
ORIGINAL RESEARCH
published: 17 August 2021

doi: 10.3389/fncom.2021.678688

Frontiers in Computational Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 678688

Edited by:

Paul Miller,

Brandeis University, United States

Reviewed by:

Adam Ponzi,

Okinawa Institute of Science and

Technology Graduate University,

Japan

Yao Li,

University of Massachusetts Amherst,

United States

*Correspondence:

Zhuo-Cheng Xiao

zx555@nyu.edu

Louis Tao

taolt@mail.cbi.pku.edu.cn

†These authors have contributed

equally to this work and share first

authorship

Received: 10 March 2021

Accepted: 23 July 2021

Published: 17 August 2021

Citation:

Cai Y, Wu T, Tao L and Xiao Z-C

(2021) Model Reduction Captures

Stochastic Gamma Oscillations on

Low-Dimensional Manifolds.

Front. Comput. Neurosci. 15:678688.

doi: 10.3389/fncom.2021.678688

Model Reduction Captures
Stochastic Gamma Oscillations on
Low-Dimensional Manifolds
Yuhang Cai 1†, Tianyi Wu 2,3†, Louis Tao 3,4* and Zhuo-Cheng Xiao 5*

1Department of Statistics, University of Chicago, Chicago, IL, United States, 2 School of Mathematical Sciences, Peking

University, Beijing, China, 3Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic

Engineering, School of Life Sciences, Peking University, Beijing, China, 4Center for Quantitative Biology, Peking University,

Beijing, China, 5Courant Institute of Mathematical Sciences, New York University, New York, NY, United States

Gamma frequency oscillations (25–140 Hz), observed in the neural activities within

many brain regions, have long been regarded as a physiological basis underlying many

brain functions, such as memory and attention. Among numerous theoretical and

computational modeling studies, gamma oscillations have been found in biologically

realistic spiking network models of the primary visual cortex. However, due to its

high dimensionality and strong non-linearity, it is generally difficult to perform detailed

theoretical analysis of the emergent gamma dynamics. Here we propose a suite of

Markovian model reduction methods with varying levels of complexity and apply it

to spiking network models exhibiting heterogeneous dynamical regimes, ranging from

nearly homogeneous firing to strong synchrony in the gamma band. The reduced models

not only successfully reproduce gamma oscillations in the full model, but also exhibit

the same dynamical features as we vary parameters. Most remarkably, the invariant

measure of the coarse-grained Markov process reveals a two-dimensional surface in

state space upon which the gamma dynamics mainly resides. Our results suggest

that the statistical features of gamma oscillations strongly depend on the subthreshold

neuronal distributions. Because of the generality of the Markovian assumptions, our

dimensional reduction methods offer a powerful toolbox for theoretical examinations of

other complex cortical spatio-temporal behaviors observed in both neurophysiological

experiments and numerical simulations.

Keywords: gamma oscillations, synchrony, homogeneity, coarse-graining method, model reduction algorithm

1. INTRODUCTION

Modern experimental techniques have revealed a vast diversity of coherent spatiotemporal activity
patterns in the brain, reflecting the many possible interactions between excitation and inhibition,
between cellular and synaptic time-scales, and between local and long-range circuits. Prominent
amongst these patterns are the rich repertoire of neuronal oscillations that can be stimulus driven
or internally generated and are likely to be responsible for sensory perception and cognitive tasks
(Fries, 2009; Tallon-Baudry, 2009). In particular, gamma band oscillations (25–140 Hz), observed
in multi-unit activity (MUA) and local field potential (LFP) measurements (Ray and Maunsell,
2015), have been found in many brain regions (visual cortex (Gray et al., 1989; Azouz and Gray,
2000; Logothetis et al., 2001; Henrie and Shapley, 2005), auditory cortex (Brosch et al., 2002),
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somatosensory cortex (Bauer et al., 2006), parietal cortex
(Pesaran et al., 2002; Buschman and Miller, 2007; Medendorp
et al., 2007), frontal cortex (Buschman and Miller, 2007;
Gregoriou et al., 2009; Siegel et al., 2009; Sohal et al., 2009;
Canolty et al., 2010; Sigurdsson et al., 2010; van Wingerden
et al., 2010), hippocampus (Bragin et al., 1995; Csicsvari et al.,
2003; Colgin et al., 2009; Colgin, 2016), amygdala (Popescu et al.,
2009), and striatum (Van Der Meer and Redish, 2009)). Much
experimental evidence correlates gamma oscillations to behavior
and enhanced sensory or cognitive performances. For instance,
gamma dynamics has been shown to sharpen orientation tuning
in V1 and speed and direction tuning in MT (Azouz and
Gray, 2000, 2003; Frien et al., 2000; Liu and Newsome, 2006;
Womelsdorf et al., 2012). During cognitive tasks, the increases
in gamma power in the visual pathway have been shown to
correlate with attention (Fries et al., 2001, 2008). Experiments
have implicated gamma oscillations during learning (Bauer et al.,
2007) and memory (Pesaran et al., 2002). Numerical studies
have demonstrated that coherent gamma oscillations between
neuronal populations can provide temporal windows during
which information transfer can be enhanced (Womelsdorf et al.,
2007). The disruption of gamma frequency synchronization is
also concomitant with multiple brain disorders (Bressler, 2003;
Baar, 2013; McNally and McCarley, 2016; Krystal et al., 2017;
Mably and Colgin, 2018).

Many large-scale network simulations (Traub et al., 2005;
Chariker and Young, 2015) and firing rate models (Brunel and
Hakim, 1999; Keeley et al., 2019) have been used to capture
the wide range of the experimentally observed gamma band
activity. The main mechanism underlying the emergent gamma
dynamics appears to be the strong coupling between network
populations, either via synchronizing inhibition (Whittington
et al., 2000) or via competition between excitation and inhibition
(Whittington et al., 2000; Chariker and Young, 2015). However, a
theoretical account of how the collective behavior emerges from
the detailed neuronal properties, local network properties and
cortical architecture remains incomplete.

Recently, Young and collaborators have examined the
dynamical properties of gamma oscillations in a large-scale
neuronal networkmodel ofmonkey V1 (Chariker et al., 2018). To
further theoretical understanding, in Li et al. (2019),introduced
a relatively tractable stochastic model of interacting neuronal
populations designed to capture the essential network features
underlying gamma dynamics. Through numerical simulations
and analysis of three dynamical regimes (“homogeneous,”
“regular,” and “synchronized”), they identified how conductance
properties (essentially, how long after each spike the synaptic
interactions are fully felt) can regulate the emergence of gamma
frequency synchronization.

Here, we present a sequence of model reductions of the
spiking network models based on Li et al. (2019). We first present
in detail our methods on a small, homogeneous network of 100
neurons (75 excitatory and 25 inhibitory), exhibiting gamma
frequency oscillations. Inspired by Li et al. (2019) and Li and
Xu (2019), to achieve dimensional reduction, we assume that the
spiking activities during gamma oscillations and their temporally
organization aremainly governed by one simple variable, namely,

which sub-threshold neurons are only a few postsynaptic spikes
from firing. Thus, in terms of dynamical dimensions, the number
of network states is drastically reduced (although still too large
for any meaningful analytical work, since 2n is astronomical
even for n = 100). Therefore, we further coarse-grain by
keeping count of the numbers of neurons that are only a few
postsynaptic spikes from threshold. The number of effective
states is then reduced to the order of millions. By restricting
the dynamics onto this dimensionally-reduced state space, it is
now possible to make use of the classical tools of stochastic
models to analyze the emergence and statistical properties of
gamma frequency synchronization. The reduced models not only
successfully capture the key features of gamma oscillations, but
strikingly, they also reveal a simple, low-dimensional manifold
structure of the emergent dynamics.

The outline of this paper is as follows. In section 2, we present
our model reductions, i.e., the sequence of models going from
the full model, to the two-state, reduced network model and to
its coarse-grained simplification. Especially, we show the low-
dimensional manifold representing the gamma dynamics. We
discuss the connection of our work to previous studies and how
it may benefit future research of gamma dynamics in section 3.
Computational methods and technical details are provided in the
Methods section.

2. RESULTS

In spiking neuronal networks, gamma frequency oscillations
appear as temporally repeating, stochastic spiking clusters in the
firing patterns. Different mechanisms have been proposed to
explain this phenomena. As a minimal mechanism, interneuron
network gamma (ING) proposes that the gamma oscillations
can be produced by the fast interactions between inhibitory
(I) neurons alone (Whittington et al., 2000). When inhibitory
neurons have intrinsic firing rates higher than the gamma
band, they may exhibit gamma firing frequency when mutually
inhibited. ING does not require the existence of excitatory
(E) neurons but studies showed that it loses its coherence in
systems where neurons are heterogeneously driven (Wang and
Buzsáki, 1996). Another class of theories view the repeating
collective spiking clusters as the outcome of competition between
E neurons and I neurons, such as the pyramidal-interneuron
network gamma (PING, Whittington et al., 2000; Börgers and
Kopell, 2003) and recurrent excitation-inhibition (REI, Chariker
et al., 2018).

Though sharing many common qualitative features, PING
and REI provide substantially different explanations to the
formation of gamma oscillations. Most remarkably, the collective
spiking clusters in PING are usually whole-population spikes as a
result of steady external input. The E-population spikes induce I-
population spiking activities that are offset in time, and strong
enough to suppress the entire network. A new E-population
spiking event occurs after the inhibition wears off, leading to a
series of nearly periodic, whole-population oscillatory activity.

On the other hand, the REI mechanism depicts a highly
stochastic network dynamics: Driven by noisy stimulus, a few
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E-neurons crosses the threshold, and the subsequent recurrent
excitation recruit more spikes from other excitatory neurons,
leading to rapidly rising spike clusters. But this can not go
forever since a few of the inhibitory neurons are excited at the
same time, pushing the whole population to a less excitable
condition. The next collective spiking event then emerges from
the victory of excitation during its competition with inhibition.
Therefore, the important features of the transient spike clusters
are highly temporally variable, and the gamma frequency band
of the oscillation is mainly a statistical feature of the emergent
complex temporal firing patterns.

Our primary goal is to provide a better understanding of the
emergence of gamma oscillations from the interaction between
neurons in this non-linear, stochastic, and high-dimensional
context. In general, the biggest difficulty of analyzing spiking
network dynamics is its dimensionality. Consider a network of
N neurons, the number of possible states grows exponentially as
N → ∞, no matter if we use a single-neuron model as complex
as the Hodgkin-Huxley (Hodgkin and Huxley, 1952) or as simple
as binary-state (Cowan, 1991). Previously, many attempts have
been made for model reduction by capturing collective network
dynamics in specific dynamical regimes. Successful examples
include kinetic theories (Cai et al., 2006) for mean-field firing
patterns, statistical field theories (Buice and Chow, 2013) for
higher-order correlations, Wilson-Cowan neural field model
(Wilson and Cowan, 1972, 1973) for spatial-temporal patterns, to
name a few. In this study, our reduced models are developed with
similar motivations to capture gamma oscillations. Generally,
models incorporating many biologically realistic details can
be very complicated; The reduced models are much easier to
analyze, but some of the neglected information can lead to biases
in many aspects. Here, we aim for a balance between realism
and abstraction. Specifically, we present a sequence of reduced
models, between which the connections are well defined (and can
be mathematically analyzed in future studies). Importantly, we
find that even the coarsest model preserves important features
and statistics of the gamma oscillations found in the full model.

Our reduced models are based on the integrate-and-fire (IF)
model, which is widely employed in previous models of spiking
networks (see Methods). In a recent study, gamma oscillations
have been found emerging from the simulation of a large-scale IF
network model of layer 4Cα of V1 (Chariker et al., 2018). Later
theoretical studies suggest that gamma oscillations in different
spatial regions decorrelate quickly on the scale of a couple of
hypercolumns, echoing experimental observations that gamma
oscillation is very local in cortex (Menon et al., 1996; Lee et al.,
2003; Goddard et al., 2012). Therefore, we first focus on a small
homogeneous network with 75 excitatory neurons (E) and 25
inhibitory neurons (I) as an analogy of an orientation-preference
domain of a hypercolumn in V1.

2.1. Reduced Models Captures Statistics of
Gamma Oscillations
2.1.1. A Markovian Intergrate-and-Fire Network
We start with theMarkovian integrate-and-fire model (MIF) first
proposed in Li et al. (2019), and hereafter referred to as the

“full model." As an analogy of the conventional IF model (see
Methods), the MIF brings us two additional conveniences: First,
the discretized states of Markovian dynamics make theoretical
analysis easier as the probability flow from one state to another
is now straightforward; Second, the Markov properties of the
MIF enable the computation of the invariant measure of gamma
oscillations directly from the probability transition matrix.

Our MIF model network is composed of 100 interacting
neurons (75 E-neurons and 25 I-neurons) driven by external
Poissonian stimulus (Figure 1A). The state of neuron i is
described by three variables (vi,HE

i ,H
I
i ), where vi represents

individual membrane potentials and H
{E,I}
i are analogies of the

E and I conductances (see below). We use the size of external
kicks to discretize the membrane potential, and let vi range from
VI = −66, the reversal potential of inhibitory synapses, to
V th = 100, the spiking threshold. Immediately after reaching
V th, vi enters the refractory state R, and, at the same time,
sends a spike to its postsynaptic targets. After an exponentially
distributed waiting-time τR, vi resets to the rest potentialVr = 0.
The “integrate” part of MIF is separated into two components,
external and recurrent. Each external kick increases vi by 1. To

model the effects of recurrent network spikes, we use H
{E,I}
i to

denote the number of postsynaptic spikes (forming “pools” of
pending-kicks) received by neuron i that has not yet taken effect.
When receiving an {E, I}-spike, the corresponding pending-kick
pool, H{E,I}

i , increases by 1. Each postsynaptic spike affects vi
independently, and after an exponentially distributed waiting-
time (i.e., the synaptic time-scale) τ {E,I}, increase or decrease vi
(depending on {E, I} of the presynaptic neuron). The specific
increment/decrement depends on the synaptic strength and the
state of vi. The connections between neurons are homogeneous:
Whether a spike released by neuron i is received by neurons j is
determined by an independent coin flip, whose probability only
depends on the type of neuron i and j. We leave the details and
choices of parameters to Methods.

This 100-neuron MIF network exhibits gamma-band
oscillations as demonstrated in Li et al. (2019) (Figure 2). By
varying the synaptic time scales τ {E,I}, we examine three regimes
with different degrees of synchrony: homogeneous (“Hom"),
regular (“Reg"), and synchronized (“Syn"). (Specifically, we
fix the expectation of the waiting time for I-kicks (τ I) and
manipulate separately the expectation of waiting time for
E-spikes on E and I neurons, τEE and τ IE; for full details, see
Methods). In the raster plot of “Hom” regime, the MIF network
produces a firing pattern in which spikes do not exhibit strong
temporal correlations (Figure 2A, top). (This is also verified by
the spike-time correlations conditioned on each {E, I}-spike;
see Figure 2A, bottom). Meanwhile, no strong spectral density
peak is seen in the spectrogram (Figure 2A, middle). In the
“Reg" regime, however, spikes begin to cluster in time as multiple
firing events (hereafter, MFEs) and exhibit stronger spike-time
correlations (Rangan and Young, 2013a,b). Namely, MFE is a
temporally transient phenomenon lying between homogeneity
and total synchrony, where a part (but not all) of the neuronal
population fires during a relatively short time window, as widely
reported in previous experimental and modeling studies (Beggs
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FIGURE 1 | Structures and important features of 3 models. (A) The structure of the full Markovian integrate-and-fire network. (B) The structure of the reduced

network model, where the membrane potentials only take values in {Base, Gate}. (C) The structure of coarse grained model. In this model the pending E-kick pools

for every neuron are merged in to one for the whole network, and so are the pending I-kick pools.

and Plenz, 2003; Churchland et al., 2010; Yu and Ferster, 2010;
Plenz et al., 2011; Shew et al., 2011; Yu et al., 2011). Affected
by MFEs, the mass of the spectral density is primarily located
in the gamma band, especially around 40–60 Hz (Figure 2B).
Many more and stronger synchronized firing patterns, higher
spike-time correlations, and stronger gamma-band spectral
peaks are observed in the “Syn" regime. These dynamics and
statistics are consistent with the results of Li et al. (2019) and in
IF neuronal network simulations (Zhang et al., 2014a,b; Zhang
and Rangan, 2015). Furthermore, the gamma-band spectrograms
are comparable with experimental studies (Xing et al., 2012).

We note that although our MIF network only consists
of N = 100 neurons, the number of states in the Markov
chain is (168 · nHE · nHI )N , where n{HE ,HI} are the largest
possible sizes of the pending spike pools (see Methods
for precise definition). Therefore, it is computationally
unrealistic to do any meaningful analytical work to
understand the dynamics, especially how gamma oscillations
can emerge from the probability flows between different
states. Therefore, we regard this MIF network as the “full
model," and apply dimensional reduction methods for
further analysis.
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FIGURE 2 | Gamma oscillation exhibited by the MIF network in three different regimes. (A) Homogeneous regime (“Hom"). Top: Raster plots of all E-neurons (red) and

I-neurons (blue) with firing rates noted in title. Middle: The spectrogram of the firing pattern exhibiting low density in the gamma band (30–80 Hz). Bottom: The spiking

correlation diagrams, which are binned on the distribution of relative spike timing conditioned on E or I spike at t = 0. (B,C) Same as (A). The regular (“Reg") and

synchronized (“Syn") regimes exhibit more synchronous firing patterns and stronger gamma-band activity.
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2.1.2. A Reduced Network With Two-State Neurons
First, we introduce a reduced network (RN) consisting of two-
state neurons, i.e., RN model has the same setup as the MIF
network except that the membrane potentials only have two
states: base and gate (Figure 1B). From the perspective of the
full model, a neuron is deemed as a base or gate neuron by how
far it is away from firing. Specifically, we set a cutoff Vc below
the threshold V th, and neuron i is regarded as a gate neuron if
vi > Vc, otherwise it is a base neuron (including vi ≤ Vc and
vi = R). Neuron i flips between the base and gate states when

1. vi crosses the cutoff Vc, or
2. Neuron i fires and enters the refractory stateR.

However, the reduction to two-state neurons immediately raises
a question: Without the consecutive discrete states between
[VI ,V th], how can we represent the effect of (external, E/I-) kicks
on individual neurons when vi only takes two possible states?

Consider an E-neuron i in the gate state, i.e., vi > Vc in the
corresponding MIF network. Since we do not know the exact
value a priori, vi can take any value between [Vc,V th] with a
probability determined by the empirical distribution of the whole
E-population. When an E-kick takes effect and increases vi by a
synaptic strength of SEE, neuron i fires and changes state to “base"
if and only if vi is located in the excitable region (V th − SEE,V th],
otherwise it stays in the gate state (and vi ∈ [Vc,V th − SEE)).
Therefore, a single E-kick has a probability

PGEE = P
(

vi ∈ (V th − SEE,V
th]|vi ∈ (Vc,V th]

)

= P(vi ∈ (V th − SEE,V th])

P(vi ∈ (Vc,V th])
, (1)

to excite a gate E-neuron, leading to its spike and transition to
the base state. That is, PGEE is the transition probability of neuron
i in the excitable region, conditioned on that neuron i is a gate
neuron. A priori, we do not have the full distribution of neuronal
states, therefore, in order to close the RNmodel, we use statistical
learning methods by inferring PGEE from a long-term simulation
of the full MIF network. Likewise, we acquire all other transition
possibilities induced by kicks (see Methods).

This reduction of classifying spiking neurons into two states
is based on one simple assumption: The emergence of MFEs
in the collective dynamics is mostly sensitive to one variable,
i.e., the number of subthreshold neurons are only a few spikes
from firing (gate neurons). On the other hand, the distribution
of neurons with lower membrane potentials (base neurons) is
less immediately relevant since it is much less possible for them
to generate spikes in the next few milliseconds. Therefore, the
initiation and maintenance of gamma oscillations are dominated
by the probability flow between gate and base states.

Here we remark that, at first glance, the need to perform
simulations of the full model to learn transition probabilities
defeats the main purpose of our model reduction. However,
the full-model simulation can be reused when the sub-threshold
voltage distributions of different parameter sets share similar
geometrical features. For example, in the following model
reductions, full-model simulation for the “Syn" regime were

exploited to train the RN models for the “Hom" and “Reg"
regimes. The reason is that these regimes only differ in the
synaptic time scales. The main dynamical interactions, mediated
through E/I-kicks, excite/inhibit the neuron populations in
similar fashion, thus facilitating our model reductions.

Evenwith such a drastic simplification, the RNmodel provides
remarkably good approximation of dynamics produced by the
MIF network (Figure 3), which is verified by raster plots, firing
rates, and spectrum densities similar to those of the full model
in Figure 2. On the other hand, we notice that the spike-time
correlations in the “Syn" regime are indeed slightly lower than the
corresponding value in the full model. This is not very surprising:
When the spiking pattern is synchronized, the dynamics is
more sensitive to the details of the probability distribution of
neurons in the excitable region since one spike may trigger
more spikes followed by other neurons. One may, of course,
consider using more information to describe the full distribution
of the membrane potentials (perhaps by using three or more
states instead of two). Though a more detailed models may
provide us with better numerical approximations, our primary
goal of capturing the key features of gamma oscillation has
been well served by the current version of the RN model with
two-state neurons.

Though radically simplified, our RN model is still a Markov
chain, with (2 · nHE · nHI )N states. However, the setup and
success of the RN model provide important insights for further
model reduction.

2.1.3. A Coarse-Grained Approximation
When we infer the transition probabilities between gate and
base states, we are uncertain of the full distribution of vi in
the network (besides the number of neurons in base and gate
states). Therefore, the success of the RN model suggests that
we may think of the transition probabilities as functions of the
number of {E, I} neurons in each state: NGE, NGI , NBE, NBI .
Thus, the core idea of further simplifying by coarse-grained (CG)
approximation is this: Instead of thinking about the state of each
individual neuron, we study the state of population statistics.
Below we summarize the setup of our CG model and leave the
details to Methods.

Let us first consider the pending-kick pools of a single neuron.
Take the I-to-E and I-to-I projections as an example: Because
of the homogeneity of the network, for an I-spike, each of its
postsynaptic neuron receives it independently with a probability
that depends only on the specific neuronal type {E, I}. In addition,
each spike takes effect independently, with the same waiting
time distribution (exponential with mean τ I). Therefore, this is
equivalent to a collective I-kick pool of size HI , representing
the sum of all I-kick pools in the entire network. In this pool,
each pending-kick takes effect independently and is randomly
distributed to a specific neuron with a probability depending
only on its E/I type. With similar considerations, the E-kick
pools are also merged into one at a size HE. However, since
(τEE, τ IE) are separately manipulated in the full model, we have
to ignore the subtle differences between the consumption rates of
pending E-kicks on E and I neurons. Specifically, we assume that
a constant portion of HE are distributed to E (I) neurons (i.e.,
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FIGURE 3 | Gamma oscillation captured by the reduced network consisting of two-state neurons. (A–C) Same regimes and statistics investigated in Figure 2.
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HEE = aEE · HE. See Methods), which introduces a bias in our
CG model.

Since each neuron is driven by the same, coarse-grained {E, I}-
kick pools, due to the interchangeability of I neurons, they are
now only differentiated by their current state (base or gate).
Similarly, the information of the state of every I neuron is now
represented by the Numbers (NBI ,NGI). Since the total number
of I neurons is fixed, we only needNGI . These considerations also
apply to the E neurons. Thus, our CG model becomes a Markov
chain with four variables:

(NGE,NGI ,H
E,HI). (2)

Kicks taking effect may change NGE and NGI , and spikes released
by neurons increaseHE andHI . The CGmodel containsNE ·NI ·
NHE · NHI states (NHE = nHE · N, NHI = nHI · N). For each
state, there are at most 12 possible transitions to other states (see
Methods). Therefore, the CGmodel becomes an O(N4) problem,
allowing us to analyze the dynamics in detail.

The CG model is a natural simplification of the RN model,
and it is reasonable to expect CG to capture the main features
of gamma oscillations. Indeed, we find that in all three regimes
we considered, the behaviors of CG model are in well agreement
with both the MIF and RN models (Figure 4). Note that, since
we do not track the dynamics of individual neurons in CG, the
(fake) raster plots are generated by randomly assigning spikes
to neurons.

2.2. Gamma Dynamical Features in
Reduced Models
The reduced models are not designed to reproduce every detail
of the full model. But how well can our model reduction capture
the dynamics and key statistical features? In addition to the
firing rates, spectral densities, and spike-time correlations for
the three selected regimes, we examine the RN and CG models
when we change parameters continuously. In this section, we
test two dynamical features observed in the full, MIF model. For
each parameter set involved, we numerically simulate each of
the three models (MIF, RN, and CG), for 10 s each, and divide
the dynamics into 10 batches. We then show the batch means
and standard errors of the statistics collected from the batches
(Figure 5).

First, when the frequency of the external Poisson stimulus (λ)
increases, MFEs appear more frequently in the firing patterns.
According to Chariker et al. (2018), a new MFE is initiated by
excitatory stimulation or by chance when the inhibition from
the last MFE fades. Therefore, stronger external stimuli result
in faster initiation of a new MFE. From the firing patterns of
our three models, we use a spike cluster detection algorithm
(Chariker and Young, 2015) to recognize individual MFEs (see
Methods) and examine how their emergence is regulated by
external stimulus. We find that the RN and CG models capture
the same trend exhibited in the full model (Figure 5A), namely,
the average waiting time of MFE (1/MFE frequency) is linearly
related to the external kicks (λ−1). However, while the trend is
captured semi-quantitatively, the reduced models exhibit lower
MFE frequencies (or higher MFE waiting time in Figure 5A, red

and yellow). On the other hand, we find that the MFEs produced
by the RN and CG models have longer duration than the MIF
model (see Supplementary Materials). These results suggest
that, on average, the reduced models have slower probability
flows between states.

Second, when the ratio τEE

τ I
becomes smaller, the E-kicks take

effect on E neurons relatively faster, and thus, the recurrent
network excitation recruits other E-spikes on a shorter time scale.
Therefore, the whole network exhibits more synchronized firing
patterns. This phenomena has been observed in many previous
computational models (see, for instance, Keeley et al., 2019), and
also verified by the comparison between the three regimes in
this paper. Here we go beyond these three regime and change
τEE continuously while fixing τ I (Figure 5B). In the full model,
the degree of synchrony (measured by spike synchrony index,
see Methods) exhibits a clear decreasing trend when τEE goes
up, which is also well-echoed by the RN model. For the CG
model, however, although the same trend is captured, the degree
of synchrony is generally higher than in the full model. This
bias is introduced when we merge all E-kick pools into one and

assume HEE

HIE is a constant: The underestimation of HIE delays
the spikes of I neurons and the MFEs are artificially prolonged,
leading to higher synchrony. To verify this point, we carry out a
CG model reduction with five variables (NGE,NGI ,HEE,HIE,HI)
by keeping separately the pendìng E-kick pools of the E and I
populations. This five-variable CG model indeed exhibits much
more similar dynamics to full model, including the degree
of synchrony (see Supplementary Materials). However, in this
study, we choose to focus on the simpler four-variable CG model
to facilitate the computation of invariant probability distribution
(see section 2.3).

2.3. Gamma Oscillations Remain Near a
Low-Dimensional Manifold
One of our most remarkable finding is that the emergent gamma
oscillations from the “Syn" regime in the full model stay near a
low-dimensional manifold. Inspired by the fact that the gamma
dynamics is successfully captured by the dynamics of only four
variables, we simulate the full model in the “Syn" regime, and
then project the trajectories onto the 4-dimensional state space
suggested by the success of our CG model, i.e., we collect
the statistics (NGE,NGI ,HE,HI) from the full model dynamics
(Figure 6A; see also Figure 7A).

Since NGE and NGI are positively correlated (Figure 6A,
Middle; See also Figure 7A, bottom panel), we examine the three-
dimensional subspace of (NGE,HE,HI). Strikingly, the full model
trajectories suggest a low-dimensional dynamical structure of
gamma oscillations. This observation is also verified by the
mass estimation from the trajectories collected from a long-
time (50 s) simulation of the full model (Figure 6B). On the
other hand, we also simulate the CG model for 10 s and find
similar trajectories in state space (Figure 6C), accounting for
its successful reproduction of the emergent gamma dynamics.
Since the CG model only consists of O(N4) states, its invariant
probability distribution becomes computable from the Markov
transition probabilities matrix. Here we present the mass of the
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FIGURE 4 | Gamma oscillation captured by the coarse-grained model. (A–C) Same regimes and statistics investigated in Figures 1, 2. The fake raster plots are

produced by randomly assigning spikes to each neuron.
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FIGURE 5 | Two gamma features captured by reduced models. (A) MFE waiting time linearly related to external stimulation waiting time. Left: Syn regime; Right: Reg

regime. (B) Degree of synchrony decreases when τEE increases.

distribution after we further “shrink" the CG model and reduce
the number of states to millions (Figure 6D). See Methods for
the “shrunk" CG model). The invariant probability distribution
not only displays similar mass of density as the full model,
which the trajectories of the full model remain near (see
Supplementary Materials).

The trajectories and the probability distributions of both
the full MIF and corresponding CG models reveal a two-
dimensional manifold structure with a certain thickness in the
orthogonal direction (Figures 6A–D). To verify this point, we
carry out a local dimensionality estimation of the full model
data (see Methods). Notably, the manifold exhibits a nearly two-
dimensional local structure at most of the places (Figure 6E,
cyan and green parts), except for a region with low HE,HI and
low-to-medium NGE (Figure 6E, red part. 0 < NGE < 30,
HE < 20, HI < 200). The regions with high dimensionality
correspond to the inter-MFE periods (where both number of gate
neurons and pending kick pools are small, 0 < NGE < 15)
and the initiation of MFEs (where 15 < NGE < 30). This is
not very surprising: Inter-MFE periods are highly affected by
the external stimuli, and the size of each MFE depends on how
many E-neurons are recurrently recruited by the E-spikes at the
very beginning. Both processes are highly stochastic, resulting
into higher dimensionalities. We note that, this local two-
dimensional structure is also verified by the results of local linear
embedding (LLE). When we apply LLE to the 10-s full model
trajectories (from four-dimensional to three-dimensional), they
display a two-dimensional saddle-like manifold as well, in the
three-dimensional LLE space (Figure 6F).

The trajectories of the MIF model give us a clear view of
the temporal organization of the emergent gamma dynamics.
First of all, we observed that (NGE,NGI) are strongly positively
correlated (Figure 7A, bottom panel), although NGI rises slightly
faster than NGE at the initiation of each MFE. In other words,
the probability flow of membrane potential distribution of E
and I populations are mostly temporally synchronized, which is
also observed in previous computational models (Rangan and

Young, 2013a; Zhang and Rangan, 2015; Chariker et al., 2018).
In the three-dimensional subspace of (NGE,HE,HI), the low-
dimensional manifolds help us interpret the gamma dynamics
as follows:

1. At the beginning of each MFE, due to the external
stimulus and faded recurrent inhibition, the membrane
potentials moves up [represented by increasing (NGE,NGI)
Figures 6A–D, Middle]. Note thatNGI moves up slightly faster
due to the lower I-to-I connectivity compared to I-to-E.

2. Some E neurons fire, possibly eliciting more spikes from other
E neurons, so HE increases fast during this phase.

3. I neurons are excited byHE at the same time, andHI increases
as well. Note that HE is always consumed faster due to
smaller τE. In this phase, HE attains its peak while HI still
increases rapidly.

4. HE is then consumed and the system is now dominated by
the inhibition brought by HI leading to the end of the MFE.
High HI brings down (NGE,NGI), and terminating the MFE,
leading to the inter-MFE-period. The next MFE is unlikely to
start until HI is mostly consumed.

2.4. Dimensionality and Entropy
As we have seen above, the full MIF is capable of producing
highly heterogeneous dynamical regimes. In particular, Figure 2
illustrated how it is possible to generate gamma oscillations
from nearly homogeneous firing with the change of the
excitatory time-scale (the expectation of waiting time for E-
spikes). While some of the features of the emergent gamma
oscillations may be attributed to and well-modeled by PING
ODE models (with or without noise), the MIF model is capable
of generated even more richer network dynamics seen in
numerical simulations (see, for instance, Chariker and Young,
2015; Zhang and Rangan, 2015; Chariker et al., 2018; Zhang
et al., 2019) and inferred from experimental data (e.g., Xing
et al., 2012). Here we would like to demonstrate some of the
other possible heterogeneous dynamical regimes, with diverse
and wide-ranging dimensionalities. Furthermore, as the MIF
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FIGURE 6 | Gamma dynamics restricted on a low-dimensional manifold. (A) The trajectories of the full model (Syn regime) presented in the state space of

(NGE ,NGI,H
E ,HI ) (blue curves, directions indicated by arrows). Left: The projection on subspace (NGE ,H

E ,HI ); Middle: The projection on subspace (NGE ,NGI ); Right:

The projection on subspace (NGE ,H
I). (B–D) depict the same subspaces as (A). (B) Mass of trajectory density of the full model. (C) The trajectories of the CG model

(Syn regime). (D) The stationary probability distribution of CG model. (E) Local dimensionality of data for the full model trajectories, displayed in the same view as (A).

(F) The full model trajectories are local linearly embedded in a three-dimensional space.
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FIGURE 7 | A 2-s simulation of the full model in the Syn regime. (A) Top: Raster plot of E (red) and I (blue) spikes showing gamma-band multiple firing events. Middle:

Four types of pending spike pools (HEE ,HIE ,HEI,HII). The sizes of two E pending spike pools are mostly proportional to each other in the Syn regime. Bottom: The

proportion of gate neurons in both E and I populations. (B) MFEs are recognized by the spiking volley detection algorithm. Firing events clustering together exhibit high

temporal spike densities (blue peaks) and hence labeled as MFEs (yellow bars).

explicitly accounts for the effects of randomness in the recurrent
network dynamics, therefore, to a large extent, the richness of
dynamics can be measured by entropy.

Figure 8 explores the various dynamics regimes by changing
the excitatory time-scale (Figure 8A), the recurrent synaptic
fluctuations (Figure 8B), and the refractory period (Figure 8C).
The set of parameter we investigated in (Figures 8B,C) is the
same as the Syn regime except for the ones that are varied.
In Figure 8A, we project the dynamical trajectories of Figure 2
on the (subspace of the full) state space (namely, the three
regimes Syn, Reg, and Hom, from left to right) to characterize
and visualize their invariant measures. The change from nearly
homogeneous dynamics to stochastic oscillatory gamma is
accompanied by an decrease in dimensionality on the invariant
measure and its enlargement within state space. This indicates,
as one can observe from Figure 2, that the network dynamics is

transformed from noisy irregular firing patterns to nearly regular
gamma cycles. Not surprisingly, this is also concomitant with
an decrease in dynamical entropy. To compare with PING-type
ODE models, we simulated the model of Keeley et al. (2019).
Even with the addition of stochasticity, the ODE models have
dimensions less than 2.5 and entropy less than 9.

Figure 8B demonstrates the effects of the stochasticity in the
recurrent synaptic coupling. As we move from left to right,
the mean synaptic coupling remains constant (SQQ

′ × PQQ
′
,

Q,Q′ ∈ {E, I}) while the synaptic fluctuations are increased
(P = 1, 0.5, 0.25). Other parameters remain unchanged from
the Syn regime. Therefore, the system with smallest synaptic
fluctuation (P = 1, left) (Figure 8B left) exhibit the most regular
dynamics and much larger gamma cycles than others (indicate
by the largest HE,I numbers). In this case, a small synaptic
fluctuation can lead to network synchronization since all neurons
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FIGURE 8 | Local dimensionality of more regimes showing the diversity of full model dynamics in different regimes. Entropy S of the invariant probability distributions

are indicated in the title of each panel. (A) Varying τEE parameter. Left to right: Syn, Reg and Hom regimes. (B) Setting all connecting probabilities identical. Left to

right: 1, 0.5m and 0.25 with S× P conserved. (C)Varying τR parameter of E and I neurons. Left to right: (τR

E , τR

I ) = (2.5, 0.5), (2.5, 2.5), and (0.5, 2.5). Other

parameters of (B,C) are the same as Syn regime.

receives similar input when one of the presynaptic neuron fires.
On the other hand, the case with largest synaptic fluctuation
(P = 0.25, right) yield smaller and more irregular gamma cycles,
accompanied by an increase of dimensionality and entropy of the
invariant measures.

Finally, in Figure 8C, we explore the effects of the neuronal
refractory periods. As the high-dimensional dynamics emerges
from the competition of network excitation and inhibition, the
absolute and relative lengths of the refractory periods create
a rich assortment of complicated dynamics. Notably, we find
that smaller refractory periods for I neurons (left, τR

E > τR

I )
incur more regular gamma dynamics (hence, smaller entropy)
and larger gamma cycles as well, compared to equal or larger
ones (middle, τR

E = τR

I ; right τR

E < τR

I ). To the best of our
knowledge, these phenomena have not been discussed by any
previous work using ODEmodels of gamma oscillations, possibly

due to the difficulty to reflect these biological details of spiking
network models in ODE models with only a few variables.

3. DISCUSSION

The vast range of observed neuronal network dynamics presents
a tremendous challenge to systems neurophysiologists, data
analysts, and computational neuroscientists. Evermore detailed
neurophysiological datasets and large-scale neuronal network
simulations reveal dynamical interactions on multiple spatial
and temporal scales that also participate in essential brain
functions. The observed dynamics exhibits rapid, stochastic
fluctuations incorporating strong, transient correlations, quite
possibly leading to its complexity. Unfortunately, the emergent
fluctuating activity cannot effectively be described by standard
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ensemble averages, as many population methods cannot capture
many of the low order statistics associated with the observed
dynamical regimes.

The diversity and hierarchy of experimentally observed
dynamics in the brain poses this immediate question: What
concise, unified mathematical framework can reproduce the co-
existence of transient, heterogeneous dynamical states, emerging
from a high-dimensional, strongly recurrent neuronal network.
Here we focus on gamma frequency oscillations because of their
role underlying the transient fluctuations within the stationary
states of complex neuronal networks (see, for instance, Buzsáki
and Wang, 2012; Siegel et al., 2012), and the belief that they are
significant contributors to neural information processing (Fries,
2009; Wang, 2010).

Important theoretical progress has been made by coarse
graining sparsely coupled networks (see, for instance, Brunel
and Hakim, 1999; Cai et al., 2006, and references therein).
These approaches were able to capture spatio-temporal network
dynamics dominated by mean-field and uncorrelated synaptic
fluctuations. Also influential were the studies focusing on weakly-
coupled oscillators. Recent work has made significant theoretical
advances by mapping populations of the quadratic IF neurons
and the so-called theta neurons to systems of Montbrió et al.
(2015) and Laing (2018), where the tools of phase oscillator
theory (Ashwin et al., 2016; Bick et al., 2020) can be used to
give insight into network synchronization.We view our approach
here as complementary to these studies.

Here we demonstrate that, by starting with a Markovian IF
model, we can bring the tools of classical Markov processes to
bear on stochastic gamma oscillations. Using amodel first studied
by Li et al. (2019), we show that we can dimensionally reduce
and coarse-grain the model network, first, to a two-state reduced
network model and then, to a model of transition probabilities
between the number of neurons in the two-state, reduced model.
The full repertoire of network dynamics between homogeneity
and synchrony is faithfully reproduced by our reduced models.
Furthermore, by preserving the Markovian dynamics at each
step, and combining with data-driven approaches, we were able
to reveal a series of invariant manifolds underlying different
type of gamma-band dynamics observed in large-scale numerical
simulations. More regular gamma cycles are reflected by the local
two-dimensional geometries on the invariant manifolds.

A tremendous amount of experimental and theoretical
literature implicates oscillatory, coherent neural activity as
a crucial element of cognition. Here we provided a simple
framework through which collective behavior of populations of
neurons can be coarse-grained to counting statistics of neurons
in specific neuronal states. This dynamical perspective not only
can afford a concise handle for the systems neuroscientists, with
experimental access to neuronal circuits and populations, but
also to the theoreticians, who may wish to build computational
and information processing frameworks on top of these coarse-
grained, low-dimensional representations.

While we have detailed our methodology for a system with
a small number of neurons and homogeneous connectivities,
preliminary studies show that we can scale up to much
larger networks (see Supplementary Information). We can
extend our framework to networks with slowly varying spatial

inhomogeneities (e.g., V1 orientation hypercolumns coupled
by long-range excitatory connections) and in capturing
interneuronal correlations in predominantly feedforward
networks, like synfire chains (Diesmann et al., 1999; Wang et al.,
2016; Xiao et al., 2017), with each local, nearly homogeneous
population described by CG modules (of 2–3 states plus
the relevant pending-spike pools). At the same time, we are
examining data-driven and machine learning approaches to
estimate the various states and transition probabilities directly
from numerical simulations, with the hope of applying to
neurophysiological data sets. Finally, we are already looking
to incorporate higher-order structural motifs in the network
connectivity. Higher-order motifs (Song et al., 2005) are likely
to substantially influence the types of dynamical correlations
within complex networks, and consequently, activate a multitude
of spatio-temporal spiking patterns that may have important
consequences for information processing and coding in the
mammalian brain (Zhao et al., 2011; Hu et al., 2013).

4. METHODS

4.1. Integrate-and-Fire Network
Consider anN-neuron Integrate-and-Fire (IF) neuronal network
with NE excitatory neurons (E) and NI inhibitory neurons (I),
where the membrane potential (vi) of each neuron is driven by a
sum of synaptic currents:

dvi
dt

=
(

giext + giE
)

·
(

VE−v
i

)

+ giI
(

VI−v
i

)

,

giext = Siext
∑

µiext

GE(t − tµext
i
),

giE =
∑

j∈E
j 6=i

SijE
∑

µjE

GE(t − tµE
j
), giI =

∑

j∈I
j 6=i

SijI
∑

µjI

GI(t − tµI
j
),

(3)

where g
{ext,E,I}
i are the external, excitatory and inhibitory

conductances of neuron i. Each neuron receives excitatory
spiking stimulus from an external source (µext

i ) and other

excitatory/inhibitory neurons in the network µ
{E,I}
j , where the

strength of synaptic couplings are represented by Sexti and S
{E,I}
ij ,

respectively. A spike is released by neuron i when its membrane
potential vi reaches the threshold V th. After this, neuron i
immediately enters the refractory period, and remains there for
a fixed time of τR before resetting to rest Vr . It is conventional
in many previous studies to choose V th = 1 and Vr = 0 (Cai
et al., 2006). Accordingly, VE = 14/3 and VI = −2/3 are the
excitatory and inhibitory reversal potentials. Each spike changes
the postsynaptic conductance with a Green’s function,

GE(t) = 1

τE
e−t/τEh(t),

GI(t) = 1

τ I
e−t/τ Ih(t),

(4)

where h(t) is the Heaviside function. The time constants, τ {E,I},
model the time scale of conductances of the excitatory and
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inhibitory synapses [such as AMPA and GABA (Gerstner et al.,
2014)].

While Equation (3) can model a network with arbitrary
connectivity structure, in this paper, we focus on homogeneous
networks. That is to say, whether certain spike released by a
neuron of type Q is received by another neuron of type Q′ is only
determined by an independent coin flip with a probability PQ′Q,

where Q,Q′ ∈ {E, I}. Furthermore, S{E,I}ij are also considered as
constants independent of i, j.

Three different levels of models are illustrated below. The
Markovian integrate-and-fire network approximates Equation (3)
with a Markov process, and the following reduced network and
coarse-grained model are reductions of the full Markovian model.

4.2. Full Model: A Markovian
Integrate-and-Fire Network
Following a previous study (Li et al., 2019), we rewrite
Equation (3) as a Markov process to facilitate theoretical analysis.
Therefore, we need to minimize the effects of the memory
terms and discretize membrane potentials and conductances.
Specifically, vi takes values in

Ŵ : =
{

VI ,VI + 1, . . . ,Vr − 1,Vr ,Vr + 1, . . . ,V th
}

∪ {R}, (5)

To be consistent with the IF network (3), we choose VI = −66,
Vr = 0, and V th = 100. As before, vi enters the refractory state
R immediately after reachingV th. However, in this Markovian IF
(MIF) network, the total time spent in R is no longer fixed, but
an exponential-distributed random variable τR.

Each neuron receives the external input as an independent
Poisson process with rate λ{E,I}, and vi goes up by 1 when
an external kick arrives. On the other hand, the synaptic

conductances of each neuron g
{E,I}
i are replaced by “pending-

kick pools," H
{E,I}
i . Consider excitatory spikes as an example:

Instead of updating gEi with Green’s functions when neuron i
receives an E-spike, we add the new spike to an existing spike pool
HE
i . Each spike in the pool will affect vi independently after an

exponentially-distributed waiting time τE. HE
i is the number of

spikes has not taken effect yet. Therefore, for the a sequence of E-
spikes received by neuron i, it is not hard to see that E[HE

i (t)] =
E[gEi (t)].

How each spike changes vi is determined by the type of the
spike (Q′), the type of neuron i (Q), and the state of vi. When
a spike takes effect, the membrane potential stays unchanged if
vi = R, otherwise vi may jump up (for an E-spike) or down (for
an I-spike). On the other hand, the size of each jump depends on
the membrane potential, vi, and the synaptic coupling strengths,
SQQ′ . For an E-spike, vi increases by SQE. For an I-spike, however,
the size of the decrement is (vi−VI )/(V th−VI ) · SQI . The difference
in the effects of {E, I}-spikes is due to the relative values of the
reversal potentials. The current induced by gIi is sensitive to vi
while the currents induced by gEi is much less sensitive, i.e., in
Equation (3):

0 ≤ |vi − VI | ≤ 5

3
,

11

3
≤ |vi − VE| ≤ 16

3
(6)

In our MIF network, we take most of the system (synaptic and
stimulus) parameters directly from Li et al. (2019), but modified a
few to accommodate the smaller network studied here (NE = 75
vs. NE = 300 ∼ 1000 in Li et al., 2019). The parameters are
summarized below:

• Frequencies of external input: λE = λI = 7000 Hz;
• Synaptic strength: SEE = SEI = SII = 20, and SIE = 8;
• Probability of spike projections: PEE = 0.15, PIE = PEI = 0.5,

and PII = 0.4;
• Synaptic time-scales: τ I = 4.5 ms. τE < τ I to reflect

the fact that AMPA is faster than GABA. We use different
choices of τE for regimes implying different dynamics (all
indicated in ms):

1. Homogeneous (“Hom"): τEE = 4, τ IE = 1.2,
2. Regular (“Reg"): τEE = 1.7, τ IE = 1.2,
3. Synchronized (“Syn"): τEE = 1.4, τ IE = 1.2.

4.3. Reduced Network Consisting of
Two-State Neurons
The reduced network (RN) is a direct reduction of the MIF
network by reducing the size of the state space for membrane
potentials. In RN, each neuron i is a two-state neuron flipping
between “base" or “gate" states, i.e., instead of taking values in
the state space Ŵ, now vi ∈ Ŵ2 = {B,G}. A neuron in the MIF
network is deemed “base" or “gate" depending on how likely it is
going to fire in the next couple of millisecond: Consider a certain
cutoff Vc ∈ Ŵ, neuron i is a gate neuron if vi ≥ Vc since it
is closer to the threshold and is only a couple of E-kicks away
from spiking. Otherwise, neuron i is a base neuron if vi < Vc or
vi = R. Therefore, a flip from base to gate can take place when an
E-spike or external stimuli takes effect and vi crosses Vc from the
lower side; on the other hand, a flip from gate to base may be due
to vi crossing Vc from the higher side when (1) an I-spike takes
effect, or (2) the neuron fires and enters the refractory period.

The network with two-state neurons is reduced from the
MIF network by combining states together, but generally we do
not expect the full MIF model as a lumpable Markov process
(Tian and Kannan, 2006). Therefore, the appropriate transition
probability between the base and gate states should be carefully
estimated so that the RN can correctly capture the dynamics of
theMIF network. Since the flip between states can only take place
after certain spikes, the possibilities are:

• Effect of external stimuli: When a kick arrives, a base {E, I}
neuron will become a gate {E, I} neuron with probability
{PBEex , PBIex }, while a gate {E, I} neuron will fire and become a
base {E, I} neuron with probability {PGEex , PGIex }.

• Effects of E-kicks: Similar types of transitions here but
different probabilities due to different sizes of kicks:
{PGEE , PGIE , PBIE , PBEE }.

• Effects of I-kicks: The I-kicks do not have any effect on a base
neuron. But I-kicks will depress a gate neuron to a base neuron
with probabilities {PGEI , PGII }.

All transition probabilities listed above are time-dependent
and determined by the distribution of membrane potentials
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of neurons in the network. As a first approximation, we can
collect their statistics from a long-time simulation of the MIF
network. Here we illustrate how to compute PBEE for example, and
everything else follows. Consider the distribution of membrane
potentials of E-neurons, pE(v). Then PBEE is the conditional
probability a base E-neuron goes across Vc within one E-kick,
which is expressed as:

PBEE
{

pE
}

=
∫ Vc

Vc−SEE
pE(v) dv

∫

v<Vc ,v=R
pE(v) dv

(7)

However, in RN, we do not see the exact distribution pE(v), but
only the number of base and gate E-neurons (NGE,NBE) instead.
Therefore, to set a closure condition for RN, we consider PBEE as a
function of NBE regardless of the specific distributions, i.e.,

PBEE (NBE) = E

[

PBEE
{

pE
}

∣

∣

∣

∣

∫

v<Vc ,v=R

pE(v) dv =
NBE

NE

]

(8)

Finally, to collect PBEE (NBE), we run the MIF network simulations
for a long time and collect all the events when a E-kick takes effect
and the membrane potential distribution satisfies the condition

listed above. The estimate of PBEE (NBE) is hence the probability of
one base E-neuron crossing Vc conditioned on these events.

Readers should note that, the three regimes (Hom, Reg, and
Syn) investigated in this paper are only differentiated in the
waiting time of kicks, i.e., the transition probabilities induced
by single kicks are similar, given the observation that the
subthreshold distributions in these regimes are alike. Therefore,
to carry out reduction in these regimes, we only need the
simulation of one canonical parameter set (say Syn) rather than
all of them. Similar arguments also apply to different external
input rate λ.

4.4. A Coarse-Grained Approximation
A coarse-grained (CG) approximation is developed to further
reduce the number of states of the network. The MIF network
hasO((168 ·n2H)N) states, where nH is the largest possible number
of pending kicks for a neuron. The number for the RN is lower,
as O((2 · n2H)N), and yet it still grows exponentially with the
size of the network. This number is already astronomical for the
100-neuron network studied in this paper.

A CG approximation of RNmodel is carried out as follows:

• First of all, due to the homogeneous connectivity of the
network, all I-neurons have the same probability to add an
E-kick to their pending-kick pools when an E-neuron i fires.
Since each kick takes effect independently, this is equivalent
to a large pool containing all E-kicks of the I-neurons and
each E-kicks are randomly distributed to a specific I-neuron.
Therefore, we only need the size of the large pool HIE rather
than individual E-pending-kick pools for each I neuron.
Likewise, we have pools HEE, HEI , and HII for other pending
spikes. (Note that this CG simplification does not rule out
autapses, i.e., the possibility that a spike takes effect on the
neuron releasing it. This may be an issue when the network
is very small; however, it does not cause any obvious problems
in our model with 100 neurons.)

• We now try to further combine the pools. Since all I-kicks
are consumed with the same waiting time τ I , we can combine
the two I-kick pools together. This does not directly apply
to the two E-kick pools since τEE 6= τ IE,i.e., HEE and HIE

are consumed at different rates. In the CG model, we have to
assume the excitatory kicks to E and I neurons come from the
same pool of size HE, and determine HEE and HIE by a linear
interpolation. Specifically,

HEE = aEE ·HE, HIE = aIE ·HE, (9)

where the two constants

aEE = PEENE

PEENE + PIENI
, aIE = PIENI

PEENE + PIENI
(10)

and satisfies aEE+aIE = 1.Without doubt, bias ofHEE andHIE

are introduced by this step (larger bias for larger differences
between τEE and τ IE). On the other hand, τEE and τ IE are
closer in the Syn regime (compared to Hom and Reg, see
parameters in section 4.2), i.e., HEE/HIE ≈ const. Therefore, the
introduced bias is smaller in this regime (Figure 7A. See also
Figure 5B). In all,

HE = HEE +HIE =
N

∑

i=1

HE
i , HI = HEI +HII =

N
∑

i=1

HI
i ,

(11)
where H{E,I} are the sizes of the {E, I}-kick pools for the whole
network.

• Finally, by definition, the transition probabilities of the two-
state neurons are functions of the number of gate neurons
(see Equation 8). Therefore, instead of the states of each
individual neuron, the distributions of membrane potentials
can be determined by the numbers of gate neurons (NGE,NGI).
Once they are computed, the number of base neurons is
given by

NGE + NBE = NE, NGI + NBI = NI (12)

Therefore, the CG approximation above is a Markov process with
only four variables, two for the number of gate neurons and two
for pending kicks (NGE,NGI ,HE,HI), and the number of states
is O(N4) = NE · NI · (nH)2. This is a tremendous reduction
from exponential to polynomial scaling in the size of the network.
We here provide a qualitative description of the dynamics of
the coarse-grained model: When an {E, I}-kick takes effect, the
number of H{E,I} decreases by one, and the target neuron flips
between base/gate states with the probability given by (NGE,NGI)
(see Table 2); If an {E, I}-neuron fires, a spike is released and the
pending-kick pool H{E,I} expands by

ME = PEENE + PIENI , MI = PEINE + PIINI , (13)

where M{E,I} is the average number of postsynaptic neuron
recipients of an {E, I}-spike.

We list all possible transitions from state X =
(NGE,NGI ,HE,HI) (Table 1). In addition, since all state
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TABLE 1 | All possible transitions from state X = (NGE ,NGI,H
E ,HI ) to another.

External kick

takes effect

One E-kick takes effect One I-kick takes effect

NGE + 1 NGE + 1 HE − 1 NGE − 1 HI − 1

NGI + 1 NGI + 1 HE − 1 NGI − 1 HI − 1

NGE −1 HE +ME NGE − 1 HE − 1+ME HI − 1

NGI − 1 HI +MI NGI − 1 HE − 1 HI +MI

Remain HE − 1

There are 13 cases in all. Column 1: When an external kick takes effect, X may jump to

five possible states due to the following reasons: an E base neuron to gate; an I base

neuron to gate; an E gate neuron fires and release ME pending spikes to the E pool; an I

gate neuron fires and release MI pending spikes to the I pool; or simply stay at the same

state. Column 2: Similar as column 1, but all the state transitions are accompanied by the

consumption of one E-kick, HE decreases by 1. Column 3: Since a base neuron stays

“base" when an I kick takes effect, there are only three possible state transitions in this

case.

TABLE 2 | The transition rates of all transitions in Table 1.

External kick takes

effect

One E-kick takes

effect

One I-kick takes

effect

PBEex NBE · λE PBEE aEE
NBE
NE

HE/τEE PGEI aEI
NGE
NE

HI/τ I

PBIexNBI · λI PBIE aIE
NBI
NI
HE/τ IE PGII aII

NGI
NI
HI/τ I

PGEex NGE · λE PGEE aEE
NGE
NE

HE/τEE (1− PGEI aEI
NGE
NE

−
PGII aII

NGI
NI

) · HI/τ I

PGIexNGI · λI PGIE aIE
NGI
NI
HE/τ IE

(1− PBEex )NBE · λE
+(1− PBIex )NBI · λI
+(1− PGEex )NGE · λE
+(1− PGIex )NGI · λI

(1− PBEE )aEE
NBE

NE

HE/τEE

+(1− PBIE )aIE
NBI

NI

HE/τ IE

+(1− PGEE )aEE
NGE

NE

HE/τEE

+(1− PGIE )aIE
NGI

NI

HE/τ IE

transitions are triggered by certain kicks, which take effect
independently with exponential waiting time, it is more
important to know the transition rates based on the transition
probabilities. We list these rates in Table 2.

4.5. Statistics
To quantify how well the reduced models (RN and CG) capture
the dynamical features of the full model (MIF), we compare
several statistics of the network dynamics (or more precisely,
the spiking pattern produced by the network) collected from the
simulations of the MIF, RN, and CG models. The reader should
note that we can not tell the specific neuron indices of firing
events in the CG model; yet it does not affect the computation
of the statistics below. The raster plots produced for the CG
model, however, are indeed mock-up raster plots, drawn by
assigning spikes to neurons randomly among the appropriate
{E, I} population.

4.5.1. Firing Rates
Spikes from {E, I}-cells are collected separately, and firing rates
(frE, frI) are computed as the average numbers of spikes per
neuron per second. All three models are simulated for over 3 s

and spikes are collected from the 2nd second to rule out possible
influences by the choice of initial conditions.

4.5.2. Spike Synchrony Index
We borrow the definition of spike synchrony index (SSI) from
Chariker et al. (2018). SSI describes the degree of synchrony of
the firing events as the following. For each spike occurred at t,
consider a w-ms time window centered by the spike (t − w/2, t +
w/2) and count the fraction of neurons in the whole network firing
in such window. Finally, the SSI is the fraction averaged over
all spikes.

It is not hard to see that SSI is larger for more synchronous
spiking patterns. For the completely synchronized dynamics,
every other neuron fires within the time window of each spike
hence SSI=1. For completely uncorrelated firing patterns such as
Poisson, SSI is a small number close to 0. One should note that
the absolute value of SSI depended on the choice of the window
size, and we choose w = 5 ms (the same as Chariker et al., 2018).

4.5.3. Spectrogram
The power spectrum density (PSD) measures the variance in
a signal as a function of frequency. In this study, the PSD is
computed as follows:

A time interval (0,T) is divide into time bins Bn = [(n −
1)1t, n1t], n = 1, 2, ..., the spike density µn per neuron in Bn
is given by µn = mn/N1t where mn is the total number of spikes
fired in bin Bn. Hence, the discrete Fourier transform of {µn} on
(0,T) is given as:

µ̂(k) = 1√
T

T/1t
∑

n=1

µn1te−k·(2π i)·(n1t). (14)

Finally, as a function of k, PSD is the “power" concentrated at
frequency k, i.e., |µ̂(k)|2.

4.5.4. Spike Timing Correlations
The correlation diagrams describe the averaged correlation
between each spike and others. Consider the correlation with
I-spikes conditioned on E at t= 0:

For each E-spike at time t, we take I-spikes within the time
window [t−15ms, t+15ms], and compute the fraction of I-spikes
in each 1-ms time bin. The correlation diagrams is then averaged
over all E-spikes in this simulation.

4.5.5. Spiking Volley Detection
Themethod defining spiking volleys (or MFEs) is borrowed from
Chariker and Young (2015). The core idea of this method is to
find time intervals with some length constraints that the firing
rate of each time bin in this interval is a certain amount higher
than the average firing rate. This is then defined as a spiking
volley. We choose 1 ms time bin and δ = 0.33, ǫ = 8 as
parameters (Figure 7B).

4.5.6. Dimensionality of Data
We use local principal component analysis (local PCA) method
to compute the local dimensionality of the data at each data
point x, i.e., how its neighbors cluster around x. The data
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points processed here is selected from original data points with
probability proportional to the square of distance from the place
with highest density mass, in order to make the distribution of
data points more uniform which can result in more precise local
dimensionality characterization. For x, consider the correlation
matrix Cx of x and its K nearest neighbors (K selected as 100).
Then the dimensionality at x is computed as

Dim(x) = Tr(Cx)2

Tr(C2
x)

= (
∑

i λi)
2

∑

i λ
2
i

(15)

where λi is the i-th eigenvalue of correlation matrix Cx.
Equation (15) is widely used as the dimensionality definition in
theoretical and experimental neuroscience studies (Mazzucato
et al., 2016; Gao et al., 2017; Litwin-Kumar et al., 2017; Recanatesi
et al., 2019).

4.5.7. Entropy of trajectories
Note that estimating the entropy analytically for a dynamical
system can be hard, in this paper, we focus on estimating entropy
based on trajectories from 10-s simulations for each regime
investigated in Figure 8. To make the entropy computation of
our full model and the ODE model for PING comparable, we
first extract the four dimension trajectories of all models (for
ODE model, we choose the four quantities comparable to ours).
Then the space is confined to a 4-D cube with the range of each
dimension is the minimum and maximum of the corresponding
component of the trajectory data. The space is further uniformly
divided into an n4 (we choose n to be the same asNI) grid and we
calculate the distribution of the data in that grid, then naturally
get entropy as

S =
∑

(i,j,k,l)

−Pi,j,k,l log2 Pi,j,k,l

4.6. Computational Methods
4.6.1. Exact Timing of Events
During our simulation, we can compute the exact timing of all
events including firing, kicks taking effect, etc. We note that MIF,
RN, and CG models are all Markov processes whose randomness
is mainly due to the exponential distributions of various waiting
times. Consider two independent events A and B with waiting
time XA ∼ exp(λA), XB ∼ exp(λB), we have min{XA,XB} ∼
exp(λA+λB), i.e., the waiting time for either the first event is also
an exponential distribution. Furthermore, the probability for the
first occurring events to be A is λA/(λA+λB).

Similar arguments extend to m events. By noticing
that exponential distributed waiting times are temporally
memoryless, we can simulated all three models by repeatedly
selecting the first occurring event and generate the actual waiting
time by sampling from certain exponential distributions.

4.6.2. Invariant Probability Distributions
After determining the total number of states and the transition
probabilities between them, we can calculate the invariant
probability distribution from the CG model by computing the
eigenvectors and eigenvalues of the transition probability matrix.

Such methods can be found in standard linear algebra textbooks
such as Roman et al. (2005).

Readers should note that theoretically, there is no upper
bound for {HE,HI}. In order to close the computation of
invariant probability distributions, we set the n{HE ,HI}, the largest
numbers of pending spikes shown up in the simulations as
the “boundaries" of the state space. Specifically, the transition
probability from state X to Y is 0 if

1. X = (NGE,NGI , nHE ,HI) and Y = (NGE,NGI , nHE + a,HI), or
2. X = (NGE,NGI ,HE, nHI ) and Y = (NGE,NGI ,HE, nHI + b),

where a, b > 0.

4.6.3. A “Shrunk" Coarse Grained Model
After the reductions, the CG model studied in this paper still
has M = 5.6 × 109 states. Though the first left eigenvector
(i.e., the stationary probability distribution, corresponding to
eigenvalue 1) of a sparse, M-by-M probability transition matrix
is computable, the cost could be high for a desktop. Therefore,
we aim at an even coarser version of the CG model: a “shrunk"
coarse grained (SCG) model. Since H{E,I} are much higher than
N{GE,GI}, we shrink the CG model by combining every K states
of pending kicks into one, i.e., all 1 ≤ HE

cg ≤ K states in CG

model is considered as HE
scg = 1 in SCG model. The intuition

is the following: no need to characterize the states of pending
spikes very precisely especially when the number is very large
(i.e., the difference between 3000 and 3001 is very small). Every
state of SCG model can also be represented as a quadruplet
Qscg = (NGE,NGI ,HE

scg,H
I
scg). The SCGmodel works as follow.

Firstly the quadrupleQscg is lifted to another quadrupletQcg =
(NGE,NGI ,HE

cg,H
I
cg), where HE,I

cg = (HE,I
scg − 0.5) · K. Then

quadruplet Qcg acts following the same rule as the CG model.
Lastly the change of Qcg is projected back into the change of
Qscg:

1. The change of NGE and NGI in Qcg is kept the same on
corresponding elements inQscg;

2. The change x of HE,I
cg is replaced by change y = [x/K] + b on

HE,I
scg, where [·] denotes the least integer function and b is a

Bernoulli variable with probability p = (x/K)− y;

Through this model, we can further reduce the M states of CG
model toM/K2 states of SCG model.

4.6.4. Locally-Linear Embedding
LLE is a non-linear dimension reductionmethod which discovers
the low-dimensional structure of high-dimensional data (Roweis
and Saul, 2000). More precisely, it maps the high-dimensional
input data into a low-dimensional space. The core idea of LLE
is to maintain the local linear structure through the mapping
and this is achieved by a two-step optimization. There are N
input data and we denote the high-dimensional input as EXi and
low-dimensional output as EYi. The algorithm is described below
and more details see (Roweis and Saul, 2000; Saul and Roweis,
2000).

1. Find the nearest k neighbors Ski of each data point EXi;
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2. W = argminW′
∑

i ‖EXi −
∑

jW
′
ij
EXj‖2,W′

ij = 0 if EXj /∈ Ski ;

3. Y = argminY ′
∑

i ‖EY ′
i −

∑

j Wij EY ′
j‖2, subject to

∑

i
EY ′
i = 0

and 1
N

∑

i
EY ′
i
EY ′T
i = I.
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