilities leave less space for improvements, 
since they also raise the single stage coverage. This effect is present for all selection strategies. The reason is that 
although the processes with high PP reaches more than 80% of nodes for all strategies and the area for gain is 
much smaller, the savings from the sequential approaches are even greater than for smaller PP’s, as shown in 
Fig. 3(E), benefiting the final results.

In general, the sequential approach enables us to save seeds and allocate them to other network regions. This 
gain varies for different propagation probabilities and ranking strategies, as shown in Fig. 3(E), and it comes from 
activation of seed candidates by inter-stage diffusion. The degree ranking reveals its superiority over other rank-
ing methods also in seed saving, which may, in fact, be the reason why the sequential degree method outperforms 
the single stage greedy, as seen in Fig. 3(A). More than 25% of seeds can be saved even for smallest propagation 
probabilities and up to 48% for PP = 0.25 and degree-based selection. These results may guide future research 
on methods to find the minimal number of seeds used sequentially to achieve the same coverage as in the single 
stage seeding.

Overall, the main findings for directed networks are similar to the ones for undirected graphs: (1) sequen-
tial approach almost always significantly increases coverage of spreading and reaches beyond the current limits 
(never makes it worse), (2) sequential degree-based selection is commonly better than the greedy selection and 
(3) it is often close to the maximum, (4) usually, the greater propagation probability, the greater gain, and (5) 
sequential approach enables us to replace some of the initial seeds with the additional ones thereby increasing 
coverage, especially for greater PP and degree selection.
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Discussion
The presented results lay firm foundation for the earlier studies related to sequential seeding and address cur-
rently unanswered research questions21–23. Averaging the coverage obtained by the typical agent based simula-
tions delivers improvement in about 90% of the cases21, the formal proof relying on the coordinated execution and 
corroborated by the new empirical studies shows that sequential seeding delivers at least as large coverage as the 
widely used single stage seeding and under modest assumption the coverage is provably larger. The performance 
of sequential seeding is compared with both greedy seed selection (which may be treated as the current limit) 
and the optimal seed set providing maximal possible coverage for a given number of seeds and the given network 
configuration. Experiments were performed for directed and undirected networks by means of independent cas-
cades model1. Sequential usage of seeds selected by the simplest degree-based heuristics delivers better coverage 
than the greedy algorithm used in the single stage mode. However, coverage achieved by the greedy selection can 
also be further improved, if seeds are used sequentially instead of being all activated at the beginning of execution, 
even though the resulting coverage still remains worse than the one that the sequential degree selection delivers.

Overall, the results confirm that sequential allocation of seeds improves the coverage of information diffusion 
in both directed and undirected complex networks. The measure of improvements provided by this approach is 
showed. It helps to substitute seeding nodes activated by diffusion by selecting new seeds based on node’s ranking 
which may activate new regions, see Fig. 2(B).

Figure 2.  One of the experimental cases for the directed network (run 4336) with the number of seeds n = 4 
and the propagation probability PP = 0.05. For clarity and high network density only edges assigned the random 
choice of propagating information for them by coordinated execution are shown. Degree- and greedy-based 
rankings are computed for the full initial network with all edges. (A) Single stage seeding (SN) with degree-
based ranking, the coverage CSN = 6, a diffusion cascade is visible when node 11 activates nodes 9 and 10. (B) 
Diffusion with sequential seeding and degree based selection; the ranking is the same as in (A); one seed is 
activated in each of four stages; in the first stage node 6 is activated according to its highest degree. It activates 
node 11 which in turn activates nodes 15 and 9; finally, node 9 activates node 10 and diffusion stops. The two 
seeds used in (A) are already activated by diffusion in this case. In the second stage node 16 is selected since 
it has the highest degree among not activated yet nodes. Its only neighbor, node 11, is already active so the 
process stops. In the next stage node 1 is selected as a seed but it lacks active edges so diffusion cannot progress. 
Fourth seed is node 12 and it activates node 14. Sequential seeding avoids using nodes 11 and 15 seeds which 
are activated as seeds in single stage seeding. This allow sequential seeding to activate two more seeds and three 
more nodes in total compared to single stage seeding. (C) Single stage seeding with greedy-based ranking and 
coverage CSN = 7. (D) Single stage seeding based on the seed set optimal for this individual case, including 
knowledge of which edges are active for propagation, with the resulting coverage CSN = 11.
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As a result, sequential seeding commonly provides better coverage than the single stage approach, no matter 
which initial node selection strategy is used. In the worst case, the results remain the same but the experimental 
studies show that it happens in fewer than 10% of all cases.

For single stage mode the greedy approach is commonly better than typical ranking selections based on struc-
tural measures, e.g. degree and it can be treated as the method defining the current limit. However, it requires 
extensive prior simulations, which in practice are hardly possible due to (1) high computational complexity, and 
(2) desirability of simulating data in real time – very rarely we can run thousands of diffusion processes when the 
results need to be delivered in the real-time of the campaign.

Sequential seeding outperforms the greedy search method. Moreover, sequential seeding using structural net-
work measures, like degree, for seed selection yields coverage greater than obtained by greedy, without necessity 
of any prior simulations. In our experiments, it happened in over 92% of cases. It appears that using degree-based 
rankings with sequential strategy is better than using the computationally expensive greedy approach.

We observed that the main factor that defines performance of sequential seeding versus single stage seeding 
is to what extent seed selection method avoids selecting nodes that will be activated through diffusion. The gain 
of sequential seeding arises when the selected seed to be activated in the current stage is already active. In such 
a case, this seed is removed from the seed list and replaced by a highest ranking node which is not yet activated. 
It should be noted that we compare the resulting coverage with the real maximum coverage, which very often is 
much lower than the theoretical upper bound for the average maximum coverage suggested in1, see red line in 
Figs 1(A1) and 3(A).

Presented study has several implications for practice. Instead of introducing the product to large number of 
customers at the outset of commercial campaign, better strategy is seeding a small fraction of nodes and giving 
the chance to natural diffusion driven by social influence mechanisms to spread the content. Marketing budgets 
can be optimized if additional seeds are utilized only if campaign fails and revival is needed. Moreover, the knowl-
edge gained from the initial spreading may improve seed selection for revival. Increased coverage of spreading 
might be crucial for campaigns with limited budgets, such as spreading security information, or disease warn-
ings and awareness. During massive campaigns habituation phenomenon can arise among customers resistant 
to marketed messages. It can be avoided by limiting the intensity of marketing activity. While campaigns with 
higher intensity can be perceived negatively as unsolicited massive communication, sequential strategies may 
avoid making such negative impact on customers. Sequential seeding is a low risk strategy with possible high 
gains because, as we proved, coverage will never be worse than the coverage of the corresponding single stage 
seeding. Another application, presented below, goes beyond the scope of our discussions here, nevertheless it 
shows additional benefits of sequential seeding. In social media, marketing content is often delivered to users 
with many connections hoping that they will share content within their networks by using platform specific 
mechanisms (e.g. likes, retweets). Seeding can be beneficially delayed to avoid reaching nodes easily reachable 
from their social connections.

Methods
Independent cascade model.  We consider an independent cascade that is a stochastic diffusion model of 
information spread in the network initiated by seeds1. A basic, commonly used, single stage seeding (SN) consists 
of only one activation stage in which the fixed number of n seeds are activated, see Table 1. They initiate diffusion 
which runs until no more nodes can be activated. In the independent cascade model each diffusion step consists 
of a single attempt by all nodes activated in the previous step, to activate their direct not yet active neighbors with 
a given propagation probability (PP). We measure diffusion time in the number of such steps, assuming that each 
lasts a unit of execution time.

Figure 3.  The directed network: (A) Performance of sequential SQ and single stage seeding SN with degree-
based ranking in comparison with maximum coverage; (B) The coverage achieved by sequential strategies 
in comparison to coverage obtained by a single stage approach; (C) Averaged gain for all used propagation 
probabilities; (D) Averaged gain for node ranking strategies based on random, greedy and degree selections;  
(E) Percentage of saved seeds for degree, random and greedy based selections.
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Sequential seeding.  Let TSN denote the time the whole process of the single stage seeding lasts, see Fig. 4. 
Often, some seeds activated at the beginning could have been naturally activated later on. The sequential seeding 
strategy (SQ) uses the same number of seeds n as SN21. Its idea is to take the same initial ranking of nodes as in 
case of single stage seeding, but activate them sequentially in n consecutive stages each with one seed activated. 
After each activation, the diffusion proceeds. The next activation is suspended until the current diffusion process 
stops, i.e., when the last diffusion step does not increase the coverage. In the independent cascade model, each 
recently activated node has only one chance to infect its neighbors. Hence, if the diffusion stops, the only way to 
continue activation is activating a seed. In the sequential method, it is the highest ranking node not yet activated. 
It means that nodes already activated by diffusion are omitted. The gain of sequential approach comes from the 
new areas activated by additional seeds substituting the already activated ones. Hence, the set of seeds activated in 
sequential seeding often differs from the one activated in the single stage approach. Sequential approach may be 
applied to any initial node ranking computed once at the beginning of the process. Such ranking may utilize ran-
dom choice, any structural measures like commonly used degree or any other heuristic, e.g., greedy1. Some ques-
tions arise here: what is the increased coverage CSQ; is CSQ always greater than CSN and what is the gain achieved 
comparing with the estimate of the maximum coverage CMax for a given configuration.

Coordinated execution and maximal coverage.  The need often arises to compare algorithms which 
during execution make random choices, e.g., to break ties, simulate random outcomes according to the given 
distribution, or are randomized in nature. In such cases often average values of performance are measured over 
many runs of each algorithm and used for comparison between them. Here, we propose coordinated execution 
as the more direct alternative, in which we compare performance of runs with the same choices made during exe-
cutions with different algorithms, providing run by run comparison of the results. This requires that all random 
choices are made and recorded before each run for all compared algorithms. The subsequent runs for comparison 
of algorithms simply execute preprocessing of choices with unique seeds for random number generator.

When applied to comparing various seeding methods uses, the coordinated execution requires that each node 
activated in any execution makes the same edge diffusion transmission decision. To ensure that all edges ran-
domly select their activity status before the coordinated executions are run for all variants of single stage and 
sequential strategies. It enables us to make fair comparisons between different seeding strategies.

Coordinated execution in the undirected network uses only one edge between two nodes. A propagation 
probability between two nodes a → b is the same as for b → a transmission. Coordinated execution in directed 
network replaces each edge with two directed edges, and then decides which directed edges will be activated in 
diffusion. The edge states are sampled from the binary set {0, 1} with state 1 being chosen with uniform proba-
bility PP.

Strategy Description
No. of seeding 
stages

SN Single Stage Seeding – all seeds are 
activated in one stage at the beginning 1

SQ
Sequential Seeding – one seed activation 
starts the stage and revives the previously 
stopped diffusion; each stage ends when 
diffusion stops

n

Table 1.  Seeding strategies with n number of seeds.

Figure 4.  Coverage by diffusion processes with the number of seeds n = 3 using the classical single stage 
method (SN) compared to coverage using the sequential seeding strategy (SQ).
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Edges assigned value of 0 are removed, while edges with value 1 stay, creating an instance of an active edge 
graph. Two instances of execution of sequential and single stage methods are coordinated if all edges originating 
from node activated in both instances have the same states. Such coordinated instances are used to compute the 
maximum coverage CMax for a given network and active edge choices. Such computation requires identification 
of all connected components in the active edge graph, which can be done in O(e) steps, where e is the number 
of active edges. Then, the maximum coverage CMax for a given seed size n is equal to the total number of nodes 
within n largest components.

Many instances of active edge graph are then created by simply using a different random number genera-
tor seed for each instance. The number of instances needed to collect the reliable estimate of the average cov-
erage of the tested seeding methods is provided in26. Computing the average of the maximum coverage over 
these instances provides a reliable estimate of an upper bound for the maximum average coverage of any seeding 
method. As shown in Figs 1(A1) and 2(A), this upper bound is in most cases tighter than the one derived from 
the greedy seed selection.

Formal proof of non-decreasing coverage.  In a formal proof, we show that the sequential seeding 
always provides at least as large coverage as the classical single stage approach does. Using coordinated execution, 
we also demonstrate that under modest assumptions the former approach is provably better than the latter one 
when both use the same number of seeds and node ranking method. To do that, we demonstrate that there exist 
network configurations for which the sequential seeding coverage is larger than the coverage yielded by the single 
stage seeding. Configurations are defined at simulation initialization by choosing randomly the diffusion transi-
tion status for each edge. 

Theorem: For arbitrary node ranking and number of seeds, a sequential seeding execution has at least the same 
coverage CSQ as the corresponding single stage execution CSN coordinated with it. Moreover, if there is an initial 
seed u which is reachable in the original graph from a seed s with rank lower than rank of u, then there exists a 
configuration of the original graph for which the coverage for sequential seeding is larger than it is for single stage 
seeding.

Proof: For clarity, we assume that seeds are activated in the increasing order of their rank. We start by observing 
that in sequential seeding, the seed ranked r is activated no later than in stage r. It can be activated in the earlier 
stage either by diffusion or by having a seed with rank lower than r activated by diffusion, thereby decreasing the 
ranks of all seeds ranked higher than the activated seed. If neither of these two cases happens before stage r starts, 
in this stage, the seed ranked r will be the highest ranking not yet activated seed and therefore it will be chosen 
for activation.

We observe also that not yet activated node will be activated by diffusion in a single stage execution of a given 
configuration if and only if this node is reachable from a seed by the edges active in this configuration. Indeed, 
if a node m is reachable from a seed, this seed will be activated in the first and only stage of activation. Then, 
by the rules of diffusion, this seed’s activation cascade will reach node m and activate it, if it is still non-active. 
Conversely, the seed activated in step t of diffusion in sequential seeding activates only not yet activated nodes 
that are distance t from it. The upper bound for the number of diffusion steps before the diffusion stops is the 
diameter of the configuration. Hence, no node that is not reachable from any seed in the given configuration will 
be activated by diffusion. Since in sequential seeding all original seeds will be activated no later than by stage n, 
all nodes reachable from these seeds will also be activated by this stage, proving the first part of the Theorem.

Regarding the second part of the Theorem, let H be a configuration in which all the edges on the reachability 
path from seed s to node u defined in the Theorem are active. At the end of stage n − 1 of sequential execution 
of configuration H, all seeds activated in the single stage seeding are activated. Indeed by definition, all seeds 
ranked n − 1 has to be activated by then, and the seed of rank n has to be activated either by diffusion from seed 
s when rank of u is n or by lowering of its rank by activation of seed u from seed s when rank of u is less than 
n. Consequently, diffusion at stage n − 1 comes from all seeds, and therefore all nodes activated in single stage 
seeding will be activated in sequential seeding by then. In the next stage n, a nonactivated node will be activated 
as a seed, making the overall coverage of the sequential seeding larger for this configuration than the coverage of 
the single stage seeding; QED.

Greedy seed set search.  Greedy method requires many simulations to estimate the potential of a sin-
gle node, i.e., its ability to activate other nodes via diffusion1. Here, the greedy method is based on approach 
presented in26. Averaged results of the greedy algorithm (coverage Cgreedy - the average total number of nodes 
activated by the process) are no worse than CMax * (1 − 1/e), where CMax is the expected maximum coverage26. 
It means that the greedy approach also defines the theoretical upper bound for maximum coverage: Cgreedy * e/
(e − 1). Due to its great coverage, the greedy algorithm is currently treated as the benchmark to beat and reference 
to. Since it requires prior simulations to compute the node potential, it is also very inefficient thus hardly applica-
ble in practice, especially for large networks.

Experimental setup: undirected networks.  The experiments were carried out on six real complex net-
works: N1 - Condensed Matter collaboration27, N2 - Communication network at University of California28, N3 -  
High-Energy Theory collaboration network29, N4 - Political blogs30, N5 - ego-Facebook31 and N6 - wiki-Vote32.

The parameters used in experimental configurations define diffusion, networks and seed selection strategy as 
shown in Table 2. Three commonly used strategies were exploited: the highest degree, greedy1 and random selec-
tion. Simulation parameters create configuration space N × PP × SP × R with 162 configurations, each were inde-
pendently applied to both single stage (SN) and sequential seeding strategies (SQ) using coordinated execution 
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repeated 50,000 times, resulting in 162 * 50,000 * 2 = 16,200,000 simulation cases; 8,100,000 cases for each single 
stage and sequential strategies.

For the greedy approach, finding the seed sets required another 10,000 simulations computed independently 
for each configuration, as defined in1. The nodes were ranked according to their average coverage over all 10,000 
simulations; a separate greedy ranking was computed for each of the 162 parameter combinations.

Statistical tests.  The positive gain of sequential approach (SQ) over single stage (SN) for experiments on 
undirected networks was also confirmed by the Wilcoxon signed rank test, with p < 2.2e-16 and Δ = 1.9, with 
the Hodges-Lehmann estimator used as a difference measure. Values Δ > 0 demonstrate significantly larger 
coverage for CSQ than CSN. Regarding seeding strategies based on node ranking methods, sequential approach 
increases coverage for random ranking on average by 3.2%, with p < 2.2e-16 and Δ = 1.6. Sequential seeding 
based on degree delivered coverage results 15.5% better than single stage seeding, with p-value < 2.2e-16 and 
Δ = 4.2. For sequential seeding and greedy based ranking 2.5% average coverage improvement was achieved with 
p-value < 2.2e-16 and Δ = 0.7.

Experimental setup: a directed network.  As much as 10,000 instances of coordinated execution for 
the small real network of 16 nodes were randomly selected, to ensure stability of the solutions; further instances 
would not affect results1. Due to a small number of network nodes, only four seeds were used arbitrarily. Five 
propagation probabilities (PP) with values 0.05, 0.1, 0.15, 0.2 and 0.25 were applied. Similarly to the undirected 
version, three ranking strategies were analyzed: degree, greedy and random.
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