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Abstract: Traditional thickness-prediction methods underestimate the actual dome thickness at polar
openings, leading to the inaccurate prediction of the load-bearing capacity of composite hydrogen
storage vessels. A method of thickness prediction for the dome section of composite hydrogen storage
vessels was proposed, which involved fiber slippage and tow redistribution. This method considered
the blocking effect of the port on sliding fiber tows and introduced the thickness correlation to predict
the dome thickness at polar openings. The arc length corresponding to the parallel circle radius was
calculated, and then, the actual radius values corresponding to the bandwidth were obtained by
the interpolation method. The predicted thickness values were compared with the actual measured
thickness. The maximum relative error of the predicted thickness was 4.19%, and the mean absolute
percentage error was 2.04%. The results show that the present method had a higher prediction
accuracy. Eventually, this prediction method was used to perform progressive damage analysis on
vessels. By comparing with the results of the cubic spline function method, the analysis results of
the present method approached the actual case. This showed that the present method improved the
accuracy of the design.

Keywords: composite hydrogen storage vessels; fiber slippage; tow redistribution; dome thickness;
prediction method; progressive damage; load-bearing capacity

1. Introduction

As pollution-free energy, hydrogen energy has become a new energy to replace tra-
ditional fossil energy. The burning of conventional fossil fuels produces greenhouse gas
and harmful gases, while hydrogen only produces water [1]. Composite hydrogen storage
vessels, as the primary equipment of high-pressure hydrogen storage, have the advantages
of lightweight and reliable performance [2]. The wide application of hydrogen energy is
inseparable from hydrogen storage vessels.

The filament-winding process has been extensively researched and applied [3,4].
The filament-winding process is usually used in the manufacture of hydrogen storage
vessels. The geometry and mechanical properties analysis of hydrogen storage vessels,
especially in the dome section, are very complicated because of the characteristics of the
process and materials. In addition, the thickness and winding angle of composite layers
at the dome section of vessels will change significantly, which affects the mechanical
properties of composite layers [5,6].

Nowadays, finite-element analysis technology plays an increasingly important role in
designing high-performance composite hydrogen storage vessels [7]. The more accurate
the hydrogen storage vessel model established, the more accurate the results of the finite-
element analysis will be [8]. The changes in angle and thickness at the dome section need
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to be considered in the accurate performance prediction of a hydrogen storage vessel.
It is difficult to predict the dome thickness of vessels because of fiber slippage during
the winding process. Therefore, accurate thickness prediction is a prerequisite for the
performance prediction of hydrogen storage vessels. The design reliability of vessels
can be increased by accurate thickness prediction and finite-element analysis, achieving
more effective optimization schemes. The dome thickness of hydrogen storage vessels
was predicted to establish the finite-element model to research the performance of the
composite hydrogen storage vessel by researchers [9].

However, traditional thickness-prediction methods were only accurate outside the
two bandwidths of polar openings. The influence of fiber width was not considered, which
caused the predicted thickness value at polar openings to be infinite and did not match
actual measurement thickness [10]. Wang et al. [11,12] proposed a thickness-prediction
method, which used a cubic spline function and assumed that the amounts of the composite
material were constant within the two bandwidths of polar openings. The method provided
more accurate thickness-prediction results, but it did not consider the slippage effect of
fiber tows during the winding process, which made prediction results at polar openings far
lower than actual measurement thickness.

In recent years, many researchers also proposed new thickness-prediction methods.
Leh et al. [13] combined existing winding-angle and thickness-prediction methods [8,11,12]
to propose a model for predicting the dome geometric characteristics of multi-layer compos-
ite pressure vessels, but the problems existing in the existing methods was not improved.
Zu et al. [14,15] used a three-dimensional laser scanner to measure the vessel’s profile
after winding and obtained the thickness distribution of the dome section. However, the
method needed thickness values provided by experiments, which limited the application
of this method. Che et al. [16] proposed a prediction method for the thickness of the dome
section. This method took the effect of fiber overhead caused by hoop winding, but this
method did not consider the influence of bandwidth on the fiber thickness at polar open-
ings. Akhtar et al. [17] presented the analytical modeling involving kinematic constraints
based on a geodesic trajectory to predict thickness change of dome section. However, the
method did not consider the slippage effect of fiber tows during the winding process, and
it needed to divide the dome section into multiple zones for calculation. The number of
divided zones affected prediction accuracy.

The predicted thickness values could provide a basis for the establishment of a finite-
element model (FEM) of composite hydrogen storage vessels. A progressive damage
model has been widely used in progressive damage and failure analysis of composite
masteries [18]. Composite material progressive damage analysis method could simulate
complex stress conditions and material damage state of composite vessels under internal
pressure. Burst pressure and burst mode of composite hydrogen storage vessels could be
better predicted by progressive damage analysis [19,20].

The progressive damage analysis of composite hydrogen storage vessels included
the establishment of FEM and the analysis of results. ANSYS ACP was used by Kangal
et al. [21] to analyze the progressive damage of the glass fiber/carbon fiber hybrid composite
pressure vessel. The results of hydrostatic pressure tests were compared with the results of
finite-element simulation analysis and showed that numerical simulation results were in
good agreement with experimental results. However, the thickness and angle variations
were obtained from CADWIND, and the simulation results of dome thickness obtained
from CADWIND were inaccurate. A multiscale progressive damage analysis method was
proposed by Lin et al. [22], which introduced representative volume elements (RVEs). Puck
failure criterion was adopted to predict the burst pressure of composite pressure vessels,
but the vessel was modeled by the plug-in WCM. There were some differences between the
actual shell composite dimensions and those modeled by WCM. A progressive damage
method was used by Alam et al. [23] to investigate the influence of winding angle, the
number of layers, and the sequence of layers on the burst strength of composite pressure
vessels. However, the method only compared the burst pressure values corresponding
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to different winding angles, numbers of layers, and sequences of layers without further
research on its causes. ANSYS ACP software was used by Sharma et al. [24] to perform
progressive failure analysis of composite hydrogen storage vessels. The influence of the
interlayer hybridization effect on the burst pressure of composite vessels was analyzed.
However, the dome section was divided into multiple areas in that model, resulting in a
discontinuous angle and thickness of the dome section, which was different from the actual
angle and thickness. A composite material progressive damage model was established by
Hu et al. [25] using ABAQUS software. The Hashin failure criterion was used to predict the
burst pressure of composite hydrogen storage vessels with different layer-up sequences.
The liner used in the article was different from the conventional vessel liner, and the
conclusion may not apply to others.

Progressive damage analysis could better simulate the complex stress condition and
material damage state of composites [26]. However, previous literature [27,28] mostly used
WCM or CADWIND software to model the composite hydrogen storage vessels, and the
thickness values at the dome section could not be predicted well by the software, thus
affecting the accuracy of the FEM. To accurately predict the burst pressure of composite
hydrogen storage vessels, it is beneficial to study a more accurate prediction method of
dome thickness.

In this paper, a method of thickness prediction for the dome section of composite
hydrogen storage vessels was proposed, which involved the effect of fiber slippage and
the redistribution of fiber tows. This method solved the problem that the traditional cubic
spline function method underestimated the dome thickness at polar openings. On this basis,
this prediction method was used to perform progressive damage analysis on composite
hydrogen storage vessels. The influence of the reaming process and the layer-up sequence
was studied on load-bearing capacity and damage evolution of hydrogen storage vessels.
The analysis results of the present method were compared with the results of the cubic
spline function method.

2. Analytical Model for Dome Thickness Prediction

An accurate dome-thickness-prediction model was a key point in the design process
of composite hydrogen storage vessels. The results accuracy of finite-element analysis
was affected by the prediction accuracy. The cubic spline function prediction method
proposed by Wang et al. [12] was a relatively accurate prediction method. However, the
thickness-prediction values of the cubic spline function method at polar openings were
much lower than the actual measurement. The effect of fiber slippage on dome thickness
at polar openings was not considered. The cubic spline function may become undefined
when using a large initial winding angle and large bandwidth. A new prediction method is
proposed in the following text.

2.1. Dome Thickness at Polar Openings

Figure 1 shows a schematic diagram of fiber slippage during the winding process.
Two situations need to be considered when predicting the dome thickness at polar openings:
(1) dome thickness at polar openings before reaming; and (2) dome thickness at polar
openings after reaming. The dome thickness at polar openings should be calculated
separately based on the above two cases.

2.1.1. Dome Thickness before Reaming

The wet winding process was usually used to manufacture hydrogen storage vessels.
The fiber tows slid to both sides under the action of winding tension and resin infiltration
when fiber tows were wound around polar openings. The redistribution of fiber tows was
caused by the effect of fiber slippage. However, the fiber tows cannot slide further because
of the blocking effect of the port, which leads to the fiber stacking around polar openings.
The thickness of polar openings cannot be calculated according to the theory of the same
amounts of fiber tows. The thickness at polar openings and the thickness one bandwidth
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away from polar openings were affected by factors such as the slipping, realignment, and
roving separation of fiber tows. There was a correlation between the thickness of the two
places, considering the redistribution of the fiber tows near polar openings. The formula for
calculating the dome thickness at polar openings before reaming was expressed as follows:

t(r) =
mR × nR

π
× arccos

(
r0

rb

)
× tp × γ (1)

where mR stands for the number of fiber tows at the cylindrical section, nR stands for the
number of layers in the cylindrical section, r0 is the radius of the polar opening, r is the
radius of the parallel circle, tp is the thickness of a fiber tow, b is the width of a fiber tow, γ
is the thickness correlation coefficient, and the value is 0.2~0.3.
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Figure 1. Schematic diagram of fiber slippage at different winding angles.

2.1.2. Dome Thickness after Reaming

Fiber stacking occurred near polar openings if helical layers were wound at a single
helical angle. Winding difficulties and stress concentration in composite layers were caused
by fiber stacking, which affected the load-bearing capacity of the vessels. Therefore, the
reaming process was used to reduce thickness accumulation and fiber stacking at the dome
section. The observation of the fiber slippage effect through actual winding experiments is
shown in Figure 1. The fiber tows during the winding process after the reaming process
had no longer been obstructed by the port. However, the resin-impregnated fiber tows
still slid to both sides under the action of winding tension. As a result, the thickness of the
fiber tows around actual polar openings decreased, and the width of fiber tows increased.
From the winding measurement, the bandwidth used in the calculation in this paper was
1.2 times the actual bandwidth, and the thickness was divided by 1.2.

2.2. Revised Model of Radius Corresponding to Bandwidth

The radius of the cubic spline function method was calculated by projecting fiber
tows trajectory onto the horizontal plane. The formula (rb = r0 + b, r2b = r0 + 2b) was
workable when polar openings radius and bandwidth were small. However, the radius
of polar openings of composite layers increased after the reaming process. The projected
length of fiber tows bandwidth on the horizontal plane decreased, as shown in Figure 2.
The traditional cubic spline function was not suitable to predict the thickness of the dome
section. The actual radius values of rb, r2b corresponding to the bandwidth were calculated
by the actual arc length in this paper. MATLAB R2020b [29] software calculated the arc
length corresponding to parallel circle radius. The values used by the cubic spline function
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prediction method and the present method are shown in Figure 2. Thereafter, the values of
rb, r2b corresponding to bandwidth were calculated by the interpolation method.
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2.3. Revised Model of Fiber Volume within Two Bandwidths

When using the cubic spline function prediction method, the thickness was set as a
fixed value during the calculation process for amounts of composite material within two
bandwidths of polar openings. In the present method, the values of dome thickness were
variable, which varied with the radius of the parallel circle. The amounts of fiber tows
within two bandwidths could be expressed as follows:

Vconst =
∫ rb

r0
2πr× mR×nR

π × arccos
( r0

r
)
× tpdr +

∫ r2b
rb

2πr×
mR×nR

π ×
[
arccos

( r0
r
)
− arccos

(
r0+b

r

)]
× tpdr

(2)

The analytical model for dome thickness prediction could be expressed as follows:

t(ri) = m1 × r0
i + m2 × r1

i + m3 × r2
i + m4 × r3

i (r0 ≤ r ≤ R) (3)

The unknown coefficients m1, m2, m3, and m4 could be solved from:
m1
m2
m3
m4

 =


1 r0 r2

0 r3
0

1 r0 r2
2b r3

2b
0 1 2r2b 3r2

2b
π
(
r2

2b − r2
0
) 2π

3
(
r3

2b − r3
0
) (

r4
2b − r4

0
) (

r5
2b − r5

0
)

−1

×



mR×nR
π × arccos

(
r0
rb

)
× tp × γ

mR×nR
π ×

[
arccos

(
r0
r2b

)
− arccos

(
rb
r2b

)]
× tp

mR×nR
π ×

(
r0

r2b×
√

r2
2b−r2

0

− rb

r2b×
√

r2
2b−r2

b

)
× tp

Vconst


(4)

where Vconst could be calculated by:

Vconst =
∫ rb

r0
2πr× mR×nR

π × arccos
( r0

r
)
× tpdr+

∫ r2b
rb

2πr×
mR×nR

π ×
[
arccos

( r0
r
)
− arccos

(
r0+b

r

)]
× tpdr

(5)
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2.4. Verification of the Analytical Model

The profiles of three composite vessels in published literature [11,12] were selected to
validate the accuracy of the analytical model for dome thickness prediction. The geometric
parameters of composite vessels are shown in Table 1. The prediction results are shown in
Figure 3. The actual measured thickness values were obtained from the literature [11,12].
The present method had a better agreement with the actual measured thickness values at
polar openings and within two bandwidths than the cubic spline function method. Table 2
shows the relative error between predicted values and actual values of type A vessel within
two bandwidths.

Table 1. The parameters of three composite vessels.

Vessel’s Type Dome Length h
(mm)

Fiber Band b
(mm)

Thickness of Fiber
Tows tp (mm)

Polar Radius r0
(mm)

Radius of Cylinder
Section R (mm)

a 80 5.39 0.765 9.5 132
b 213 5.39 0.765 60 132
c 213 12.5 0.48 110 372.5
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Table 2. Relative error between the analytical results and the measurement results.

The Present Method The Double Formula Method The Cubic
Spline Function Method

r (mm) Actual
Thickness (mm)

Predicted
Value (mm)

Relative
Error (%)

Predicted
Value (mm)

Relative
Error (%)

Predicted
Value (mm)

Relative
Error (%)

9.50 8.50 8.25 −2.94 0 - 5.31 -
11.20 22.00 21.12 −4.00 20.69 −5.95 21.77 −1.05
11.60 23.50 22.96 −2.29 22.67 −3.53 24.05 2.34
12.50 26.00 25.69 −1.12 26.27 1.04 27.34 5.15
13.50 27.30 26.77 −1.94 29.42 7.77 28.42 4.10
14.50 26.60 26.19 −1.57 31.98 20.23 27.28 2.56
15.40 24.80 24.63 −0.69 24.23 −2.30 25.10 1.21
16.30 21.50 22.40 4.19 19.73 −8.23 22.13 2.93
17.50 18.70 18.93 1.23 16.54 −11.55 18.00 −3.74
18.56 15.80 15.96 1.01 14.69 −7.03 15.00 −5.06
19.50 13.80 13.81 0.07 13.45 −2.54 13.38 −3.04
20.30 13.00 12.63 −2.85 12.59 −3.15 12.45 −4.23

The double formula method [30] provided a reference for these models. It can be seen
in Table 2 that the maximum relative error of the double formula method was 20.23%, the
mean absolute percentage error was 6.66%, and the root-mean-square error was 1.95 mm.
The maximum relative error of the cubic spline function method was 5.15%, the mean
absolute percentage error was 3.22%, and the root-mean-square error was 0.70 mm. The
maximum relative error of the present method was 4.19%, the mean absolute percentage
error was 2.04%, and the root-mean-square error was 0.48 mm. Compared with the cubic
spline function method, the maximum relative error of the present method was reduced
by 18.6%, the mean absolute percentage error by 36.6%, and the root-mean-square error
by 31.4%. The present method predicted the thickness distribution of the dome section
more accurately.

3. Numerical Modeling
3.1. Winding Angle and Thickness

The winding angle and thickness were needed in the finite-element modeling of
composite hydrogen storage vessels. The winding angle along the cylindrical section
directly followed the design’s winding angle. The winding angle of the helical layers at the
dome section changed from the initial winding angle (α0) to 90◦. Therefore, the angle of
each point of the dome section along the meridian was different. The geodesic trajectories
were used for the winding process because of the use of equal domes. The helical winding
angle over the dome section was generally assumed to follow geodesic formula [31]:

a = arcsin(r0/r) (6)

The values of dome thickness were obtained with the analytical model from Section 2.
The winding angle and dome thickness distribution at the dome of the vessel are shown in
Figure 4.

The helical winding angle and the minimum burst pressure of vessels were needed
when calculating the thickness of the composite layers of the cylindrical section. The safety
factor was set as 2.25 for the 70 MPa hydrogen storage vessel in this paper. Therefore, the
minimum burst pressure should not be less than 2.25 times the working pressure.
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The geodesic winding method was adopted since a pressure vessel with equal domes
was used. The minimum angle of helical winding was calculated by the geodesic formula.
The netting theory was commonly used to describe the minimum thickness tαk and tθk of
helical and hoop layers, and its expression was: tαk = Rpb

2ksσf b cos2 α

tθk = Rpb
2σf b

(
2− 1

ks
tan2 α

) (7)

tk = tαk + tθk =
(2ks + 1)Rpb

2ksσf b
(8)

where tαk and tθk are the thicknesses of helical layers and hoop layers, tk is the total thickness
of composite layers at the cylindrical section, α is the helical winding angle, R is the radius
of the cylindrical section, and pb is the minimum burst pressure.

The strength at the dome section was only determined by helical layers. The stress
equilibrium factor ks needed to be introduced to increase the thickness of helical layers to
strengthen the dome section. The stress equilibrium factor ranged from 0.6 to 0.8 to ensure
that the burst point was at the cylindrical section.

The thickness of helical layers increased when the stress equilibrium factor was smaller.
The burst point occurred in the cylindrical section of vessels. The burst mode of vessels was
safer, but the thickness of composite layers increased. The value of the stress equilibrium
factor was 0.7 in this paper. The initial winding angle α = 20◦, the fiber tape width b = 6 mm,
and the fiber tape thickness tp = 0.125 mm. A total of 26 hoop layers and 24 helical layers
were wound.

3.2. Layer-Up Design Schemes

Different layer-up design schemes were used, as shown in Figure 5, to study the
influence of the reaming process and layer-up sequence on the load-bearing capacity of
vessels. The schemes included different layer-up sequences and helical winding angles. The
layer-up schemes were divided into three groups A, B, and C, and each group included five
schemes. The thickness of helical layers and hoop layers in these schemes was calculated
by the netting theory. All layer-up design schemes had the same number of layers and
thicknesses. The scheme A_1 was the initial design scheme. The schemes of group A used
single reaming and increased reaming layers. The schemes of group B used double reaming
and increased reaming layers. The schemes of group C changed the layer-up sequence of
helical layers and hoop layers based on scheme A_4. Each column in Figure 5 represents a
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complete hoop layer (±90◦) or helical layer (±α). The horizontal axis represents the number
of layers from inside to outside, and the vertical axis represents the winding angle.
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3.3. Finite-Element Model

The FEM of the composite hydrogen storage vessel in this paper was a 70 MPa type III
vessel. The liner was made of aluminum alloy 6061-T6, as shown in Figure 6, to meet the
requirements of lightweight and hydrogen corrosion resistance of the hydrogen storage
vessel. The length of the aluminum liner was 500 mm, the outer diameter was 105 mm, the
inner diameter was 101 mm, and the dome section height was 32.7 mm.
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Figure 6. Cross-section of lining structure.

As shown in Figure 7, a finite-element model of the type III storage vessel was estab-
lished to predict the burst pressures of composite hydrogen storage vessels. The cyclic
symmetry was applied to improve computer efficiency, and a twelfth model was used to
analyze vessels. The internal pressure was applied to the internal surface of the aluminum
liner. The axial displacement of the vessel was restricted. Aluminum alloy 6061-T6 was
used as the liner of vessels. The liner was modeled using a twenty-node cubic solid el-
ement (SOLID186) considering the nonlinearity of aluminum alloy material. The T700
fiber-reinforced composite was used as the composite layers of vessels. The composite
layers were modeled using an eight-node structural solid shell element (SOLSH190). The
aluminum liner and the composite layers were bonded together.
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Figure 7. Finite-element model of the composite hydrogen storage vessel.

The liner of the vessel was made of aluminum alloy (6061-T6), and the material model
was isotropic and elastoplastic. The bilinear isotropic hardening model was used for the
plastic region. The material parameters and stress-strain curve of the aluminum liner
obtained from the literature [14] are shown in Figure 8 and Table 3. The composite layers
of the vessel were made of T700 fiber-reinforced composites, and the material model was
transversely isotropic. The material parameters of the T700 fiber-reinforced composites
obtained from the literature [14] are listed in Tables 4 and 5.
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Table 3. Material properties of aluminum alloy 6061-T6.

Property E (GPa) µ σs (MPa) σb (MPa) δ (%) ρ (kg/m3)

6061-T6 74.12 GPa 0.28 340 281 11.57 2700

Table 4. Material properties of the T700/epoxy composite.

Property E11 *
(GPa)

E22 *
(GPa)

E33 *
(GPa)

G12
(MPa)

G23
(MPa)

G13
(MPa) µ12 µ23 µ13

T700/epoxy
composite 134 7.42 7.42 3710 4790 3710 0.28 0.3 0.28

* Direction 1—fiber direction, Direction 2—transverse direction, Direction 3—normal to layer direction.
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Table 5. Material properties of the T700/epoxy composite.

Property XT
(MPa)

XC
(MPa)

YT
(MPa)

YC
(MPa) S12 (MPa) S23 (MPa) S13 (MPa) ρ

(kg/m3)

T700/epoxy
composite 2300 1250 74 180 50 90 50 1680

Direction 1—fiber direction, Direction 2—transverse direction, Direction 3—normal to layer direction.

3.4. Progressive Damage Model

A progressive damage model was used to predict structural damage of composite
layers and the burst pressure of vessels. The model could accurately predict mechanical
responses and the ultimate load-bearing capacity of composite materials. A damage
initiation criterion was defined to determine the failure of composite material. The damage
evolution law controlled the stiffness reduction of the materials. This progressive damage
analysis process is shown in Figure 9. First, a finite-element model of the composite
hydrogen storage vessel was established. The internal pressure of the vessel was loaded,
and stress calculation was performed. Puck failure criterion was used. A material-stiffness
degradation model was adopted according to the corresponding failure mode after the
material was damaged. Finally, the calculation was terminated when the hydrogen storage
vessel was structurally damaged.
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Figure 9. Flow chart of progressive damage process.

The Puck failure criteria [32] were employed to predict the damage onset of the
composite layers. The failure model of composite layers was generally classified as fiber
tension and compressive breakage, matrix tensile, and compressive failure.



Polymers 2022, 14, 902 12 of 22

The Puck failure criterion included fiber failure (FF) and inter-fiber failure (IFF). The
fiber failure criterion was written as follows:

fE,FF = 1
±Rt,c
‖

[
σ1 −

(
ν⊥‖ − ν⊥‖ f ×mσ f

E‖
E‖ f

)
(σ2 + σ3)

]
with Rt

‖ f or [. . .] ≥ 0
−Rc
‖ f or [. . .] ≤ 0

(9)

where fE,FF is the fiber failure stress exposure of the lamina; Rt
‖ is the tensile strengths of

the materials; Rc
‖ is the compressive strengths of the materials; σ1, σ2 and σ3 are the normal

stresses in a unidirectional layer; E‖, E‖ f are the modules of the composite material and
fiber direction; ν⊥‖, ν⊥‖ f are the major Poisson’s ratios of the lamina and fibers; and mσ f is
the stress magnification factor for transverse stresses in the fibers and was set as 1.1.

The formulations for the stresses σn, τnt and τn1 in an arbitrary plane with the inclina-
tion angle θ were:

σn(θ) = σ2 × cos2 θ + σ3 × sin2 θ + 2× τ23 × sin θ × cos θ

τnt(θ) = (σ3 − σ2)× sin θ × cos θ + τ23 ×
(
cos2 θ − sin2 θ

)
τn1(θ) = τ31 × sin θ + τ21 × cos θ

(10)

The Puck IFF criterion was written as follows:
For σn(θ) ≥ 0:

fE,IFF(θ) =

√√√√√
( 1

RAt
⊥
−

pt
⊥ψ

RA
⊥ψ

)2

σn(θ)

+

(
τnt(θ)

RA
⊥⊥

)2

+

(
τn1(θ)

R⊥‖

)2

+
pt
⊥ψ

RA
⊥ψ

σn(θ) (11)

For σn(θ) < 0:

fE,IFF(θ) =

√√√√(τnt(θ)

RA
⊥⊥

)2

+

(
τn1(θ)

R⊥‖

)2

+

(
pc
⊥ψ

RA
⊥ψ

σn(θ)

)2

+
pc
⊥ψ

RA
⊥ψ

σn(θ) (12)

RAt
⊥ = Rt

⊥ ; RA
⊥‖ = R⊥‖ ; RA

⊥⊥ =
Rc
⊥

2(1+pc
⊥⊥)

pt,c
⊥ψ

RA
⊥ψ

=
pt,c
⊥⊥

RA
⊥⊥

cos2 ψ +
pt,c
⊥‖

RA
⊥‖

sin2 ψ

cos2 ψ =
τ2

nt
τ2

nt+τ2
n1

; sin2 ψ =
τ2

n1
τ2

nt+τ2
n1

pc
⊥⊥ = 1

2·cos2 θ
− 1 ; pc

⊥⊥
RA
⊥⊥

=
pc
⊥‖

R⊥‖

cos θ f p =

√√√√ (
τ21
σ2

)2
·
(

RA
⊥⊥

R⊥‖

)2

+1

2·(1+pc
⊥⊥)

(13)

where RAt
⊥ and RA

⊥⊥ are the tensile and shear strengths in the transverse direction of
the fiber; RA

⊥‖ is the shear strengths in the longitudinal direction of the fiber; Rc
⊥ is the

compression strength perpendicular to the fiber direction; pt,c
⊥⊥, pt,c

⊥‖ are the inclination
parameters; and θ f p is the fracture angle of the failure plane. The strength values of the
Puck failure criterion are listed in Table 6.
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Table 6. Parameters of Puck criterion.

Parameter Rt
‖ (MPa) Rc

‖ (MPa) E‖ (GPa) E‖f (GPa) ν⊥‖ ν⊥‖f

Valve 2300 1250 230 134 0.28 0.2

RAt
⊥ (MPa) RA

⊥‖ (MPa) Rc
⊥ (MPa) pt,c

⊥⊥ pt
⊥‖ pc

⊥‖

74 50 180 0.3 0.3 0.35

The failure occurred when stress risk factor fE,FF or fE,IFF was greater than 1. Stiff-
ness degradation of the failure elements was performed according to different stiffness-
degradation models. Stiffness-degradation criteria [33] are depicted in Table 7.

Table 7. Stiffness-degradation criteria of composite materials.

Failure Modes Stiffness-Degradation Criteria

Fiber tensile failure E11 = 0.07E11, E22 = E33 = 0.07E22, υ12 = υ13 = 0.07υ12,
υ23 = 0.07υ23, G12 = G13 = 0.07G12, G23 = 0.07G23

Fiber compression failure E11 = 0.14E11, E22 = E33 = 0.14E22, υ12 = υ13 = 0.14υ12,
υ23 = 0.14υ23, G12 = G13 = 0.14G12, G23 = 0.14G23

Matrix tensile failure E22 = 0.2E22, G12 = 0.2G12, G23 = 0.2G23
Matrix compression failure E22 = 0.4E22, G12 = 0.4G12, G23 = 0.4G23

4. Results and Discussion

The loading history for vessels, as shown in Figure 10, was used in this paper. The
working pressure of hydrogen storage vessels was 70 MPa. The safety factor was set as
2.25. The minimum burst pressure was 157.5 MPa. If the hydrogen storage vessels were
not structurally damaged at 157.5 MPa, the internal pressure was increased until burst to
obtain the ultimate burst pressure of the hydrogen storage vessels.
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4.1. Load-Bearing Capacity and Damage Behavior

The explosion simulations were carried out to predict the burst pressures of hydrogen
storage vessels. Two burst modes, as shown in Figure 11, may occur; i.e., the safe burst
mode and unsafe burst mode. The safe burst mode was attributed to fiber breakage in hoop
fibers. The failure appeared in the cylindrical section while the port of the dome section
entered the vessel. During this burst, the axial displacement was decreased rapidly after its
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value reached the maximum displacement point. The unsafe burst mode was attributed to
fiber breakage in helical fibers. The failure appeared in the dome section, and the port was
ejected at high speed.
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Figure 11. Comparison of numerical results of two burst modes: (a) safe mode, (b) unsafe mode.

Figure 12 shows the burst pressure and the burst mode of the vessels of different
layer-up sequences. The results showed that the reaming process reduced fiber thickness
near polar openings. The reaming process improved the stress distribution of composite
layers, which increased the burst pressure of vessels. The reaming process increased the
helical winding angle. The larger the helical winding angle was, the more hoop-bearing
capacity could be increased. The schemes A_1 and B_3 showed that the burst pressure of
the hydrogen storage vessel with reaming was increased by 9.15%.
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The polar openings of the dome section bore not only the internal pressure of its area
but also the internal pressure of the port area. A greater bearing capacity was required
in composite layers near polar openings than in the other part. The scheme B_5 showed
that the load-bearing capacity of the cylindrical section was improved by the reaming
process. However, the strength of composite layers at polar openings was reduced by
the reaming process, which made the vessel change from the safe mode to the unsafe
mode. The load-bearing capacity of the vessel could be improved by using a reasonable
reaming process under the premise that the vessel was in safe mode. From the results of
groups A and B, it was suggested that the number of reaming layers was less than half of
the design number of helical layers.

Figure 13 shows fiber stress of schemes A_4, C_4, and C_1 along the thickness direction
of composite layers at the cylindrical section at the test pressure. The helical layers stress
was less than the hoop layers stress in the cylindrical section under internal pressure. The
fiber strength of helical layers was not fully utilized. The hoop fibers were broken first
when the burst appeared in the cylindrical section. The outer portion of composite layers,
which consisted of hoop layers, could increase the average stress of the helical layers of the
cylindrical section by 5.92% and reduce the average stress of hoop layers by 3.65%.



Polymers 2022, 14, 902 15 of 22Polymers 2022, 14, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 13. Comparison of numerical results of the stress in fiber direction at the cylindrical section: 

(a) Schemes A_4 and C_4, (b) Scheme C_1. 

Figure 14 shows the axial displacement (axial displacement at polar openings of the 

dome) and the radial displacement (radial expansion of the cylindrical section) curves of 

schemes B_3 and B_5 under internal pressure loading. The burst mode of vessels could be 

predicted by the curves. The axial displacement curve of the scheme B_3 presented the 

burst point, which showed that it was under the safe burst mode. The axial displacement 

of scheme B_5 continued increasing, which showed it was under the unsafe burst mode. 

The radial and axial displacement curves of the two schemes showed both an obvious 

linear and nonlinear phase before the vessels were structurally damaged. The initial line-

arity represented that the material was in the elastic phase. The nonlinear state of curves 

was caused by elastoplastic deformation of the aluminum alloy inner liner and the dam-

age of composite layers. There were four regions before the vessel was structurally dam-

aged, as shown in the curves of scheme B_3. The first linear curve before 85 MPa denoted 

the initial elastic behavior of the aluminum liner. The second nonlinear curve before 113 

MPa denoted the plastic deformation of the aluminum liner. The third nonlinear curve 

before 158 MPa indicated resin matrix damage, but the composite vessel still had a great 

load-bearing capacity. Finally, a sharply rising curve showed that fiber damage occurred 

at about 158 MPa, and the vessel burst at about 172.9 MPa. The fracture behavior of the 

fiber determined the load-bearing capacity of vessels, but the matrix damage had little 

effect on the ultimate load-bearing capacity of vessels. 

 

Figure 14. Comparison of numerical results of load-displacement curve between schemes B_3 and 

B_5. 

Figure 13. Comparison of numerical results of the stress in fiber direction at the cylindrical section:
(a) Schemes A_4 and C_4, (b) Scheme C_1.

The ultimate load-bearing capacity of vessels was determined by the maximum stress
in the fiber direction. The smaller the stress was, the safer the vessel was. The bearing
capacity of vessels could be increased by raising the fiber strength utilization factor of
helical layers. The increase in bearing capacity could increase the burst pressure of the
hydrogen storage vessels. A gradient change of stress along the thickness direction was
caused by the adoption of hoop and helical alternated model, and the stress decreased as
the number of layers increased. A large stress difference between the inner and the outer of
hoop layers prevented outer hoop layers from completing enough work under the burst
pressure, which was not conducive to the utilization of fiber strength. The safest and the
highest burst pressure was reached by changing the layer-up sequence as follows: the
hoop and helical layers were separated, the winding angles of helical layers were changed
from small to large, and the inner portion of the composite layers consisted entirely of
helical layers.

Figure 14 shows the axial displacement (axial displacement at polar openings of the
dome) and the radial displacement (radial expansion of the cylindrical section) curves of
schemes B_3 and B_5 under internal pressure loading. The burst mode of vessels could
be predicted by the curves. The axial displacement curve of the scheme B_3 presented the
burst point, which showed that it was under the safe burst mode. The axial displacement
of scheme B_5 continued increasing, which showed it was under the unsafe burst mode.
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The radial and axial displacement curves of the two schemes showed both an obvious
linear and nonlinear phase before the vessels were structurally damaged. The initial
linearity represented that the material was in the elastic phase. The nonlinear state of
curves was caused by elastoplastic deformation of the aluminum alloy inner liner and the
damage of composite layers. There were four regions before the vessel was structurally
damaged, as shown in the curves of scheme B_3. The first linear curve before 85 MPa
denoted the initial elastic behavior of the aluminum liner. The second nonlinear curve
before 113 MPa denoted the plastic deformation of the aluminum liner. The third nonlinear
curve before 158 MPa indicated resin matrix damage, but the composite vessel still had
a great load-bearing capacity. Finally, a sharply rising curve showed that fiber damage
occurred at about 158 MPa, and the vessel burst at about 172.9 MPa. The fracture behavior
of the fiber determined the load-bearing capacity of vessels, but the matrix damage had
little effect on the ultimate load-bearing capacity of vessels.

4.2. Damage-Evolution Laws

As shown in Figure 15a–c, the fiber damaged under the burst pressure of schemes
C_3, C_4, and C_5, which were all under the unsafe burst mode. The damage of scheme
C_3 appeared at polar openings of the dome section. The damage of scheme C_4 appeared
at the connection between cylindrical and dome section, and the damage of scheme C_5
appeared at polar openings of the dome section and the connection between cylindrical
and dome section. The fiber overhead occurred when helical angles were changed from
large to small, or the inner portion of composite layers consisted entirely of hoop layers.
The fiber overhead caused stress concentration and reduced the load-bearing capacity of
the dome section, and the unsafe burst mode occurred.
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Figure 15. Comparison of numerical results of fiber damage at the burst pressure: (a) Scheme C_3,
(b) Scheme C_4, (c) Scheme C_5, (d) Scheme B_3, and (e) Scheme B_5.

The fiber damage of schemes B_3 and B_5 under the burst pressure is shown in Figure 15d,e.
The fiber of hoop layers in the cylindrical section of scheme B_3 was completely damaged
under the burst pressure, causing penetration damage. The fiber of helical layers at the
dome section was partially damaged without causing structural damage. However, the
fiber damage at the dome section of scheme B_5 accumulated continuously to form a
penetration trend. The fiber of the cylindrical section was not damaged when structural
damage occurred in the hydrogen storage vessel.

Figure 16 shows the damage evolution of fiber and matrix in the scheme B_3. The fiber
was mainly subject to tensile stress, and almost no compression failure occurred when the
hydrogen storage vessel was under working pressure. Therefore, only fiber tensile damage
and matrix tensile and compression damage were shown. A matrix failure occurred at
polar openings and the connection between cylindrical and dome sections when internal
pressure increased to 113 MPa. The low strength of resin caused the matrix damage. As
internal pressure increased, matrix damage developed from the inner to the outside of
composite layers. Although the matrix in the dome section had been severely damaged,
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fiber was not yet broken. The hydrogen storage vessel had no structural damage. The fiber
failure occurred at polar openings of the dome section with internal pressure increasing to
158 MPa. This was not enough to cause structural damage to the hydrogen storage vessel
because the fiber damage area was small. The fiber tensile failure extended to other areas
as the internal pressure increased. Finally, the hoop fibers of the cylindrical section were
damaged with an internal pressure increase to 172.9 MPa. The hoop fibers’ damage resulted
in stiffness degradation, and the damage rapidly expanded from the inside to the outside
of the composite layers. The damage formed a penetrating area and caused structural
damage to the hydrogen storage vessel. Research on the damage evolution behavior of
the hydrogen storage vessel showed that the ultimate load-bearing capacity of hydrogen
storage vessels largely depended on the fiber strength. The matrix had little effect on the
burst pressure of hydrogen storage vessels.
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4.3. Stress Distribution of the Aluminum Liner

Figure 17 shows the maximum stress of the aluminum liner under different pressures.
Each column represents the maximum stress of the aluminum liner. The stress reduction
was defined as the change of the maximum stress of the aluminum liner before and after
autofrettage at the working pressure. The stress amplitude was defined as half of the
difference between the maximum stress of the aluminum liner under the working pressure
and the zero pressure.

The maximum stress and the stress amplitudes under the working pressure after
autofrettage showed a downward trend as the reaming times and layers increased. The
stress distribution of the aluminum liner under the working pressure was improved after
the reaming process. The stress reduction in the aluminum liner under the working pressure
improved the fatigue performance of vessels. Scheme B_3 showed that the maximum stress
of the aluminum liner was reduced by 20.59% after the reaming process, and the stress
amplitude was reduced by 9.28%. As the reaming times and layers increased further, the
strength of the dome section decreased, and the burst mode changed from the safe mode to
the unsafe, but the maximum stress and the stress amplitudes just decreased slightly.

Group C showed that the stress distribution of the aluminum liner was affected by the
layer-up sequence. The maximum stress and the stress amplitude of scheme C_1, which
adopted hoop and helical layers alternated model, were improved the most, except for the
schemes of the unsafe burst mode. The fatigue performance of hydrogen storage vessels
was improved by adopting the alternated model. However, the burst pressure of scheme
C_1 was only 153.62 MPa. Scheme A_4, which had the same layers and winding angles as
scheme C_1, adopted the model with hoop and helical layers separated. The burst pressure
of scheme A_4 was 165.73 MPa and was increased by 7.88%. The results showed that the
burst pressure of hydrogen storage vessels was improved by adopting the model with hoop
and helical layers separated.
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Figure 17. Numerical results of the maximum stress of the aluminum liner: (a) under different
pressure; (b) stress reduction and stress amplitude.

Figure 18 shows the stress distribution of the aluminum liner of scheme B_3. The
maximum stress of the aluminum liner under working pressure was 291.41 MPa before
autofrettage, which exceeded the yield strength of the material. Residual tensile stress was
produced in composite layers after autofrettage. The residual compressive stress of the
aluminum liner was caused by the restriction of the composite layers. The maximum stress
of the aluminum liner under working pressure was reduced to 237.97 MPa, and the fatigue
performance of the vessel was improved after autofrettage.
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Figure 18. Numerical results of loading history of the aluminum liner at (a) service pressure before
autofrettage, (b) zero pressure after autofrettage, and (c) service pressure after autofrettage.

4.4. Comparison with the Cubic Spline Function Method

The comprehensive performance of the scheme B_3 was the best. For comparison,
the cubic spline function method was used to analyze the hydrogen storage vessel of
scheme B_3. Figure 19 shows the distribution curves of dome thickness predicted by the
present method and the cubic spline function method. The cubic spline function method
underestimated dome thickness at polar openings, and a sharp thickness peak occurred
at about one bandwidth. The curve predicted by the present method was smoother and
avoided a sharp thickness peak at about one bandwidth. The present method provided
more reasonable and accurate results.
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Figure 19. Comparison of analytical results of dome thickness between two methods.

A finite-element model of the vessel was established by using the dome thickness
predicted by the cubic spline function method. The burst pressure obtained by the finite-
element analysis was 173.3 MPa, with little difference from the 172.9 MPa predicted by the
present method. The radial displacement curves of the two methods were similar, as shown
in Figure 20. The axial displacement curves of the two methods had no obvious difference
before 113 MPa but separated after 113 MPa. The results showed that the pressure of matrix
damage was 113 MPa. The axial displacement curve of the cubic spline function method
increased more obviously than the curve of the present method. The axial displacement
curve of the cubic spline function method did not present a burst point, which showed that
the burst mode of the vessel predicted by the cubic spline function method was unsafe.
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As shown in Figure 21, the fibers in the dome section were partially damaged under
the burst pressure from the results of the present method, but not enough to cause structural
damage. The cubic spline function method showed that the fiber damage in the dome
section eventually formed a penetration area, resulting in structural damage. The cubic
spline function method underestimated the actual thickness of polar openings, leading to
a lower strength of composite layers. The finite-element results predicted by the present
method were closer to the actual results.
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Figure 21. Comparison of numerical result of the fiber damage at the burst pressure: (a) present
method, (b) the cubic spline function method.

5. Conclusions

In the present research, a method for predicting the thickness of the dome section was
proposed, which involved the effect of fiber slippage and the redistribution of fiber tows.
This prediction method was used to perform progressive damage analysis on composite
hydrogen storage vessels. The analysis results were compared with the results of the cubic
spline function method. The following conclusions can be deduced:

(1) The maximum relative error of the predicted thickness was 4.19%, the mean absolute
percentage error was 2.04%, and the root-mean-square error was 0.48 mm. The results
verified that the predicted thickness of the present method was in good agreement
with the actual measured thickness.

(2) The results showed that the reaming process increased the burst pressure of the
hydrogen storage vessel by 9.15%. The maximum stress of the aluminum liner
under the working pressure was reduced by 19.15% after autofrettage, and the stress
amplitude was reduced by 9.28%.

(3) The stress concentration in the composite layers caused by fiber overhead was im-
proved by changing the layer-up sequence as follows: the hoop and helical layers
were separated, the winding angles of helical layers were changed from small to
large, and the inner portion of the composite layers consisted of helical layers. The
burst pressure of the vessel was increased by 7.88% compared with the traditional
design sequence.

(4) The burst pressures predicted by the two methods had little difference. However, the
cubic spline function method underestimated the actual thickness of polar openings.
The burst mode of the vessel predicted by the cubic spline function method was
unsafe. The analysis results of the present method approached the actual case.
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