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It is critical for patients who cannot undergo eradicable surgery to predict the risk of lung
cancer recurrence and metastasis; therefore, the physicians can design the appropriate
adjuvant therapy plan. However, traditional circulating tumor cell (CTC) detection or
next-generation sequencing (NGS)-based methods are usually expensive and time-
inefficient, which urge the need for more efficient computational models. In this study,
we have established a convolutional neural network (CNN) framework called DeepLRHE
to predict the recurrence risk of lung cancer by analyzing histopathological images of
patients. The steps for using DeepLRHE include automatic tumor region identification,
image normalization, biomarker identification, and sample classification. In practice, we
used 110 lung cancer samples downloaded from The Cancer Genome Atlas (TCGA)
database to train and validate our CNN model and 101 samples as independent test
dataset. The area under the receiver operating characteristic (ROC) curve (AUC) for
test dataset was 0.79, suggesting a relatively good prediction performance. Our study
demonstrates that the features extracted from histopathological images could be well
used to predict lung cancer recurrence after surgical resection and help classify patients
who should receive additional adjuvant therapy.

Keywords: lung cancer, recurrence, hematoxylin and eosin staining, histopathological image, convolutional
neural network

INTRODUCTION

Lung cancer accounts for 13% of newly diagnosed cancer incidences worldwide, resulting in 1.4
million deaths annually (Travis et al., 2011). According to the American Joint Committee on Cancer
(AJCC), the TNM staging system is widely used for describing the anatomical extent of the disease
on the basis of the assessment of three components: the extent of the primary tumor (T), presence
and extent of regional lymph node metastasis (N), or presence of distant metastasis (M). The
current TNM staging system is relatively accurate in defining the tumor stage. The recurrence rates
of lung cancer patients in TNM stages I, II, and III are 34, 55, and 74%, respectively.
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As is known to us all, the first-line treatment plan for a
cancer patient is surgical removal of the primary tumor if there
is no metastasis. However, the 5-year survival rate of postsurgical
patients with early-stage lung cancer is only 54%, which is
significantly worse than that of patients with breast cancer
(∼90%) (Kaplan et al., 2016; Meng et al., 2018; Sun et al., 2019).
One key factor leading to the poor postsurgical outcome for lung
cancer patients is the loss of pulmonary function. Lobectomy
leads to the loss or compromise of limited pulmonary function.
On the other hand, wedge resections, which largely depend on
the surgical resection margin, can save lung parenchyma but
are associated with a nearly twofold increase in local cancer
recurrence. It is crucial to decide the type of surgery to be
performed because the 2-year survival rate in patients with local
recurrence will drop to about 20% (Hung et al., 2009).

To alleviate the risk of surgical-related recurrence risk and
increase the survival rate of postsurgical lung cancer patients,
some invasive or non-invasive techniques have been used in
clinical practice. First, the detection of circulating tumor cells
(CTCs) at the time of surgery may represent an approach
for identifying patients at a high risk of recurrence. A recent
study indicated that the detection of pulmonary venous CTCs
(PV-CTCs) at surgical resection could be used to evaluate
future relapse (Chemi et al., 2019). Second, a few types of
genomic alterations could be utilized to evaluate the risk
of lung cancer recurrence owing to the strong association
between genetic instability and tumorigenesis (Chan and Hughes,
2015). Next-generation sequencing (NGS) has a better testing
performance with compatibility of low-input DNA. The National
Comprehensive Cancer Network guideline of non-small-cell lung
cancer recommended biomarkers favorable for target therapies
such as epidermal growth factor receptor (EGFR) mutation
(Couraud et al., 2014; Xu et al., 2016). Plasma and urine
EGFR mutation levels could be used to predict the response of
chemotherapy (Reckamp et al., 2016). NGS-based liquid biopsy
is complemented with traditional tissue biopsy, which might be
a promising strategy in the molecular profiling of lung cancer
in the future. Furthermore, circulating tumor DNA and tissue
assay might be combined to better predict lung cancer recurrence
(Reckamp et al., 2016).

Since the rapid rise in the incidence and mortality of
lung cancer, many researchers have shifted their focus on
advanced discovery of novel diagnostic approach and predictive
markers of metastasis, therefore, to assist clinical professionals
to design individualized therapy for patients. Cancer recurrence
following surgery or chemotherapy for lung cancer is a
significant failure of local treatment as well as reduces the
patient outcomes. Currently, cancer immunotherapy has been
applied to cancer therapy. It has been recognized as adjuvant
therapy for patients do not qualify for surgical intervention.
The novel approach can be used to identify driver genes and
predictive genes. For example, we have explained some lung
cancer-specific gene mutation, gene sequencing, and biomarkers.
PD-1 is an antibody against program death receptor and
has been approved for second-line therapy of squamous cell
carcinomas (Beer et al., 2002). Moreover, many preclinical
trials demonstrated that combined traditional strategy and

novel gene therapy may have improved patient overcome
(Weiner et al., 2012).

Compared with other techniques, visual inspection of
histologically stained slices is considered standard and used
by pathologists to evaluate tumor stage, subtype, metastatic
location, and prognosis (Fischer et al., 2008). With the absence of
definitive pathological features, microscopic assessment requires
experienced pathologists to evaluate stained slices. This process
could be quite challenging and time-consuming for pathologists,
and the results also depend on the quality of hematoxylin and
eosin (H&E)-stained slices. Furthermore, accurate interpretation
of an H&E image could be difficult because the distinction
among different types of lung cancer is relatively unclear
(MacConaill, 2013). To assist pathologists, deep learning tools
have been developed to interpret the whole-slide image (WSI),
which is helpful for developing an appropriate treatment
plan and predicting survival outcomes. Yu et al. combined
conventional image processing techniques with machine learning
algorithms such as random forest, support vector machine, and
naïve Bayes classifier to achieve acceptable prediction accuracy
for lung cancer subtypes (Yu et al., 2016). The area under
the receiver operating characteristic (ROC) curve (AUC) was
approximately 0.75 in distinguishing two subtypes of lung cancer
(Blumenthal et al., 2018). Furthermore, deep learning has also
been successfully applied to the subtype classification of multiple
cancers such as breast cancer, bladder cancer, and lung cancer
(Zachara-Szzakowki et al., 2015; Araujo et al., 2017). The AUC
reached approximately 0.83 by using The Cancer Genome Atlas
(TCGA) dataset (Zachara-Szzakowki et al., 2015). Convolutional
neural network (CNN) approach is not only used in cancer
field, but it has been used in biochemical field as well. CNN
has also served as a powerful approach to identify specific
proteins located in electron transport chain, achieving good
sensitivity (0.83%), specificity (94.4%), and accuracy (92.3%).
This study demonstrated that the CNN approach can also be
used in understanding the biochemical mechanism of important
proteins such as electronic (Le et al., 2017, 2019). The same study
team also used CNN to identify fertility related protein, which
also received good sensitivity, specificity, and accuracy. Fertility-
related proteins have critical function in reproductive organs and
hormone-related fertility (Le, 2019). In fact, deep learning-based
annotations of medical images are now close to, if not better than,
those of pathologists for many types of cancers at present. With
the development of image segmentation techniques (Simon et al.,
2018), the WSI has been widely used for nuclei identification,
tissue segmentation, and epithelial tissue identification in several
cancers such as renal cancer, bladder cancer, and breast cancer
(de Bel et al., 2018).

In this study, we established a novel machine learning
framework to predict lung cancer recurrence by using the H&E-
stained histopathological images. We first patched the H&E WSI
into images of the size 512 × 512 pixels, which were then subject
to a few image preprocessing steps such as image quality control
and normalization. We then established a lung cancer tumor
region prediction model and a cancer recurrence prediction
model on the basis of the patched images. The prediction results
based on patched images of a WSI were then combined to
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evaluate the recurrence risk of a lung cancer patient. Our model
is cost-effective and could meet large clinical demands.

MATERIALS AND METHODS

Data Preparation
Hematoxylin and eosin images and clinical data of lung
cancer were downloaded from TCGA database1, which is a
landmark cancer genomics program that characterized thousands
of primary cancers and matched normal samples spanning
many cancer types. The labels that matched H&E images
downloaded from TCGA contained information about metastasis
and recurrence, and H&E image with SVS format was analyzed
by the Python package OpenSlide. H&E images from those
patients with the risk of metastasis and recurrence were
labeled as “1” and “0” for those without metastasis and
recurrence (Figure 1A).

1https://portal.gdc.cancer.gov/repository/

Image Preprocessing
To predict cancer recurrence and metastasis, tumor regions
were annotated with the help of an expert pathologist by visual
assessment. The morphology, color, and size of the nucleus of
tumor cells are shown inside of tumor region, with the blue solid
dotted lines representing the boundary of tumor (Figure 1B). For
image preprocessing, each WSI was divided into computationally
memory-affordable tiles of 512 × 512 pixels as input dataset. For
noise reduction, Python’s OpenCV (version 4.1.1) package was
applied to remove blank or blurred spaces in tumor region and
to help reduce non-association interference in model training
process. The non-association region was calculated as the ratio
of the blank area or blurred spaces to the total area. The defined
threshold of ratio was used to remove false-positive structures
by definitive cutoff threshold. Further analysis of segmentation
of H&E slice was performed by image de-noising, filtering, edge
detection, expansion, and contraction techniques with OpenCV
package (Figure 2A).

The performance of the computational technique for H&E-
stained tissue image analysis is compromised by variable

FIGURE 1 | The flowchart of this study. (A) The whole-slide images (WSIs) of lung cancer downloaded from The Cancer Genome Atlas database. (B) Construction
of a dataset consisting of annotated WSIs split by non-overlapping 512 × 512 pixels windows. (C) Color normalization. (D) Convolutional neural network (CNN)
model training. (E) Heat map and classification of a testing sample. Each tile from the test image was classified by trained CNN, and the results were finally
aggregated per slide to extract the heat map.
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FIGURE 2 | Color normalization of H&E slices. (A) The de-noising process applied to regions that have large blank spaces in the tumor regions. (B) The deep
convolutional Gaussian mixture model (DCGMM) used for color normalization. The left column represents original images, and the right column represents imaging
after color normalization.

image colors due to H&E reagent concentration, staining
process, and absorption caused by tissue fixation and staining
method. To remove potential influenced variables, multiple color
normalization (CN) approaches have been established (Vahadane
et al., 2016), and unsupervised generative neural networks were
applied in our study for performing stain-CN based on deep
convolutional Gaussian mixture models (DCGMMs) in the
stained H&E images (Shen et al., 2017; Wang et al., 2017;
Qaiser et al., 2018; Simon et al., 2018). The DCGMM represents
parameters of a fully CNN that are combined with the GMM
parameters to optimize CN (Figure 2B).

The Convolutional Neural Network +

ResNet Model
In our study, Tensorflow 2.0.0 package was applied to conduct
our model. To be specific, CNN was used effectively to identify
tumor diagnoses by analyzing H&E-stained slices. CNNs are
the most popular deep learning models for processing color
images. The CNN deep learning network includes the input layer,
intermediate hidden layer, and output layer. The intermediate
hidden layer consists of multiple convolutional layers and pooling

layers followed by more fully connected layers. The CNN could
adapt and extract the feature hierarchy and classify images by
error back propagation, which is a relatively effective gradient
descent algorithm to update the weights connecting its inputs to
the outputs during the training process.

After being transformed from the input layer, the image data
were trained sequentially into the convolution layer composed of
32 n × n convolution kernels (e.g., n = 5) and the pooling layer
for dimensional reduction through the ReLU excitation layer.
The data were output to complete the entire feature extraction
process afterward. Then, the data entered the second and third
intermediate hidden layers, respectively. After the entire process
was completed, all the features were extracted completely.

Batch normalization layer was then applied with the CNN to
improve the generalization ability of the network and to expedite
the training for higher learning rate. Increasing the number
of layers of a deep CNN after reaching a certain depth could
not improve the classification performance further, resulting in
slower network convergence and worse classification accuracy
due to the disappearance gradient problem.

ResNet was introduced to deal with this problem. The
difference between residual and ordinary networks is the
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introduction of jump connection that can make the information
of the previous residual block flow into the next one unimpeded,
improve the information flow, and also avoid the disappearance
gradient problem and the degradation caused by over depth of
the network. Suppose there is a large neural network called big
NN and its input is x and its output activation value is A[l].
After increasing the depth of the network, adding two additional
layers to the network, and receiving the final output as A[l +
2], these two layers could be regarded as a residual block with
a shortcut connection, and the activation function used in the
whole network is relu. The function of relu is written by g(x).
Linear function is written by W ∗ A + B. We can get A[l +
2] = g(Z[L + 2] + A[l]), where Z[L + 2] = W[l + 2] ∗ A[l +
1] + B[l + 1]. If W[l + 2] = 0, B[l + 1] = 0, we can know A[l
+ 2] = g(A[I]) then. When A[l] ≥ 0, A[l + 2] = A[l]. This is
equivalent to establishing the linear relationship between A[l] and
A[l+ 2], when W and B is 0. It is equivalent to neglecting the two
neural layers behind A[l] and realizing the linear transfer of the
interlayer. The model itself can tolerate the deeper network, and
this extra residual block will not affect its performance, and the
relations are shown in Figure 3.

In fact, the residual network is composed of several shallow
networks, and a shallow network could avoid the appearance of
the vanishing gradient problem during training, thus accelerating
the convergence of the network.

Heat Map Generation
The probability maps were generated from the tumor region for
high metastasis score detection (Figure 1E). The color in the
probability map as shown in Figure 4B indicates the predicted
metastasis score by pixels in the tumor region. The red color
represents a high score, and blue color indicates a low score.
H&E images were scanned by a 512× 512 window in a step-wise
manner, and results were obtained by the CNN model at each

window. We applied the results on the pixels that were included
in the window. We summed up all the values that pass the pixel
and determined their average value, which was the predicted
metastasis score of the pixel. The probability to recurrence and
metastasis of every pixel was turned into color value with clear
probability visualization. The probability value was mapped in
the range of (0, 1) to RGB color from pure blue color (0, 0, 255) to
pure red color (255, 0, 0) linearly. As a result, the red pixel image
represents as a lower risk of metastasis; meanwhile, the light blue
pixels represent no risk of metastasis, as shown in Figure 4B.

The WSI was divided into tiles, and each tile gets a probability
result by model prediction during window sliding. Results of
all tiles were integrated by fusion algorithm and computed as
the final probability results for a specific slide. The average
probability of top n windows was defined as identification
score. Identification score predicted the risk of recurrence and
metastasis with specific cutoff threshold. Scores higher than
threshold were interpreted as positive results, whereas the top
number value served as a hyper-parameter and is decided by
cross-validation.

Hyper-Parameter Tuning by
Cross-Validation
A fivefold cross-validation was applied to prevent overfitting and
to select hyper-parameters of the model for selecting the hyper-
parameter space with best cross-validation score. The hyper-
parameters that we tried to use in our model are activation
function, patch, and top number. Our workflow is shown in the
following three steps:

(1) Defining a grid on three dimensions with each of these maps
for a hyper-parameter; for example, n = (activation function,
patch, top number).

(2) For each dimension, defining the range of possible values.

FIGURE 3 | The ResNet network workflow.
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FIGURE 4 | Receiver operating characteristic (ROC) and heat map on The Cancer Genome Atlas (TCGA) training data. (A) ROC curve of test data with the
512 × 512 pixel image. (B) Heat map of the tumor region applied in the convolutional neural network (CNN) model by using TCGA dataset. We also obtained the
heat map given by the model shown in B. From the heat map, we found that the color of suspected tumor area was red and that the color of normal area was partial
blue. The results were consistent as we have considered.

(3) Searching for all the possible configurations and waiting for
the results to establish the best one.

Performance Evaluation Criteria
Several well-established performance evaluation criteria were
employed to evaluate the performance of the classification
model, including sensitivity (Se) or recall, specificity (Sp),
precision, and the AUC.

Se =
TP

TP+ FN

Sp =
TN

TN+ FP

Precision =
TP

TP+ FP

F1 =
2× precision× recall

precision+ recall

In the equations, TP stands for the number of images correctly
recognized as positive samples. FP stands for the number of
images that were incorrectly recognized as positive samples.
FN stands for the number of images incorrectly recognized as

negative samples. TN stands for the number of images correctly
recognized as negative samples. We indicate TP, FP, TN, and TP
by confusion matrix as shown in Table 1.

RESULTS

Clinical Characteristics of Training
Dataset
A total of 110 H&E images of lung cancer patients with metastasis
or recurrence information were downloaded from TCGA, and
the available datasets were selected with required condition with
data type of slide image, data format of SVS, primary site for

TABLE 1 | Confusion matrix definitions.

Confusion matrix Prediction

Positive Negative

True Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)
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bronchus and lung, and white ethnicity (Table 2). The average
age of the selected patient cohort was 54 years, and 68% of
the patients have metastasis or recurrence. We labeled data to
positive with new_tumor_event_type of Distant Metastasis and
Locoregional Recurrence. At the same time, we labeled data to
negative with tumor_status of Tumor Free.

Data Pre-treatment
The 110 H&E images with corresponding clinical data
downloaded from TCGA are all in SVS format. Whole images
could not be used as the input data for the network. Hence, we
segmented them into tiles with a 512 × 512 pixel size from the
110 H&E images in which tumor regions were annotated in the
WSIs by the expert pathologist. The tiles with a low amount of
information (e.g., more than 70% of the surface was covered by
background) were removed. Thereafter, a template image was
selected by an expert pathologist. Then we trained the DCGMM
by using this template image. After training, we applied the
model on the H&E image on the upper row of the compared
color normalized image down the row (Figure 1C). The results
are shown in Figure 2B.

Model Construction and
Hyper-Parameter Selection
DeepLRHE model was constructed with ResNet network and
top five selection algorithm of WSI (Figure 1D). We used
GridSearchCV class in scikit-learn by providing a dictionary
of hyper-parameters to determine the hyper-parameters of the
model. The hyper-parameters we selected are shown as follows:

Top number = [5, 3]

Patch = [100, 150, 200]

Activation function = [softmax, relu, tanh].

After the cross-validation process, activation function is set
to relu, patch number is set to 150, and top number is set to
5 as shown in Table 3, in which performance is the best (the
AUC value reached a maximum value of 0.84). We used selected
hyper-parameters to construct the DeepLRHE model on whole
110 training dataset.

TABLE 2 | Clinical characteristics.

Clinical variable Category Clinical level

Age Mean 54 (31–83)

Gender Male 62

Female 47

Unknown 1

Samples type H&E 1

Metastasis and recurrence period Tumor Free 35

Loco regional recurrence 15

Distant metastasis 60

Cancer subtype Adenocarcinoma 58

Squamous carcinoma 52

TABLE 3 | Tuning of the hyper-parameters.

Activation function Patch Top number

5 3

softmax 100 0.79 0.73

150 0.82 0.75

200 0.82 0.78

relu 100 0.81 0.74

150 0.84 0.78

200 0.83 0.80

tanh 100 0.73 0.6

150 0.76 0.67

200 0.77 0.69

TABLE 4 | The confusion matrix of the model for test dataset.

True Prediction Total

High risk Low risk

High risk 49 9 58

Low risk 14 29 43

Total 63 38 101

Performance Evaluation on Test Dataset
Another 101 H&E images were downloaded with their clinical
information in different project from train dataset in TCGA. The
datasets were available on TCGA in condition with data type of
slide image, data format is SVS, and primary site of bronchus and
lung and ethnicity is not reported (this condition is different from
that of the training dataset). The trained model was applied on
those data and obtained the confusion matrix below and ROC
curve in Figure 4A.

The performance evaluation results were calculated from
the confusion matrix in Table 4. The results showed that the
sensitivity and specificity of the model were 0.84 and 0.67,
respectively. The precision and F1 score reached 0.78 and 0.81,
respectively, in the independent test dataset. In the meantime, the
model achieved 0.79 AUC score. The AUC value on independent
test dataset was lower compared with AUC value (0.79 vs.
0.84) of fivefold cross-validation method on train dataset. The
performance evaluation from independent test dataset was
more convincing.

DISCUSSION

Machine learning algorithms have been widely used in clinical
practice. They can map unstructured information into a
structured form as well as enable automatic identification and
extraction of relevant information. Such an automated system
enables us to significantly reduce time-consuming diagnostic
procedures. With a dramatic improvement in the affordability
of the testing, it has also brought challenges pertaining to
the evaluation of effectiveness and accuracy of gene testing,
which could affect diagnosis and subsequent therapy. Therefore,
machine learning algorithms have been a hot topic and a
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dynamically changing area in the recent years. Therefore, these
models require human experts to encode the domain knowledge
through feature engineering. However, the results of such models
are still controversial and time dependent.

Recently, multilayer NNs or deep learning has been applied
to gain insights from heterogeneous clinical data. The major
difference between deep learning and conventional NN is
the number of hidden layers as well as their capability to
learn meaningful abstractions of the input. Deep learning
has been applied to process aggregated clinical documents
(imaging, pathological slices from biopsy, and other reports).
Several studies have used deep learning to predict disease
prognosis from medical documentation; for example, one
study used a four-layer CNN to predict congestive heart
failure and chronic obstructive pulmonary disease that showed
promising performance. CNN is a powerful algorithm for
advancing biomedical images and analysis (Makowski and
Hayes, 2008; Shackelford et al., 2013). It can be applied for
pathological image analysis tasks such as tumor detection and
quantification of cellular features by using either general staining
slices or in combination with immunohistological markers
(Mogi and Kuwano, 2011; Morris et al., 2013). Computerized
image processing histopathological analysis system has been
impressive in the prognostic determination of various tumors
and even precancerous lesions in the esophagus (Chiang et al.,
2016). Recent studies showed that many histological features
are associated with survival outcomes. Deep learning tumor
detection allows for tumor size calculation and shape estimation.
Tumor size and shape are a well-established prognostic marker
for lung cancer, and the boundary of the tumor region has
been reported to be associated with a poor local prognosis
marker as well (Esteva et al., 2017). Furthermore, most tumor-
related features including the tumor area, perimeter, convex
area, and filled area of the tumor region were associated with
poor survival outcome (Popin et al., 2018). Extracting tumor
features from H&E were usually conducted by experienced
experts; however, the extraction process is subject to human
bias and is time-consuming. CNNs, as the most popular
deep learning model for imaging processing, could directly
handle multidimensional color image and extract the regional
boundary of the pixels. Moreover, CNNs can retain parameters
during imaging processing as well as effectively identify similar
images.

In this study, to identify tumor regions, the pathological
images were divided into 512 × 512 pixel patches to classify
as tumor, non-malignant, or white categories using the CNN

model. The CNN model was trained on image patches that
were downloaded from TCGA database for lung squamous cell
carcinoma (LUSC). Moreover, we compared the performance of
our model on the test set with the performance of experienced
pathologists. Our results reached an 81% AUC score. Moreover,
our model has strong generalizability for learning comprehensive
tissue and cell morphological changes that could be used as an
auxiliary approach to make a pathological diagnosis for different
types of cancers. Also, our results suggest that deep learning
of histopathological imaging features can predict the prognosis
of lung cancer patients, thereby assisting health professionals to
make precision treatment plans.

Our study has several limitations. TCGA images exclusively
composed of lung adenocarcinoma (LUAD) cells, LUSC cells, or
normal lung tissues. However, several images contain features
that the model has not been trained to recognize, making
the classification task more challenging. For example, we
observed several non-specific features including blood vessels,
inframammary cell infiltration, and necrotic regions in the lung
tissue as well as bronchial cartilage and fibrous scars. Moreover,
this study did not include an independent set to validate our
model, which may have compromised the accuracy of the results.

Overall, here, we established a novel deification model
for pathological diagnoses. This model interpreted predictions
through convolutional natural language and visual attention
that could help pathologists to analyze histological slices. Our
model could allow diagnostic consistency and establish cost-
effective systems to meet large clinical demands with less manual
intervention and time efficiency by analyzing precise pixels
objectively. Future studies are necessary to testify its performance
for other types of cancers such as gastrointestinal cancers.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

YBL and LD designed the project. ZW, LW, CL, YC, YBL,
XM, and QL analyzed the data, performed the experiments, and
wrote the manuscript. ZW and YGL modified and reviewed the
manuscript. All authors contributed to the article and approved
the submitted version.

REFERENCES
Araujo, T., Guilherme, A., Eduardo, C., José, R., Paulo, A., Catarina, E., et al.

(2017). Classification of breast cancer histology images using convolutional
neural networks. PLoS One 12:e017754.

Beer, D. G., Sharon, L. R. K., Chiang-Ching, H., Thomas, J. G., Albert, M. L., David,
E. M., et al. (2002). Gene-expression profiles predict survival of patients with
lung adenocarcinoma. Nat. Med. 8, 816–824.

Blumenthal, G. M., Bunn, P. A. Jr., Chaft, J. E., Caroline, E. M., Edith, A. P., Giorgio,
V. S., et al. (2018). Current status and future perspectives on neoadjuvant
therapy in lung cancer. J. Thorac. Oncol. 13, 1818–1831.

Chan, B. A., and Hughes, B. G. (2015). Targeted therapy for non-small cell lung
cancer: current standards and the promise of the future. Transl. Lung Cancer
Res. 4, 36–54.

Chemi, F., Rothwell, D. G., McGranahan, N., Sakshi, G., Chris, A., Simon, P. P.,
et al. (2019). Pulmonary venous circulating tumor cell dissemination before
tumor resection and disease relapse. Nat. Med. 25, 1534–1539. doi: 10.1038/
s41591-019-0593-1

Chiang, S., Weigelt, B., Wen, H. C., Fresia, P., Ashwini, R., Luciano, G. M., et al.
(2016). IDH2 mutations define a unique subtype of breast cancer with altered
nuclear polarity. Cancer Res. 76, 7118–7129. doi: 10.1158/0008-5472.can-16-
0298

Frontiers in Genetics | www.frontiersin.org 8 August 2020 | Volume 11 | Article 768

https://doi.org/10.1038/s41591-019-0593-1
https://doi.org/10.1038/s41591-019-0593-1
https://doi.org/10.1158/0008-5472.can-16-0298
https://doi.org/10.1158/0008-5472.can-16-0298
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00768 August 21, 2020 Time: 15:50 # 9

Wu et al. H&E Image-Based Prediction

Couraud, S., Vaca-Paniagua, F., Villar, S., Oliver, J., Schuster, T., Blanche, H., et al.
(2014). Noninvasive diagnosis of actionable mutations by deep sequencing of
circulating free DNA in lung cancer from never-smokers: a proof-of-concept
study from BioCAST/IFCT-1002. Clin. Cancer Res. 2014, 4613–4624. doi: 10.
1158/1078-0432.ccr-13-3063

de Bel, T., Hermsen, M., Smeets, B., Hilbrands, L., van der Laak, J., and Litjens,
G. (2018). “Automatic segmentation of histopathological slides of renal tissue
using deep learning,” in Medical Imaging 2018: Digital Pathology, 10581,
1058112 (Houston, TX: SPIE Medical Imaging). doi: 10.1117/12.2293717

Esteva, A., Brett, K., Roberto, A. N., Justin, K., Susan, M. S., Helen, M. B.,
et al. (2017). Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542, 115–118. doi: 10.1038/nature21056

Fischer, A. H., Jacobson, K. A., Rose, J., and Zeller, R. (2008). Hematoxylin and
eosin staining of tissue and cell sections. CSH Protoc. 2008:pdb.prot4986. doi:
10.1101/pdb.prot4986

Hung, J. J., Hsu, W. H., Hsieh, C. C., Huang, B. S., Huang, M. H., Liu, J. S., et al.
(2009). Post-recurrence survival in completely resected stage I non-small cell
lung cancer with local recurrence. Thorax 2009, 192–196. doi: 10.1136/thx.
2007.094912

Kaplan, J. A., Liu, R., Freedman, J. D., Robert, P., John, S., Yolonda, L. C.,
et al. (2016). Prevention of lung cancer recurrence using cisplatin-loaded
superhydrophobic nanofiber meshes. Biomaterials 2016, 273–281. doi: 10.1016/
j.biomaterials.2015.10.060

Le, N., Ho, Q. T., and Ou, Y. Y. (2017). Incorporating deep learning with
convolutional neural networks and position specific scoring matrices for
identifying electron transport proteins. J. Chmput. Chem. 28, 2000–2006. doi:
10.1002/jcc.24842

Le, N. Q. K. (2019). Fertility –GRU: indentifying fertility-related proteins by
incorporating deep-gated recurrent units and original position-specific scoring
matrix profiles. J. Proteome Res. 18, 3503–3511. doi: 10.1021/acs.jproteome.
9b00411

Le, N. Q. K., Edward, K. Y. Y., and Yeh, H. Y. (2019). ET-GRU: using multi-layer
gated recurrent units to identify electron transport proteins. BMCBioinformatic
20:377.

MacConaill, L. E. (2013). Existing and emerging technologies for tumor genomic
profiling. J. Clin. Oncol. 2013, 1815–1824. doi: 10.1200/jco.2012.46.5948

Makowski, L., and Hayes, D. N. (2008). Role of LKB1 in lung cancer development.
Br. J. Cancer 99, 683–688. doi: 10.1038/sj.bjc.6604515

Meng, Y., Chi-Wei, C., Mingo, M. H. Y., Wei, S., Jing, S., Zhuqing, L., et al.
(2018). DUOXA1-mediated ROS production promotes cisplatin resistance by
activating ATR-Chk1 pathway in ovarian cancer. Cancer Lett. 428, 104–116.
doi: 10.1016/j.canlet.2018.04.029

Mogi, A., and Kuwano, H. (2011). TP53 mutations in nonsmall cell lung cancer.
J. Biomed. Biotechnol. 2011:583929. doi: 10.1155/2011/583929

Morris, L. G., Andrew, M. K., Yongxing, G., Deepa, R., Logan, A. W., Sevin, T.,
et al. (2013). Recurrent somatic mutation of FAT1 in multiple human cancers
leads to aberrant Wnt activation. Nat. Genet. 45, 253–261. doi: 10.1038/ng.2538

Popin, R., Avinash, V. V., Katy, M., Yun, L., Michael, V. M., Greg, S. C., et al. (2018).
Prediction of cardiovascular risk factors from retinal fundus photographs
via deep learning. Nat. Biomed. Eng. 2, 158–164. doi: 10.1038/s41551-018-
0195-0

Qaiser, T., Tsang, Y. W., Epstein, D., and RajpootEma, N. (2018).
Medical Image Understanding and Analysis: 21st Annual Conference
on Medical Image Understanding and Analysis. New York, NY:
Springer International Publishing.

Reckamp, K. L., Melnikova, V. O., Karlovich, C., Sequist, L. V., Camidge, D. R.,
Wakelee, H., et al. (2016). A highly sensitive and quantitative test platform for
detection of NSCLC EGFR mutations in urine and plasma. J. Thorac. Oncol.
2016, 1690–1700. doi: 10.1016/j.jtho.2016.05.035

Shackelford, D. B., Evan, A., Laurie, G., Debbie, S. V., Atsuko, S., Wei, L., et al.
(2013). LKB1 inactivation dictates therapeutic response of non-small cell lung
cancer to the metabolism drug phenformin. Cancer Cell 23, 143–158. doi:
10.1016/j.ccr.2012.12.008

Shen, D., Wu, G., and Suk, H. I. (2017). Deep learning in medical image analysis.
Annu. Rev. Biomed. Eng. 19, 221–248.

Simon, O., Yacoub, R., Jain, S., Tomaszewski, J. E., and Sarder, P. (2018). Multi-
radial LBP features as a tool for rapid glomerular detection and assessment in
whole slide histopathology images. Sci. Rep. 8:2032.

Sun, J., Xin, C., Mingo, M. H. Y., Wei, Z., Jing, L., Yi, Z., et al. (2019). miR-137
mediates the functional link between c-Myc and EZH2 that regulates cisplatin
resistance in ovarian cancer. Oncogene 38, 564–580. doi: 10.1038/s41388-018-
0459-x

Travis, W. D., Elisabeth, B., Masayuki, N., Andrew, G. N., Kim, G., Yasushi, Y.,
et al. (2011). International association for the study of lung cancer/american
thoracic society/european respirator society international multidisciplinary
classification of lung adenocarcinoma. J. Thorac. Onco. 6, 244–285.

Vahadane, A., Tingying, P., Amit, S., Shadi, A., Lichao, W., Maximilian, B., et al.
(2016). Structure-preserving color normalization methods and sparse stain
separation for histological images. IEEE Trans. 35, 1962–1971. doi: 10.1109/
tmi.2016.2529665

Wang, X., Andrew, J., Yu, Z., Rajat, T., Pingfu, F., Kurt, S., et al. (2017). Prediction
of recurrence in early stage non-small cell lung cancer using computer extracted
nuclear features from digital H&E images. Sci. Rep. 7:13543.

Weiner, L. M., Murray, J. C., and Casey, W. S. (2012). Antibody based
immunotherapy of cancer. Cell 148, 1081–1084.

Xu, S., Lou, F., Wu, Y., Sun, D. Q., Zhang, J. B., Chen, W., et al. (2016). Circulating
tumor DNA identified by targeted sequencing in advanced-stage non-small cell
lung cancer patients. Cancer Lett. 2016, 324–331. doi: 10.1016/j.canlet.2015.11.
005

Yu, K. H., Zhang, C., Gerald, J. B., Russ, B. A., Christopher, R., Daniel, L. R.,
et al. (2016). Predicting non-small cell lung cancer prognosis by fully automated
microscopic pathology image features. Nat. Commun. 7:12474.

Zachara-Szzakowki, S., Verdun, T., and Churg, A. (2015). Accuracy of classifying
poorly differentiated non-small cell lung carcinoma biopsies with commonly
used lung carcinoma markers. Hum. Pathol. 46, 766–782.

Conflict of Interest: YBL, XM, and QL are employed by the company Geneis
(Beijing) Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Wu, Wang, Li, Cai, Liang, Mo, Lu, Dong and Liu. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 9 August 2020 | Volume 11 | Article 768

https://doi.org/10.1158/1078-0432.ccr-13-3063
https://doi.org/10.1158/1078-0432.ccr-13-3063
https://doi.org/10.1117/12.2293717
https://doi.org/10.1038/nature21056
https://doi.org/10.1101/pdb.prot4986
https://doi.org/10.1101/pdb.prot4986
https://doi.org/10.1136/thx.2007.094912
https://doi.org/10.1136/thx.2007.094912
https://doi.org/10.1016/j.biomaterials.2015.10.060
https://doi.org/10.1016/j.biomaterials.2015.10.060
https://doi.org/10.1002/jcc.24842
https://doi.org/10.1002/jcc.24842
https://doi.org/10.1021/acs.jproteome.9b00411
https://doi.org/10.1021/acs.jproteome.9b00411
https://doi.org/10.1200/jco.2012.46.5948
https://doi.org/10.1038/sj.bjc.6604515
https://doi.org/10.1016/j.canlet.2018.04.029
https://doi.org/10.1155/2011/583929
https://doi.org/10.1038/ng.2538
https://doi.org/10.1038/s41551-018-0195-0
https://doi.org/10.1038/s41551-018-0195-0
https://doi.org/10.1016/j.jtho.2016.05.035
https://doi.org/10.1016/j.ccr.2012.12.008
https://doi.org/10.1016/j.ccr.2012.12.008
https://doi.org/10.1038/s41388-018-0459-x
https://doi.org/10.1038/s41388-018-0459-x
https://doi.org/10.1109/tmi.2016.2529665
https://doi.org/10.1109/tmi.2016.2529665
https://doi.org/10.1016/j.canlet.2015.11.005
https://doi.org/10.1016/j.canlet.2015.11.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	DeepLRHE: A Deep Convolutional Neural Network Framework to Evaluate the Risk of Lung Cancer Recurrence and Metastasis From Histopathology Images
	Introduction
	Materials and Methods
	Data Preparation
	Image Preprocessing
	The Convolutional Neural Network + ResNet Model
	Heat Map Generation
	Hyper-Parameter Tuning by Cross-Validation
	Performance Evaluation Criteria

	Results
	Clinical Characteristics of Training Dataset
	Data Pre-treatment
	Model Construction and Hyper-Parameter Selection
	Performance Evaluation on Test Dataset

	Discussion
	Data Availability Statement
	Author Contributions
	References


