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Abstract
Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although
genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size
has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but
relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for
Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-
person diagnostic interviews (Castro et al. Am J Psychiatry 172:363–372, 2015). Here, we establish the genetic validity of
these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control
algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than
4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European
ancestry were used to estimate SNP-based heritability (h2g) and genetic correlation (rg) between EHR-based
phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics
Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-
based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency
—“coded-strict”, “coded-broad”, and “coded-broad based on a single clinical encounter” (coded-broad-SV). The
analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952
controls. The estimated h2g were 0.24 (p= 0.015), 0.09 (p= 0.064), 0.13 (p= 0.003), 0.00 (p= 0.591) for 95-NLP, coded-
strict, coded-broad and coded-broad-SV BD, respectively. The h2g for all EHR-based cases combined except coded-
broad-SV (excluded due to 0 h2g) was 0.12 (p= 0.004). These h2g were lower or similar to the h2g observed by the
ICCBD+ PGCBD (0.23, p= 3.17E−80, total N= 33,181). However, the rg between ICCBD+ PGCBD and the EHR-based
cases were high for 95-NLP (0.66, p= 3.69 × 10–5), coded-strict (1.00, p= 2.40 × 10−4), and coded-broad (0.74, p=
8.11 × 10–7). The rg between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic
validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly
genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the
large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research.

Introduction
Although twin studies first documented the high her-

itability of bipolar disorder (BD) decades ago, only
recently have robustly associated genetic risk loci been
identified through genomewide association studies
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(GWAS)1–8. At present, the major rate-limiting step for
GWAS of BD is the need for ever-larger sample sizes to
detect both common modest-effect variants and rarer
large effect variants. In recent years, the widespread
adoption of longitudinal electronic health records (EHRs)
has provided a vast and growing repository of phenotypic
data that can be leveraged for psychiatric research9. In
particular, when linked to sample collections through
biobanks and other efforts, EHR data provide a relatively
untapped opportunity to enhance the power of genetic
research. Nevertheless, establishing the validity of EHR-
derived phenotypes remains an important pre-requisite
for leveraging these resources.
In an effort to rapidly increase available samples for

genomewide studies of BD, we established the Interna-
tional Cohort Collection for Bipolar Disorder (ICCBD)
through which we applied high-throughput phenotyping
methods at sites in the United States (US), United King-
dom (UK), and Sweden7. At the US site (Partners
Healthcare), we developed and applied EHR phenotyping
algorithms to identify approximately 4500 cases and 5000
controls for whom DNA was obtained from discarded
blood samples. The use of EHR data to define valid phe-
notypes is particularly challenging for psychiatric dis-
orders. Because there are no pathognomonic laboratory or
pathologic findings, psychiatric diagnosis has traditionally
relied on self-reported symptoms, behavioral observa-
tions, and clinical judgment. Thus, genomic studies have
typically utilized structured or semi-structured diagnostic
interviews as the gold-standard method to establish case
and control status. EHR data, on the other hand, are
limited to information (e.g., billing codes, medication lists,
and narrative notes) collected in the course of clinical care
rather than for research purposes. Recognizing this, we
have undertaken systematic efforts to evaluate the validity
of our EHR-based phenotyping algorithms.
In an earlier report10, we described the development of

our automated phenotyping algorithms for BD cases and
controls. Briefly, we developed four case definitions, one
of which included natural language processing of narra-
tive EHR notes and three based on structured coded data
using rule-based classifiers that differed in their strin-
gency. Another rule-based algorithm was developed to
identify controls. To establish the clinical validity of these
algorithms, we conducted an in-person diagnostic vali-
dation study (N= 190) in which algorithm diagnoses were
compared to diagnoses made by blinded expert clinicians
using a gold-standard in-person diagnostic interview
(SCID-IV). Three of the four case definitions achieved
high positive predictive value (PPV) compared with
diagnostic interviews (up to 0.86) and the PPV for the
control algorithm was 1.0. Thus, we demonstrated that
automated EHR-based phenotyping can be used to iden-
tify clinically valid case and control definitions for BD.

However, an important remaining question is whether
these case and control sets are genetically comparable to
traditionally ascertained samples that have been used in
most genomic studies of BD. This is an important issue in
evaluating whether EHR-based samples can be combined
(e.g., through meta-analyses) with data from other ongo-
ing genomic studies (e.g., by consortia such as the Psy-
chiatric Genomics Consortium) to enhance gene
discovery.
Here, we report genetic validation of our EHR pheno-

typing algorithms by using genomewide data to estimate
their SNP-based heritability (h2g) and genetic correlation
(rg) with other large-scale traditionally ascertained BD
GWAS samples. We further examined genetic correla-
tions with other phenotypes of interest and performed
genome-wide heterogeneity testing to validate the con-
sistency of genome-wide association results. Our results
demonstrate that automated EHR phenotyping can be
used to assemble case/control cohorts that are both
clinically and genetically comparable to traditionally
ascertained samples and thus represent a valuable tool for
accelerating psychiatric genetic research.

Materials and methods
Study subjects
Cases and controls were collected as part of the Inter-

national Cohort Collection for Bipolar Disorder (ICCBD),
a US, UK, and Swedish consortium established to accel-
erate genomic studies of BD by applying high throughput
phenotyping methods7,10. The Massachusetts General
Hospital site of the ICCBD aimed to collect DNA from
4500 cases and 4500 controls by linking discarded blood
samples to de-identified EHR data. As described in detail
elsewhere10, cases and controls were identified by deriving
EHR-based phenotyping algorithms applied to the Part-
ners Healthcare Research Patient Data Registry (RPDR),
which spans more than 20 years of data from 4.6 million
patients. As the first step in building our BD phenotyping
algorithms, we created a “datamart” of 52,235 individuals
by filtering medical records to identify patients seen at
Massachusetts General Hospital, Brigham and Women’s
Hospital, or McLean Hospital who had at least one
diagnosis of bipolar disorder (ICD- 9 and DSM-IV-TR
codes 296.4*–296.8*) or manic disorder (ICD
296.0*–296.1*). Next, four phenotyping algorithms were
developed to identify cases and one algorithm to identify
controls.
The development and clinical validation of case and

control algorithms described here is adapted from Castro
et al. 10. The five phenotyping algorithms developed
comprised the following:
1. 95-NLP: This BD case algorithm incorporated

natural language processing (NLP) of narrative notes
using the i2b2 suite of software11. Expert clinicians
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manually reviewed 612 notes from 209 randomly
selected patients to identify gold-standard cases and
to extract relevant features from narrative notes to
be processed by NLP. We trained a model based on
414 features to predict the probability of BD using a
logistic regression classifier with the adaptive least
absolute shrinkage and selection operator (LASSO)
procedure. The final model, comprising 13 features,
achieved an area under the receiver operating curve
(AUC) of 0.93, with a sensitivity of 0.53 when the
specificity was set to 0.95.

2. Coded-strict: This algorithm was a rule-based
classifier that required at least three ICD codes for
BD, a predominance of BD diagnoses in the
longitudinal record, and either (a) treatment with
lithium or valproate within a year of BD diagnosis or
(b) treatment at a bipolar specialty clinic.

3. Coded-broad: This algorithm required at least two
ICD codes for BD, a predominance of BD diagnoses,
and treatment with at least two bipolar medications
(lithium, valproate, carbamazepine, or an atypical
antipsychotic).

4. Coded-broad-SV: This algorithm was the same as
“Coded-broad” except that two or more BD
diagnoses were allowed to occur during the same
inpatient or outpatient episode of illness.

5. Controls: This algorithm defined controls as those
age 30 years or older with no ICD-9 codes or history
of medications related to a psychiatric or
neurological condition.

As reported earlier, we conducted a direct-interview
study to examine the predictive validity of these algo-
rithms. Patients in the Partners Healthcare system who
were identified by each algorithm as BD cases or controls
were invited by mail to participate. Participants in the
validation study were independent of the patient samples

on which the algorithms were trained. After informed
consent was obtained, participants underwent semi-
structured diagnostic interviews (SCID-IV) conducted by
experienced doctoral-level clinicians blinded to classifier
diagnosis. To further preserve clinician blinding, we
recruited individuals from MGH clinics who reported a
previous diagnosis of schizophrenia or major depressive
disorder, disorders commonly considered in the differ-
ential diagnosis of BD. The protocol was approved by the
Partners HealthCare system institutional review board. A
total of 190 participants were interviewed and PPVs for
each algorithm were calculated as the proportion of
algorithm defined BD cases (or controls) who received a
concordant diagnosis by SCID interview. The PPVs for
each algorithm using a non-hierarchical approach (where
each case was assigned to any algorithm for which they
satisfied inclusion criteria) are shown in Table 1 and
reported in Castro et al.10.

DNA sample collection and genotyping
The phenotyping algorithms were applied to the Part-

ners Healthcare system to ascertain case and control DNA
samples by linking phenotypic data to discarded blood
samples as previously described10–12. In brief, case and
control medical record numbers are submitted to the
Partners HealthCare Crimson system, which acts as an
“honest broker” to match deidentified phenotypic
data to discarded blood samples under an approved
Institutional Review Board (IRB) protocol. Genotyping
was performed in five batches that included case and
control samples at the Broad Institute of MIT and Har-
vard using the Illumina PsychChip, a genomewide array
that includes ~250,000 common variants as a backbone
for GWAS imputation, ~250,000 rare variants, and
~50,000 additional markers focusing on psychiatrically
relevant loci.

Table 1 SNP-based heritability (h2g) for EHR-based bipolar disorder from the Partners Healthcare Research Patient Data
Registry

Bipolar disorder algorithms h2g (SE) Sample size

Liability scale Observed scale P-valueb PPV cases controls

95-NLP 0.24 (0.10) 0.25 (0.10) 0.015 0.86 862 3952

Coded-strict 0.09 (0.05) 0.15 (0.08) 0.064 0.84 1968 3952

Coded-broad 0.13 (0.04) 0.22 (0.08) 0.003 0.80 2581 3952

Coded-broad-SV 0.00 (0.11) 0.00 (0.18) 0.591 0.50 408 3952

All except coded-broad-SV 0.12 (0.04) 0.21 (0.07) 0.004 0.83 3013 3952

ICCBD+ PGCBDa 0.23 (0.01) 0.41 (0.02) 3.17 × 10−80 NA 13902 19279

SNP-based heritability on liability scale was converted from observed scale based on population prevalence of 1%
aICCBD+ PGCBD: Bipolar disorder genome-wide association study from the ICCBD and PGC1 with cases ascertained by traditional methods (Charney et al.7)
bTest for h2g different from 0. PPV: positive predictive values from clinical validation (Castro et al.10). 95-NLP: probabilistic algorithm with 95% specificity based on
natural language processing. Coded-strict, Coded-broad, Coded-broad-SV: coded rule-based algorithms with decreasing stringency. SV: single visit. SE: standard error
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Genotype quality control (QC) and imputation
A total of 3772 BD cases and 4141 controls with gen-

omewide data were available for this analysis. The number
of genotyped BD cases by algorithm and controls are
listed in Table 1 and described in Supplementary Figure 1.
We performed QC on each genotyping batch separately
with the following steps: (1) we removed single nucleotide
polymorphisms (SNPs) with genotype missing rate >0.05
before sample-based QC; (2) we excluded samples with
genotype missing rate >0.02, absolute value of hetero-
zygosity >0.2, or failed sex checks; (3) after sample-based
QC, we then removed SNPs with missing rate >0.02, with
differential missing rate between cases and controls >0.02,
or failed Hardy–Weinberg equilibrium test (p-value
<1.0 × 10−6 in controls and p-value <1.0 × 10−10 in cases).
To merge genotyping batches for imputation and ana-
lyses, we performed batch QC by removing SNPs with
differential missing rate >0.005 between batches or sig-
nificant batch association (p-value <5.0 × 10−8 between
controls form different batches). All QC were conducted
using PLINK v1.913.
The BD cases and controls included individuals from

diverse populations. To control for population stratifica-
tion and ensure the comparability between the current
sample and previous European ancestry BD GWAS, we
extracted samples with European ancestry for imputation
and analyses. We used the International Haplotype Map
project (HapMap3) samples as a population reference
panel and performed principal component analysis (PCA)
with the study samples and HapMap3 samples com-
bined14. We calculated the distance between each study
sample and the average European population samples in
HapMap3 using PC1 and PC2. We selected the
study samples with distance to average European
HapMap3 samples <0.01 (Supplementary Figure 2–4)14.
We also removed one sample from each pair of related or
duplicate samples (π̂> 0.2).
The final analytic dataset comprised 3330 BD cases (862

95-NLP, 1968 coded-strict, 2581 coded-broad, and 408
coded-broad-SV) and 3952 controls. The sum of the
individual cases groups exceeds 3330 due to the non-
hierarchical design in which cases were assigned to each
phenotype for which they met inclusion criteria. We
performed two-step genotype imputation with
Eagle2 software for pre-phasing and IMPUTE2 on the
European population study samples15,16.

Statistical analysis
To assess whether our EHR-based phenotypes capture

heritable components of BD, we used LD score regression
(LDSC)7,17,18 to estimate SNP-based heritability (h2g) for
each EHR-based BD cohort. We then examined the
degree to which heritable influences on our BD pheno-
types overlap with those traditionally ascertained BD

cases in other large-scale GWAS samples. To do this, we
used LDSC to compute the genetic correlation (rg)
between EHR-based BD samples and previously published
BD GWAS by other ICCBD cohorts and the PGC
(ICCBD+ PGCBD)7,17,18. The LDSC requires association
summary statistics for genome-wide SNPs to estimate h2g
and rg. To obtain these summary statistics, we first per-
formed GWAS for each of the four EHR-based BD defi-
nitions separately and for our combined BD case–control
sample. We used a BD prevalence of 1% to obtain liability-
scale h2g from LDSC19–22. Prior studies have documented
substantial genetic correlation between BD and other
psychiatric disorder phenotypes, most notably schizo-
phrenia (SCZ) and major depressive disorder (MDD)20.
To examine the genetic relationship between EHR-based
BD samples and related phenotypes, we used LD Hub23 to
estimate rg with schizophrenia (SCZ), major depressive
disorder (MDD), subjective well-being, and, as a negative
control, mean platelet volume (MPV). Finally, we per-
formed genome-wide Cochran’s Q-test to look for het-
erogeneity between association summary statistics from
the EHR-based BD samples and the ICCBD+ PGCBD
samples at single variant level, using SNPs with associa-
tion p-value <0.001 in the ICCBD+ PGCBD GWAS.

Results
We first estimated SNP-based heritability (h2g) for the

four EHR-based BD samples (Table 1). The liability-scale
h2g estimates were largest for the 95-NLP BD algorithm
(0.24, p= 0.015) and smallest for the coded-broad-SV
algorithm (0.0, p= 0.59), with intermediate but statisti-
cally significant values for the coded-strict and coded-
broad algorithms. The h2g of BD in the ICCBD+ PGCBD
sample was 0.23, which matches the h2g for the 95-NLP
algorithm but is greater than that of the rule-based
algorithms. Of note, the coded-broad-SV case set had the
least power with only 408 cases. As shown in Table 1, this
distribution of heritability estimates mirrors the relative
PPVs obtained in our clinical validation study. To max-
imize the BD case–control sample size, we combined the
BD case–control samples across algorithms into a single
case–control dataset. Since the coded-broad-SV had no
evidence of heritability, we created two combined BD
datasets; one included all BD cases and one included all
but the coded-broad-SV cases). The h2g was 0.11 (p-value
= 0.006) for all algorithms combined BD and 0.12 (p-
value= 0.004) for all algorithms excluding coded-broad-
SV.
We next estimated the SNP-based genetic correlation

(rg) between the EHR-based BD samples and the ICCBD
+ PGCBD samples (Table 2). The rg estimates were 95-
NLP (0.66), coded-strict (1.0), and coded-broad (0.74)
were all statistically significant. (Note that rg could not be
estimated for coded-broad-SV given its h2g of 0). The rg
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for all algorithms excluding coded-broad-SV was 0.83 (p
= 7.19 × 10−7). Adding coded-broad-SV BD cases to the
combined case set did not substantially change the rg
estimate although the standard error (SE) increased and
p-value rose to 2.88 × 10-6. We also estimated the pairwise
rg between the EHR-based BD case–control samples and
the final combined BD samples. As expected, the rg esti-
mates are high and ranged from 0.90 to 0.98 between
algorithms, and were 1.00 between each algorithm and the
combined sample (excluding coded-broad-SV). Finally,
the rg between ICCBD and PGCBD was 1.00 (SE= 0.065,
p-value= 1.45 × 10-74).
Given prior evidence that traditionally ascertained BD

GWAS show significant positive genetic correlations with
SCZ and MDD18,20 and significant negative genetic cor-
relation with subjective well-being24, we examined these
correlations using our EHR-based algorithms as another
index of their genetic validity. As a negative control, we
also examined their genetic correlation with mean platelet
volume (MPV), a phenotype for which we would not
expect significant genetic correlation. (Fig. 1; Supple-
mentary Table 1). For comparison, we also examined
these patterns of correlation with BD in traditionally
ascertained samples (ICCBD+ PGCBD). As expected
based on prior data18,20,24, EHR-based BD was positively
genetically correlated with SCZ and MDD, negatively
correlated with subjective well-being, and uncorrelated
with MPV (Fig. 1). Of note, the BD-MDD genetic corre-
lation was higher than the BD-SCZ genetic correlation
using EHR-based BD (left side, Fig. 1) while the opposite
was true using the ICCBD+ PGCBD cohort (right side,
Fig. 1). We hypothesized that this difference in rg patterns
might be related to differences in the proportions of BD
subtypes among the EHR-based BD cases and those
included in the traditionally ascertained BD samples. To
investigate this, we calculated the percentage of BD case
subtypes, including bipolar I disorder (BD1), bipolar II
disorder (BD2), schizoaffective disorder bipolar type
(SAB), and bipolar disorder not otherwise specified (NOS)

for the EHR-based BD cases and the ICCBD cases (the
subtypes of PGCBD cases were not available). We found
that the EHR-based BD cases comprised a lower pro-
portion of SAB subtype cases (0.6–1.6%) compared with
the ICCBD samples (9.1%) (Supplementary Figure 5). This
difference would be consistent with a relatively smaller
BD-SCZ genetic correlation seen in the EHR-based
samples compared with the ICCBD samples.
Finally, we performed Cochran’s Q-test to identify

potential heterogeneity of the association summary sta-
tistics between EHR-based BD samples and the ICCBD+
PGCBD samples. This analysis was restricted to SNPs
with association p < 0.001 in the ICCBD+ PGCBD
GWAS in order to exclude SNPs with weak association
results whose directionality might be less robust. We
identified a single locus with significant heterogeneity
across the genome after Bonferroni correction (SNP N=
28,320) for both coded-broad and for the combined EHR-
BD sample (excluding coded-broad-SV) (Fig. 2). This
locus on chromosome 22 (peak Q-test p-value at
rs196065= 3.34 × 10−7), showed modest association with
BD (p-value= 5.78 × 10−5 in ICCBD+ PGCBD) and did
not overlap with any previously reported BD-associated
loci. Thus, we found negligible evidence of heterogeneity
of genomewide association results between EHR-based
BD and traditionally ascertained BD.

Discussion
As an ever-growing longitudinal repository of the clin-

ical phenome, EHRs represent a new and powerful
resource for psychiatric research9. Nevertheless, their
utility depends on the validity of the clinical and pheno-
typic data that can be extracted. We have previously
demonstrated the feasibility of deriving diagnoses with
high predictive value compared with a gold standard of
clinician-administered diagnostic interviews10. However,
in the context of psychiatric genetic research, establishing
the genetic validity of these phenotypes is crucial. In the
present study, using genomewide genotype data for more
than 7000 cases and controls, we demonstrate that EHR-
based algorithms can be used to ascertain BD phenotypes
that are heritable and genetically comparable to tradi-
tionally ascertained samples. Automated algorithm-based
phenotyping linked to biospecimens provides substantial
efficiencies in terms of the time and costs involved in
assembling large-scale samples for genetic research. Prior
simulations have documented up to a ten-fold reduction
in the cost associated with phenotyping and sample col-
lection11. Using our case/control BD definitions linked to
discarded blood samples, we were able to collect
approximately 5000 controls over 10 weeks and more
than 4000 cases over 3 years. As described below, three
sets of findings from our analyses are particularly
noteworthy.

Table 2 SNP-based genetic correlation (rg) between EHR-
based bipolar disorder and bipolar disorder ascertained
by traditional methods from ICCBD+ PGCBD

rg (SE) p-valuea

95-NLP 0.66 (0.16) 3.69 × 10−5

Coded-strict 1.00 (0.29) 2.40 × 10−4

Coded-broad 0.74 (0.15) 8.11 × 10−7

All except coded-broad-SV 0.83 (0.17) 7.19 × 10−7

Genetic correlation was not estimated for coded-broad-SV due to SNP-based
heritability estimate of 0
SE standard error
aTest for different from 0
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Fig. 1 SNP-based genetic correlation (with 95% confidence interval) between bipolar disorder based on different ascertainment methods and other
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Fig. 2 Genome-wide Cochran’s Q-test for heterogeneity of SNP effects between ICCBD+ PGCBD and EHR-based bipolar disorder. Red line
shows the Bonferroni-corrected significance level for the Q-test. SNPs are selected with association p-value threshold of 0.001 based on ICCBD+
PGCBD analysis (total number of SNPs= 28,320)
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First, our results document that EHR-based diagnostic
algorithms can be used to ascertain BD phenotypes that
yield SNP-based heritability comparable to that observed
in GWAS that have relied on more time-intensive, cost-
intensive, and labor-intensive recruitment and diagnostic
evaluation. The highest heritability (0.24) was seen with
our 95-NLP algorithm which combined NLP of narrative
test features and coded EHR data. This estimated herit-
ability was nearly identical to that derived from GWAS of
the larger traditionally ascertained cohorts of the inter-
national ICCBD and PGC (h2g= 0.23 for 13,902 cases and
19,279 controls). The 95-NLP algorithm also achieved the
highest positive predictive value in our previous clinical
validation study. For two of the remaining three algo-
rithms which involved rule-based algorithms of structured
EHR data, we also observed significant, though relatively
lower, heritability estimates (h2g= 0.09–0.12). The least
restrictive algorithm (coded-broad-SV) did not exhibit
significant heritability, though the small sample size of
this subgroup limited the power of our analyses. Of note,
this last algorithm also performed poorly in our prior
clinical validation study (PPV= 0.5). Nevertheless, the
overall heritability of our EHR-based BD was 0.12 (p=
0.004), dropping slightly to 0.11 (p= 0.006) when the
coded-broad-SV was included. In addition, the EHR-
based BD definitions were nearly perfectly genetically
correlated. Pairwise genetic correlations between the
phenotypes ranged from 0.98 to 1.0 except for 95-NLP
and coded-broad-SV (rg= 0.90).
Second, we found that our cohorts ascertained by

automated EHR phenotyping exhibited substantial genetic
correlations (rg) with the large ICCBD+ PGCBD samples.
Overall, the rg between our EHR-based BD case/control
samples and the ICCBD+ PGCBD samples was 0.83 (p=
2.88 × 10−6), demonstrating that our approach captures
genetic influences that strongly overlap with those acting
on BD in traditionally ascertained samples. In addition to
providing further genetic validation of EHR-derived phe-
notypes, these results indicate that such samples can be
combined with other existing samples to enhance the
power of genetic discovery.
Finally, we demonstrate that our phenotyping approach

replicates patterns of cross-disorder genetic overlap that
have previously been reported in genetic studies of BD7,25.
In particular, EHR-based BD exhibited positive genetic
correlations with SCZ and MDD and negative correla-
tions with subjective well-being. Once again, this supports
the genetic validity of our algorithm-defined BD pheno-
type. Unexpectedly, the genetic correlation with SCZ was
less than that seen with MDD, a finding that may be
attributable to the relatively low frequency of SAB cases in
our sample.
We acknowledge that our results have certain limita-

tions. First, our sample size, while substantial, is smaller

than that of some other existing samples (e.g., ICCBD and
PGCBD), which may have limited the power and precision
of our heritability and genetic correlation analyses. Sec-
ond, the portability of our specific phenotyping algo-
rithms to other healthcare settings remains to be
determined. Notably, however, our results demonstrate
that a range of algorithms—with and without NLP and
using diagnostic rules of varying stringency—yield phe-
notypes that are clinically and genetically comparable to
those obtained by in-person standardized diagnostic
assessments. With the exception of the 95-NLP algorithm,
each of our case and control phenotypes are based on
structured diagnostic codes and medication data that are
widely available and standardized in EHR systems, facil-
itating their application in other systems. In the case of
the 95-NLP algorithm, the narrative features comprise
nine features (enumerated in Castro et al.10) that refer to
either a diagnosis, medication, or visit type—none of
which we would expect to be unique to our healthcare
system. There is now a growing literature demonstrating
the portability of EHR-based diagnostic algorithms26. In
particular, the Electronic Medical Records and Genomics
(eMERGE) Network has created a catalog of EHR-based
diagnostic phenotypes (PheKB) that includes NLP-based
algorithms developed in one healthcare system and
applied in others27. Finally, diagnostic misclassification
could bias or reduce the power of genetic analyses28,29.
However, this caveat applies to any phenotyping method,
and we note that our clinical validation studies10

demonstrate relatively low levels of diagnostic mis-
classification in comparison to a gold-standard clinician-
administered diagnostic interview.
In summary, the current study provides the first genetic

validation of EHR-based phenotyping for BD and suggests
that automated phenotyping algorithms can identify
samples that are highly genetically correlated with those
ascertained through conventional methods. Taken toge-
ther, the present results and those of our prior clinical
validation study, suggest that the use of any or all three of
the heritable EHR-based algorithms we derived (i.e., 95-
NLP, coded-strict, and coded-broad) can facilitate genetic
studies of bipolar disorder. High throughput phenotyping
using the large data resources available in the EHR
database represents a viable method for accelerating
psychiatric genetic research.
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