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Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the
role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They
would also have a special position in the future in various clinical fields, drug discovery, and other scientific research.
Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw,
face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue
engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three
essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and
extra-oral sources, growth factors, and scaffolds.
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1 Introduction

Stem cells (SCs) are normal, undifferentiated cells that, if
exposed to the proper signal, can multiply, produce, and
differentiate into a variety of somatic cells in the laboratory
and living organisms. Various SCs inside the body are
involved in maturation and repair in adult organisms [1].
The unlimited potential of these cells to produce physiolo-
gical cells has made them be replaced by recombinant or
primer cells [2].

Oral tissues are a rich source of SCs, which have
attracted dentists’ attention because of their easy access
to other SCs. These cells have unique capabilities making
them of great importance in tissue engineering [3, 4],
regeneration, or the replacement of damaged or diseased
tissues [4, 5]. In dentistry, there are problems such as
alveolar bone resorption for patients following tooth
extraction or loss due to periodontal disease, dental car-
ies, and tooth fractures caused by trauma. Moreover, in
individuals losing their teeth, it leads to bone loss,
especially in the lower jaw, thereby making such indi-
viduals lose the treatment option of implant placement
[6, 7]. Following such problems, stem cell tissue engi-
neering therapies to repair large defects in periodontal
tissue and alveolar bone to replace lost teeth seem to be of
paramount importance [8–10].

Various studies on SC-based tissue engineering and
the regeneration of oral and dental tissues and organs
have been performed for clinical and dental applications
in animal and laboratory models [11–13]. However,
more invivo studies are recommended to reach further
definite results [14, 15]. Given that basic research is
required for treatment before evaluating SCs in clinical
trials and also given the relatively new role of SCs in
dentistry, obtaining ideal SCs, depending on the different
locations of the mouth, jaw, and face, is not well
described. Dental stem cells (DSCs) are attractive for
stem cell transplant therapy approaches because of their
simple separation, high flexibility, immunomodulatory
properties, and multi-potential capabilities. The use of
appropriate scaffolds filled with desirable biomolecules
such as growth factors and cytokines can improve the
proliferation, differentiation, migration, and functional
capacity of DSCs.

Appropriate scaffolds full of desirable biomolecules
such as growth factors and cytokines can improve the
proliferation, differentiation, migration, and functional
capacity of DSCs and optimize cell morphology to con-
struct tissue structures for specific purposes. Since DSCs
are a promising cellular source for tissue engineering,
especially for repairing teeth, bones, and nerve tissues, the
present study aimed to identify more DSCs and their
therapeutic applications.

2 Pluripotent stem cells (emryonic stem
cells/ induced pluripotent stem cells)

Embryonic cells or induced cells are the main pluripotent
stem cells (PSCs), which can produce themselves and a
variety of somatic adult cells in vitro and in vivo [16]. Due
to their unlimited renewal, these cells are used clinically in
evolutionary biology, biological research, regenerative
therapies, and pharmaceutical experiments in dentistry [17].

There are two types of SCs: [1]. Embryonic SCs (ESCs)
taken from the cells of the inner layer of the embryo before
implantation. They were first isolated from mice and then
from other species such as rats, humans, and monkeys [13].
Human-derived ESCs are known as pluripotent, meaning that
they can form different types of cells in the body [18], and
[2]. Induced Pluripotent SCs (iPSCs) are formed by repro-
gramming adult somatic cells and converting them to SCs.
The reprogramming technology on somatic cells was first
performed in mice and then in human cells [19]. They are
few and are often located deep in the tissue, making them
somewhat difficult to identify, isolate, and grow in vitro [20].

Regarding the application of ESCs in dentistry, the
controlled differentiation of PSCs to specific ratios of oral
tissues and organs such as mucosa, alveolar bone, period-
ontal tissues, and teeth in vitro and in vivo is not unex-
pected. However, researchers in this field have faced two
obstacles, including ethical issues and technical problems.
Because ESCs are allogeneic, they may be immunologically
incompatible between donors and recipients [21–24].

iPSCs are more accessible in terms of dental applications
than ESCs because they can be extracted from tissues easily
accessible to dentists. iPSCs cells originate from various
oral mesenchymal cells, including SCs from apical papilla
[25, 26], dental Pulp SCs and SCs from human exfoliated
deciduous teeth [26, 27], tooth germ progenitor cells [28],
buccal mucosa fibroblasts [29], gingival fibroblasts [30, 31],
and periodontal ligament fibroblasts [32].

The role of iPSCs is highlighted in regenerating missing
jawbones, periodontal tissue, salivary glands, and lost teeth
[33]. In the mouse model, iPSCs and enamel matrix deri-
vatives mainly enhance periodontal regeneration by pro-
moting the formation of cementum, alveolar bone, and
periodontal ligament [34]. In an in-vitro study, Duan et al.
differentiated mouse iPSCs into ameloblasts and odonto-
genic mesenchymal cells, and this was a useful approach to
dental bioengineering strategies [35].

Due to the limitations of the ESCs research, researchers
tend to continue their research on adult SCs. They obtain
mature SCs from many tissues such as cord blood, skin,
bone marrow, hair follicles, striated muscles, tooth pulp,
periodontal fibers, retina, and others [36, 37]. The second
part of this review article examines adult stem cells and
their application in dentistry.
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3 Adult stem cells

They are undifferentiated cells in the margins of the dif-
ferentiated cells of body tissues and organs and can
regenerate and differentiate into different types of specific
cells, tissues, or organs. The primary roles of these cells in
an organism are to support and repair the tissues from which
they are derived [38].

3.1 Bone marrow-derived MSCs (BMSCs)

The BM cell is a major source of adult SCs. BMSCs, which
can differentiate into several cell lines, are acceptable candi-
dates for repairing tooth and bone tissues [39]. BMSCs can be
isolated from the iliac crest and the orofacial bones. BMSCs
isolated from the iliac crest, known as the primary source of
BMSCs, can be distinguished into myogenic, chondrogenic,
osteogenic, adipogenic, and non-mesenchymal neurogenic
lineages [11, 40].

Since it is not possible for physicians to separate BMSCs
from the bone marrow of the iliac crest of donors without
surgery, and given that it is comfortable in terms of
separation, it is an invasive separation method. This can be
considered as one of its drawbacks [41, 42]. However, this
method has been used for many years in tooth bone
reconstruction despite such drawbacks. Another drawback
is the relationship between donors’ age and the bone
potential of BMSCs isolated from the iliac crest [43]. Age is
a critical factor for bone tissue engineering and the clinical
effectiveness of bone formation, so it is recommended that
the donor’s age be considered. This is because cells natu-
rally tend to age and lose their multiple differentiation
potential over time [44].

Such problems have made researchers conduct more
extensive studies to isolate human BMSCs. Human BMSCs
can be achieved through bone marrow spinal cord aspirate
(maxilla and mandible), which is possible during dental
treatments such as dental implants, wisdom tooth extraction,
cyst removal, and orthodontic osteotomy [45].

The advantage of oral bone BMSCs compared to iliac
crown BMSCs is that there is no age limit for donors so that
oral bone BMSCs can be received from patients aged 6–60
years, and age would not have much effect on the BMSC
gene expression pattern [46].

Another noteworthy point is the differences in embryonic
origin causing functional differences between oral and
human iliac BMSCs [47, 48]. The embryonic origin of the
maxillary and mandibular bones is the cranial nerve crest
cells, and the embryonic origin of the iliac crown bone is
the mesoderm. In terms of phenotype and function, oral
BMSCs are different from the iliac coronary BMSCs. It has
been documented that grafted bone obtained from the cra-
niofacial area (membranous bone) has beneficial in

autologous bone grafting in the skull and face and can also
significantly increase the volume of endochondral bone
(iliac crest) [49].

It has also been reported that the adipogenic potential
of oral BMSCs is lower than that of iliac BMSCs [50].
This advantage of this factor is reducing the formation of
unfavorable adipose during bone tissue regeneration. All
of reviewed studies confirm the usefulness of oral BMSCs
compared to iliac BMSCs for bone regeneration. How-
ever, due to the possibility of collecting a larger volume of
iliac BMSCs than oral BMSCs, the use of BMSCs of iliac
crown origin is more prevalent among professionals
[51, 52].

3.2 Dental tissue-derived stem cells

Oral epithelial stem cells (OESCs) and Mesenchymal stem
cells (MSCs) are two types of mature SCs in tooth tissue.
Dental tissues, including dental pulp and periodontal tis-
sues, can regenerate and form restorative dentin due to their
suitable conditions after dental operations. From these tis-
sues, MSCs or SCs can be extracted [53].

To date, various sources of MSCs have been identified in
dental tissues, and SCs isolated from such sources have also
been addressed [54]. The SCs of dental origin are as fol-
lows: Dental Pulp SCs (DPSCs), Dental Follicle Progenitor
Cells (DFPCs), SCs from Exfoliated Deciduous Teeth
(SHED), SCs from Apical Papilla (SCAP), Tooth Germ
SCs (TGSCs), Periodontal Ligament SCs (PDLSCs), Tooth
germ progenitor cells (TGPCs), and gingival mesenchymal
stem/progenitor cells (GMSCs). Figure 1 summarizes all
possible dental tissues as a source for stem cells.

Fig. 1 Adult stem cell sources in the maxillofacial and oral area.
DFSCs: dental follicle stem cells; SCAP: stem cells of the apical
papilla; OESCs: oral epithelial progenitor/stem cells; SHED: stem cells
from human exfoliated deciduous teeth; BMSCs: bone marrow-
derived MSCs from orofacial bone; DPSCs: dental pulp stem cells;
PDLSCs: periodontal ligament stem cells; SGSCs: salivary gland-
derived stem cells. TGPCs: tooth germ progenitor cells; PSCs:
periosteum-derived stem cells; GMSCs: gingiva-derived MSCs
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3.2.1 Dental pulp stem cells (DPSCs)

DPSCs are SCs, which can be isolated from the pulp tissue
of human extracted third molar by enzymatic digestion and
can provide a typical fibroblast-like morphology [55]. In
dentistry, they play a role in repairing and restoring teeth
and have a high differentiation capacity.

DPSCs can differentiate into osteoblast, adipocyte,
chondrocyte, muscle cells, melanoma cells, hepatocytes,
and endothelial cells [56–58]. They can also differentiate
into islet cell aggregates such as pancreatic islet and are an
acceptable candidate for future diabetes treatments [59].
DPSCs can secrete anti-apoptotic and proangiogenic agents,
which can be useful in the treatment of myocardial infarc-
tion [58]. When transplanted into SCID mice, these cells
can form a pulp/dentin-like complex [60]. DPSCs can dif-
ferentiate into active and functional neurons and have
potentials for cell therapy in neurological diseases [61].

Markers expressed by DPSCs include CD9, CD10,
CD13, CD29, CD44, CD49d, CD59, CD73, CD90, CD105,
CD106, CD146, CD166, and CD271. Moreover, embryonic
SCs markers are STRO-1, Nestin, Oct-4, Nanog, TRA-1-66,
TRA-1-81, SSEA-3, and SSEA-4 [62, 63]. From an
immunological viewpoint, Human leukocyte antigen G
(HLA-G), hepatocyte growth factor (HGF), transforming
growth factor-beta (TGF-β), interleukin-6 (IL-6), and
prostaglandin E2 (PGE2), which are anti-inflammatory
cytokines, are released from DPSCs [64, 65].

The production of indole amine 2, 3-dioxygenase (IDO),
and nitric oxide (NO), which are essential for inducing
maternal immunological tolerance against the fetus, also
occurs by DPSCs. Accordingly, DPSCs also encompass
immune regulatory properties [64]. DPSCs show great
potentials for producing large volumes of the mineralized
matrix, which opens a window of hope for being used in
regenerative dental treatments. They can treat dental pro-
blems such as the scaly deciduous teeth of children, apical
papilla, periodontal ligament fibers, and tooth follicle tis-
sue [66, 67].

3.2.2 Dental follicle progenitor cells (DFPCs)

The tooth follicle is a loose mesenchymal tissue around the
growing bud of the tooth and is involved in the formation of
periodontal progenitor cells [68]. DFPCs isolated from the
follicles of the human third molar present a fibroblast-like
morphology. DFPCs can bone differentiate and are also
adipocyte, chondrocyte, neural cells, periodontal, ligament,
fibroblast, and hepatocyte-like cells (HLCs) [69].

They express the markers of mesenchymal stem cells,
including Notch1, STRO-1, Nestin, CD105, CD90, CD73,
CD59, CD44, CD29, CD13, and CD10 [70, 71]. These cells
have immunosuppressive properties and also suppress the

secretion of TGF-β and IL-6 [72]. They are also acceptable
candidates for treating chronic inflammatory diseases [73].

STRO-1-positive dental follicle stem cells can differ-
entiate into cementum in vivo. DFPCs also have the
potential to differentiate and express cementoblast mar-
kers stimulated by bone morphogenic protein 2 (BMP-2),
bone morphogenic protein 7 (BMP-7), and EMD in vitro
[74, 75].

3.2.3 Stem cells from human exfoliated deciduous teeth
(SHED)

SHEDs are mesenchymal cells inside the pulp tissue of
scaly deciduous teeth [76]. SHEDs are highly proliferative
and clonogenic in nature and generate sphere-like clusters
[77]. These cells can differentiate into myocytes, chon-
drocytes, adipocytes, osteoblasts and odontoblasts, and
nerve-like cells and have high plasticity. Morphologically
like DPSCs and DFPSCs, they are similar to fibroblasts
[78].

SHEDs lead to the expression of MSCs markers,
including CD13, CD29, CD44, CD73, CD90, CD105,
CD146, CD150, CD166, Oct4, Nanog, Nestin, SSEA-3,
SSEA-4, and STRO-1 [79]. SHEDs differ from DPSCs in
some aspects. Their difference is in their high proliferative
capacity, bone formation and odontogenic ability in vivo,
and inability to form pulp/dentin complex [80]. When
transplanted into immunocompromised mice, these cells
formed dentin-like tissues and reacted to dentin-specific
sialo phosphoprotein antibodies [81]. Moreover, unlike
DPSCs, SHEDs cannot differentiate into osteoblasts or
osteocytes; however, they can induce host cells to dif-
ferentiate into bone. By absorbing host cells, they induce
the formation of a bone-like matrix with a layered struc-
ture [82, 83].

The transplantation of SHEDs to the striatum in mice
with Parkinson’s has documented to improve disease-
induced rotational movements partially, suggesting that
SHEDs can be used as a source of postnatal stem cells in the
treatment of Parkinson’s [84].

3.2.4 Stem cells from apical papilla (SCAP)

The apical papilla is a tissue gently attaching to the top of a
growing tooth [85]. MSCs are present within the apical
papilla of immature permanent teeth. During tooth growth,
dental papillae become tooth pulp and help root growth.
The apical papilla contains fewer cellular and vascular
elements than the dental pulp; however, the cells in the
apical papilla are more proliferative than those in the dental
pulp [86].

SCAPs have a high proliferation rate and can be iso-
lated from the human third molar. They can undergo
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osteogenic, adipogenic, chondrogenic, and neurogenic
differentiation. It has been observed that after SCAP
grafting to immunocompromised mice, a typical dentin-
pulp-like structure begins to form due to the presence of
odontoblast-like cells [85, 87].

Primary mesenchymal surface markers such as CD24,
CD44, CD49d, CD51/61, CD56, CD73, CD90, CD105,
CD106, CD146, STRO-1, Scleraxis, Nestin, and Survivin are
expressed in SCAP, among which CD24 is a specific SCAP
marker [70, 88]. SCAP also plays a role in suppressing the
immune system by preventing T cell proliferation [89].

3.2.5 Tooth germ progenitor cells (TGPCs)

Tooth germ is the accumulation of progenitor cells making
teeth and their tissues form [73]. Because the tooth germ of
the third molar is formed after the age of 6 years, and the
tissues remain from the embryonic period until then they
remain undifferentiated. Hence, the proliferative capacity of
these cells is extremely high [90]. TGPCs are relatively new
SCs isolated from the human third molar. This cell can
differentiate into chondrocytes, adipose, osteoblasts, odon-
toblasts, and neurons. In vitro, they show the ability to
differentiate into liver cells, providing the grounds to cure
liver diseases using these cells [70, 91].

Cells derived from the tooth germ of the third molar reflect
the characteristics of MSCs. Human tooth germ cells can
express surface antigens specific for MSCs such as CD166,
CD105, CD106, CD90, CD73, CD44, CD29, and STRO-1,
Nanog, Nestin, Oct-4, Sox-2, C-myc, and Klf4 [92]. TGPC is
also involved in the expression of Nanog, Oct4, Sox2, klf4,
and C-myc genes [93] and expresses markers associated with
MSCs, including STRO-1, HLA class1, CD29, CD44, CD73,
CD90, CD105, CD106, and CD166 [73, 94]. The hydro-
xyapatite/TGPC implants have indicated the formation of new
bone in the presence of osteocytes in the newly formed bone
matrix and the active cube-shaped osteoblast coating on the
surface of the matrix [95].

TGSCs can differentiate into osteoblast, odontoblast,
adipocyte, and neural cells due to their multipotency. The
cartilage and bone differentiation of TGSCs is enhanced by
F68, a pluronic block copolymer [70, 96]. Furthermore, the
capacity of odontogenic differentiation can be increased by
BMP-7 and osteogenic via BMP-2, which can be transferred
to TGSCs by electroporation [97, 98]. Human-derived
TGSCs have immune-regulating properties. Guzmán et al.
showed the use of human-derived TGSCs as an immuno-
suppressive agent in mice [99].

3.2.6 Periodontal ligament stem cells (PDLSCs)

PDLSCs are SCs located in the area around the periodontal
arteries surrounding the tooth. They are in charge of

regenerating periodontal elements such as the alveolar bone,
cementum, and ligament periodontal fibers. PDLSCs is a
crestoriginated neural tissue [100].

These cells make the connection between bone and
cementum. If grafted to the appropriate host, they can also
form the PDL/cement structures [101]. PDLSCs provide the
biological balance of teeth and the repair of damaged tissue
[102]. These cells are available by enzymatic digestion from
the periodontal ligament area. The cells obtained from this
region have the characteristics of mesenchymal stem cells
[103].

PDLSCs are morphologically and proliferatively similar
to MSCs and are capable of expressing STRO-1, Scleraxis,
CD166, CD146, CD106, CD105, CD90, CD73,CD59,
CD49d, CD44, CD29, CD13, CD10, and CD9 markers
[104]. PDLSCs can differentiate into bone, cartilage, adi-
pose, and neuronal cells in vitro, and cementoblasts in vitro
and in vivo [75, 105]. PDLSCs can suppress the immune
system and can reduce the induction of Treg. They can also
release IDO, HGF, and TGF-β [64, 89].

3.2.7 Oral mucosa-derived stem cells (OMSCs)

The oral mucosa includes stratified squamous epithelium
above the connective tissue termed lamina propria. It is an
area with vascularized tissue and the submucosa with adipose
tissue, minor salivary glands, lymphatic tissues, and neuro-
vascular bundles, which depend on the site [106]. The oral
mucosa encompasses various forms of human adult stem
cells, including the oral epithelial stem cells/progenitor, as the
subpopulation of small oral keratinocytes (< 40 μm) [107].
Such cells are unipotently stem cells, suggesting that they can
only develop into epithelial cells; however, they have clono-
genicity and can reproduce a well-organized and highly
stratified oral mucosal graft ex vivo [108, 109], indicating
their effectiveness for intraoral grafting [110].

Other OMSCs are in the gingiva lamina propria directly
connected to the underlying bone periosteum without
intervening submucosa [111]. There are frequent resections
in gingiva overlying the alveolar ridges and retromolar areas
throughout general dental treatments, mostly achieved as a
discarded specimen. Zhang et al. [32] could first char-
acterize human gingiva-derived MSCs (GMSCs) with self-
renewal, clonogenicity, and a multipotent differentiation
ability comparable to BMSCs. GMSCs proliferate more
quickly than BMSCs and exhibit a fixed morphology pre-
serving their MSC features with long passaging [112].
According to Marynka-Kalmani et al. [113], OMSCs can be
reproducibly produced from the human gingiva adult
lamina propria and can differentiate into the lineages of the
three germ layers in vitro. Accordingly, the gingival cells’
stemness can indicate the increased reprogramming effec-
tiveness of gingiva-derived fibroblastic cells during the
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generation of iPSCs [114]. Furthermore, GMSCs/OMSCs
offer more advantages in clinical settings due to their
multipotency, clinical abundance, ease of isolation, and
quick ex-vivo expansion.

3.2.8 Gingival mesenchymal stem/progenitor cells (GMSCs)

GMSCs can be easily removed from the gums with minimal
pain and discomfort [115]. GMSCs include clonogenicity,
self-renewability, multipotent differentiation capacity, and
SC-like and immune-regulating features [116, 117].

GMSCs are involved in the expression of Oct-4, Sox-2,
Nanog, Nestin, SSEA-4, HLA-ABC, Tra2-49, Tra2-49 and
STRO -1 genes, and CD29, CD44, CD73, CD90, CD105,
CD106, CD146, and CD166 [117]. GMSCs can have self-
renewal, form connective tissue structures in vivo, and dif-
ferentiate minerals, fats, and cartilage in vitro [3]. Wang et al.
found that GMSCs acquire the ability to differentiate into
osteogenesis in vivo after going through the incubation steps
in vitro. Their findings promise the clinical use of GMSCs in
tissue regeneration and repair [118]. Table 1 demonstrates
various characteristics of dental tissue-derived stem cells.

3.3 Periosteum-derived stem/progenitor cells

The periosteum is a thick membrane of numerous cell layers
covering almost the entire surface of each bone. The only
parts not covered by this membrane are areas covered by
cartilage. In addition to covering the bone and supplying
blood, the periosteum also produces bone if properly sti-
mulated [119]. The periosteum consists of two layers, an
outer fibrosis layer consisting of elastic fibers and fibro-
blasts and an inner layer consisting of MSCs, fibroblasts
and osteoblasts, and sympathetic nerves, which can differ-
entiate into fat, osteoblasts, and chondrocytes. Moreover,
the periosteum has ossifying properties due to the presence
of bone progenitor cells, and if it stays healthy, it can
produce new bone along small fibers and blood vessels
[120]. Since the findings of previous studies have revealed
that single-celled clone populations derived from adult
human periosteum can differentiate into adipocytes, chon-
drocytes, osteoblasts, and skeletal myocyte lineage in vivo
and in vitro, it is possible to ensure that derived cells from
the periosseous tissues can be used in bone reconstruction
and tissue engineering [121, 122].

One study found that cells derived from periosseous
tissues to strengthen the sinus or alveolar ridge during
implant placement yielded promising results in improving
bone regeneration and lamellar bone production during the
shortest time. Such findings could encourage dentists to use
the periosteum to regenerate oral bones [123]. Accordingly,
in the presence of large bone defects, the periosteum can be
used as a source of precursor stem cells to regenerate bone.

3.4 Salivary gland-derived stem cells

These glands are located around the mouth and throat,
originate from the endoderm, and consist of acinar and
duct epithelial cells with exocrine function [124]. The
salivary glands are classified into two groups, major and
minor. Major glands include the submandibular and
sublingual parotid glands. Minor glands are mainly
located on the roof of the mouth and lips; however, they
are found in different areas of the throat and larynx [3]. In
head and neck cancer, patients undergoing radiation
therapy, unfortunately, experience irreversible dysfunc-
tion of the salivary glands, making the mouth dry and
affecting individuals’ quality of life. This implies that
stem cells in salivary glands are useful in the treatment of
autologous transplantation in tissue engineering and
direct cell therapy [11].

To date, in vitro studies have been conducted to isolate
SCs in the salivary glands, and successful results have been
achieved. For example, in one study, the researchers were to
isolate salivary gland progenitor SCs from the sub-
mandibular glands of mice. They observed that the cells can
express acinar, ductal, and myoepithelial cell lineage mar-
kers [125].

In another study, a specific population of SCs was
isolated from the submandibular glands of mice using a
laboratory floating sphere culture method. The findings of
the study revealed that these cells can differentiate into the
salivary gland and acinar cells producing mucin and
amylase in vitro. Such findings also promising regarding
the use of salivary gland stem cells to treat cancer patients
in the head and neck area undergoing radiotherapy
[126–128]. However, the primary culture of scattered cells
involves several cells of different origins, including stro-
mal cells, blood vessel cells, and parenchymal cells,
which can make the selection of salivary SCs difficult.
Accordingly, selecting cells with specific markers or those
labeled with induced reporter proteins is necessary to
isolate the main population of true SCs from the salivary
glands [129].

3.5 Adipose tissue-derived stem cells (ASCs)

ASCs are mature SCs derived from adipose tissue and can
differentiate into mesenchymal and non-mesenchymal
classes [129–131]. Adipose tissue has been of interest due
to containing large amounts of SCs compared to bone
marrow and their ability to bind to native and non-native
hosts [132]. A noteworthy point is the easy access to large
volumes of fat during the liposuction process [133]. ASCs
and bone marrow stromal cells are similar in terms of gene
expression and differentiation; however, ASCs have a
higher potential to self-replicate [134].
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Previous studies have indicated that SCs isolated from
the adipose tissue of the rat abdominal cavity mimic the
differentiation process of human adipose-derived SCs and
can show the appearance of adipose, cartilage, bone, and
nerve cells [135, 136]. Recent studies have documented that
using this tissue as a source of MSCs has provided enor-
mous potentials for tissue engineering applications and the
production of natural scaffolding [137, 138].

ASCs show stronger osteogenesis than BMSCs as
such they are expected to be an alternative source of
MSCs for bone regeneration in dentistry [139–141].
Hence, ASCs can be used in the regeneration of oral
facial bones, guided bone regeneration, and implant
placement [142–144].

Regarding the effect of ASCs on dental pulp, ASCs
transplantation leads to pulp regeneration in the root canal
after pulpectomy in dogs [145]. Another study suggested
that the transplantation of autologous ASCs with an inor-
ganic bovine bone scaffold (bio-Oss1) results in new ossi-
fication. It also enhanced implant ossification following the
vertical increase in the calvarial bone of rabbits, suggesting
that ASCs can strengthen vertical alveolar bone in implant
treatment [146].

Regarding the role of ASCs in periodontal tissue regen-
eration in a laboratory study, ASCs obtained from a mouse
model cultured in an environment with dental follicle cells
containing non-collagenous proteins revealed cement blast
features [48, 147]. Figure 2 summarizes the previously-
mentioned stem cells classification.

4 Biomaterials and scaffolds used with DSCs

Cells in a three-dimensional microenvironment demonstrate
the ability of cell-cell and cell-matrix interactions to maintain
normal cellular behavior. Since cell culture plates restrict cells
to a 2D level and prevent their necessary free interactions, and
on the other hand, because the developed cells were isolated
from the culture plate, they lose a large number of cell-matrix
and cell/matrix interactions, leading to lower survival rates
and poor in vivo transplantation [148]. Accordingly, it is
necessary to develop 3D systems and create a more natural
environment for cell growth are [149, 150].

To succeed in tissue engineering, to repair, regenerate,
and improve the function of defective tissues, the
proper selection of scaffolding materials, stem cell types,
and bioactive factors is of paramount importance. A proper
scaffold increases the ability of DSCs to repair and regen-
erate damaged organs by improving the proliferation, dif-
ferentiation, adhesion, and migration of DSCs [151].
Biomaterials are one of the essential components in making
scaffolds. By combining scaffolds with different stem cells,
tissue bioengineering offers promising results in regenerat-
ing damaged tissues [152].

The characteristics of an ideal biomaterial for bonding
with stem cells are its biocompatibility in the first stage and
then their ability to exchange gas and nutrients, their ability
to protect cells against immune system invasion and
external stress [153], pore size [154], stability [155], elec-
trical conductivity [156], porosity [154], connectivity, and

Fig. 2 Human stem cells
classification in oral and
maxillofacial region
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the ability to create proper crosstalk between stem cells and
adjacent cells [157]. Since DSCs are an acceptable source of
cells for regenerating teeth, bones, and nerve tissue, com-
bining DSCs with a suitable scaffold for cell transplantation
can provide remarkable results. Two main approaches to
this combination are cell-based tissue engineering and the
cell-free approach [158].

When a bioactive scaffold with growth and differentiation
factors is implanted in relevant tissues, it can induce resident
stem cells and their promotion, reproduction, and differ-
entiation [159]. Various morphogens/growth factors, as
environmental cues, significantly affect the behavior of DSCs
implanted in scaffolds and play a key role in the success of
regenerative therapies [160, 161]. If different biomaterials are
pretreated with proteins such as BMP, sialoprotein, fibro-
nectin, and osteopontin, it improves the DSCs’ behaviors.
They promote the function of DSCs by increasing their
adhesion, differentiation, proliferation, and migration and
ultimately improve the formation of new tissues [162, 163].

Some sources to produce scaffolds for the teeth repair and
reconstruction are natural biomaterials, including collagen
[164], gelatin [154], fibrin, and silk [165] with protein
structure and alginate [166], hyaluronic acid [167] with
polysaccharide structure, and synthetic biomaterials, including
polyglycolate/poly-l-lactate [168], polycaprolactone-poly
glycolic acid [169], polylactic acid-co-polyglycolic acid
[170], polycaprolactone /gelatin/nano-hydroxyapatite [171],
nano-hydroxyapatite/collagen/poly-l-lactide [172], and poly-
ethyl methacrylate-co-hydroxyethyl acrylate [173].

4.1 Natural biomaterials

Collagen is a major component of the extracellular matrix
(ECM), expressed in bones, teeth, and the brain. This bio-
material has poor mechanical, chemical, and thermal sta-
bility and has a high decomposition rate. However, when
presented as a collagen scaffold, it provides high bio-
compatibility and controllable biodegradability for bone
tissue engineering [174, 175].

As the second and the most abundant natural semi-
crystalline polysaccharide, Chitosan is one of the most
widely used biomaterials in tissue engineering, including
periodontal tissue regeneration [176, 177]. Chitosan/gelatin
scaffolds are associated with a significant increase in the
survival and differentiation of DSCs; hence, this type of
scaffold can increase the formation of hydroxyapatite-rich
nanocrystalline calcium phosphate in immunocompromised
mice [178]. Chitosan has revealed less support for the
growth and differentiation of human DSCs compared to
collagen and gelatin [179]. Fibrin is known as a non-toxic
biomaterial scaffold connecting various biological surfaces
to regenerate bone and nerve tissue [180]. Due to its low
mechanical stiffness, fibrin scaffolds have limitations on

directly implanting cells into damaged tissue [181, 182]. A
summary of the natural scaffolds in oral tissue engineering
is presented in Table 2.

4.2 Synthetic biomaterials

In contrast, bioceramic scaffolds have high mechanical
stiffness, and due to their chemical and structural similarity to
native bone, they have high biocompatibility and excellent
bone conductivity. Porous and spongy scaffolds can deliver
more DSCs to damaged tissues; hence, they make the flow of
ECM and the formation of neovascularization possible [96].

Among the two-dimensional and three-dimensional cell
culture systems, three-dimensional systems are more effec-
tive than two-dimensional systems in mimicking the ECM in
native tissues and provide a model for the regeneration of
defects. They also improve adhesion and cell interactions,
proliferation, the ECM production, repair of various tissues,
and maintaining cell polarity to the system. Three-
dimensional scaffolds can increase the sensitivity of stem
cells to drugs and biomolecules, and optimizing their pore
size promotes mechanical strength, thereby providing posi-
tive and dramatic results in tissue regeneration [183]. Three-
dimensional nano-fibrous gelatin/silica bioactive glass hybrid
scaffolds by creating a suitable microenvironment acts like a
natural dental microenvironment and enhances the growth
and differentiation of human DSCs [184]. Due to their
flexible physical and mechanical properties and high bio-
compatibility, hydrogels are highly similar to the macro-
molecular components of the body as such they have been
studied as an essential biomaterial [185, 186]. Hydrogels
have a high potential to mimic ECM and are widely used due
to their ability to provide gas and nutrient exchange in
clinical settings [157, 187]. DSCs seem to improve tooth
roots in combination with ECM scaffolding [188]. In
immunocompromised mice, the transplantation of human
DSCs with three-dimensional hydroxyapatite scaffolds con-
taining peptide hydrogels induces internal vascular growth
and osteodentin deposition, ultimately leading to the forma-
tion of the pulp tissue [189]. The nanofiber hydrogel Pur-
aMatrix is used as a synthetic matrix to create a
biocompatible, biodegradable, and non-toxic three-dimen-
sional environment in a variety of cells [190]. DSCs injected
with PuraMatrix into human root canals can differentiate into
functional odontoblasts, which can heal damaged teeth
through root formation [191]. Table 3 summarizes synthetic
and ceramic scaffolds used in oral tissue engineering.

4.3 Scaffold fabrication technologies

The techniques for the fabrication of 3D scaffolds are
classified into conventional or rapid prototyping (RP)
(Fig. 3).
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4.3.1 Conventional techniques (Figure 4)

4.3.1.1 Solvent casting and particle leaching In this tech-
nique, a solvent combined with uniformly-distributed salt
particles of a certain size is used to dissolve the polymer
solution. Solvent evaporates, leaving a matrix containing
salt particles. The matrix is then submerged in water, and
the salt leaches away to form a structure with high porosity
[192, 193]. Solvent casting with particle leaching only suits
thin membranes of thin wall three-dimensional specimens.
Scaffolds developed by this method have a porosity of
50–90%. This technique is relatively easy and low-cost
[194].

4.3.1.2 Freeze-drying The freeze-drying process is also
known as lyophilization and involves the use of a synthetic

polymer, first dissolved in an appropriate solvent. After
dissolution, the polymer solution is cooled under the
freezing point, resulting in a solid solvent evaporated by
sublimation to leave a solid scaffold with numerous
interconnected pores [195]. In this technique, when the
solution is cooled by the freezing point, the solutes can be
separated in the ice phase, resulting in a small porous
structure characterized by a “fence” of matter surrounding
the ice. The scaffolds are achieved after consequent dry-
ing; and by simple dissolving and freeze-drying, the
macro-porosity corresponds to the empty area initially
occupied by ice crystals [196]. The benefit of this techni-
que is the capability of obviating high temperatures, which
could decrease the activity of integrated biological factors.
Moreover, the pore size is managed by controlled and
changing the freezing method

Fig. 3 Classification of scaffold
fabrication technologies in tissue
engineering: conventional and
rapid prototyping techniques

Fig. 4 Schematic illustration of conventional techniques in scaffold fabrication
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4.3.1.3 Stereolithography The stereolithography method is
basically used to create solid, three-dimensional objects by
consecutively printing a thin layer of ultraviolet (UV) cur-
able material layer-by-layer [197]. A stereolithography
system has four main components: a tank with a photo-
sensitive liquid resin, a transferable built platform, a UV
laser for radiating resin, and a dynamic mirror system. The
process begins with a UV laser by depositing a layer of
photosensitive liquid resin on the platform. Following the
solidification of the initial layer, the platform is lowered
vertically. A second layer is then placed on the first layer;
the process is repeated until a 3D scaffold is created.
Finally, the uncured resin is cleaned off, and the scaffold is
post-cured under UV light [198].

4.3.1.4 Gas foaming The gas foaming technique is a
technique to cope with using high temperature and organic
cytotoxic solvents [199]. This technique uses relatively inert
gas foaming agents such as carbon dioxide or nitrogen to
pressurize modeled biologically degradable polymers with
water or fluoroform until they are saturated or full of gas
bubbles. This technique usually produces structures like a
sponge with a pore size of 30–700 μm and a porosity up to
85% [200].

4.3.1.5 Electrospinning technique The electrospinning
technique offers ease and flexibility in controlling scaffold
characteristics to suit various tissue engineering applica-
tions [201]. Moreover, electrospinning can deliver out-
standing control of pore interconnectivity and internal and

external scaffold geometry. In the basic principle of elec-
trospinning, the polymer in a liquid phase is pumped via a
thin needle of a specific diameter to assemble a conductive
object, and when the required high voltage is realized and
the applied electric power overpowers the surface tension
forces of the used polymer solutions, a jet of polymer
fibers is developed [202].

4.3.2 Rapid prototyping technology

Rapid prototyping (RP) technologies, also known as solid
freeform fabrication, are widely applied in biomedical and
tissue engineering applications. In this technique, the
manufacturing method, with the aid of a specifically-
designed computer-controlled 3D model, precise 3D scaf-
fold models (based on Cad or CT scan files) are constructed
by a layer-by-layer cyclic deposition and dispensation of
material [203].

Various RP technologies in the market are as follows:
three-dimensional printing (3DP), fused deposition model-
ing (FDM), stereolithography apparatus (SLA), and selec-
tive laser sintering (SLS) [204] (Fig. 5).

In the FDM technique, a solid polymer is cast into a hot
extrusion nozzle to be melted and extruded on the surface of
a 3D object using computer-controlled extrusion and
deposition processes. The scaffold is made from multiple
layers of adjacent microfilaments [205]. SLS was developed
in 1986 by the Texas University of Austin. This technique
uses the laser as the power source to sinter powdered
material defined by a 3D model in thin layers. Due to using

Fig. 5 Schematic illustration of rapid prototyping techniques in scaffold fabrication
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a laser, this technique has been utilized to make various
materials such as polymers, metals, or ceramics [206].

4.3.2.1 Self-assembling technology The current treatment
practice mainly relies on inert biomaterials as substitutes for
the decay of soft and mineralized tissues. However, lately, a
tissue engineering method using a hydrogel scaffold seeded
with two dental stem cell lines together with peptide-
amphiphile (PA) was used to establish novel regenerative
processes and regenerate dental tissues [207].

4.3.2.2 Three-dimensional printing (3DP) Three-Dimensional
Printing (3DP) is a process of creating tools, and functional
prototype features directly from the computer models. It is a
new fabrication method for tissue engineering, which can be
utilized to control scaffold structure at the micron level pre-
cisely [208].
Three-dimensional printing for regeneration of the

tooth and tooth-supporting tissues
Three-Dimensional bioprinting is a novel technology

fundamentally derived from printing technology, which can
print living cells directly into 3D structures [209]. The 3D
printing technology is driving major innovations in
regenerative dentistry [210]. The rise of 3D printing in
dentistry has been parallel with CAD advancements and
enhanced imaging techniques such as cone beam computed
tomography (CBCT) and magnetic resonance imaging
(MRI) to plan and print dental and maxillofacial prostheses
to restore and replace lost structures [211]. The reconstruc-
tion of the complex system of the tooth and its supporting
apparatus (like the ligament, alveolar bone, and cement) has
been improved by 3D-printed bioengineered scaffolds
[212]. 3D bioprinting boosts regenerative medicine and is
being applied to address the need for tissues and organs
suitable for transplantation. A wide range of biomaterials
and printing strategies are used for 3D printing such as
hydrogels, metals, ceramics, resins, and thermoplastics.
Table 4 summarizes the material and techniques used in
regenerative dentistry using the 3D printing technology.

5 Growth factors

Polypeptides that can stimulate cell proliferation and act as
the major growth-regulatory molecules for cells in culture
and in vivo are known as growth factors (GFs). Gfs, along
with other morphogens comprise one of the three vital
components in tissue engineering, which are combined with
scaffolds and progenitor or stem cell population [213].
Various investigations have studied the use of recombinant
growth factors separately or in combination with other
growth factors or biomaterials for the regeneration of dif-
ferent oral tissues, including mandibular or maxillary bone

[214], salivary glands [215], nerve regeneration [216],
dentin–pulp complexes [217, 218], and periodontal tissued
[219].

5.1 Regenerative endodontics (Dentin–pulp
complexes)

Adding signaling molecules and various growth factors to
natural and artificial scaffolds can increase the regeneration
of pulp-like tissues inside the canal by promoting dentin
formation, mineralization, neovascularization, and innerva-
tion [220]. For example, DSCs linked to growth factor
stromal cell-derived factor-1 (SDF-1) or granulocyte
colony-stimulating factor (G-CSF) on a collagen scaffold,
have promoted pulp regeneration in the animal pulpitis
model [164, 221]. DSCs loaded on peptide hydrogels along
with growth factors such as vascular endothelial growth
factor (VEGF), TGF-β1, and FGF-1 can differentiate into
odontoblast-like cells and vascularized dental pulp-like tis-
sue within the dentin cylinder [222]. DSCs isolated from
adult human dental pulp implanted on the surfaces of three-
dimensional collagen gel cylinders show significant cellular
uptake when combined with BMP-7, SDF-1α, and bFGF
[223]. Furthermore, SDF, FGF, TGF-β1, VEGF, and BMP
as growth factors, when loaded on scaffolds such as peptide
hydrogels, collagen, gelatin hydrogels, and alginate hydro-
gels, enhance the endodontic regeneration of DSCs [224].
The combination of SDF-1 with biomaterials to use dif-
ferent endogenous stem cells is highly effective. A study
revealed SDF-1 embedded in a silk fibroin scaffold resulted
in pulp regeneration through DPSC induction in a pulpec-
tomized mature canine preclinical model [225]. Further,
SDF-1 induces and regenerates the structure of pulpdentin
by absorbing and transferring SCAP from the apex to the
root canal space [226]. The implantation of DSCs with
poly-ε-caprolactone and hydroxyapatite along with SDF-1
and BMP-7 results in tooth-like structures in the mandibular
incisor extraction socket [227]. The two growth factors,
G-CSF and FGF-2, have the greatest impact on the migra-
tion of SCAPs. previous studies have revealed that com-
bining G-CSF with TGF-β1 leads to the migration and high
biomineralization of endogenous SCAPs in root canal repair
methods. G-CSF also has stimulatory effects on the
movement of DPSCs from adult teeth. These mobilized
DPSCs have higher vascularity and pulp regeneration
ability than colony-derived DPSCs [228]. DSCs implanted
in a collagen/chitosan scaffold containing a non-cellular
ECM result in the expression of dentin sialoprotein in nude
mice, which ultimately produce the pulp-like tissue in the
tooth [229]. Observations have indicated that the co-culture
of DSCs with other stem cells improves neovascularization,
and the co-culture of DSCs and human umbilical vein
endothelial cells with gelatin methacrylate xenogeneic
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hydrogel leads to the formation of new vascular pulp in rat
teeth [230]. Dissanayaka et al. found that the transplantation
of DSCs and human umbilical vein endothelial cells into
PuraMatrix containing VEGF increased the vascularization
and mineralization of mouse vascularized pulp-like tissue
and osteodentin [231]. Woloszyk et al. also reported that the
use of silk fibroin scaffolds increased the ability of human
DSCs to attract vessels, thereby improving and regenerating
damaged tissues [232]. Yang et al.‘s study showed that the
transplantation of DSCs with a piece of silk fibrin tooth/
scaffold loaded with SDF-1 resulted in the formation of
pulplike tissues with vascularity, the formation of an orga-
nized fibrous matrix, and the formation of dentin in the nude
mice [225].

5.2 Periodontal and alveolar bone regeneration

Many studies have addressed bone regeneration [233, 234],
according to which the ossification capacity of DSCs varies
depending on their origin (i.e., dental pulp, tooth follicle,
gingival tissue, and periodontal ligament), which can
change the ossification ability of DSCs depending on the
selected biomaterial scaffolds [235, 236]. For example, the
ability to repair bone defects is greater in the DSCs of
periodontal ligament origin encapsulated in an arginine
glycine-aspartic acid tripeptide scaffold [237]. DSCs
derived from dental pulp have a high potential for neo-
vascularization, and, due to their ability to differentiate into
osteoblasts, they can enhance bone repair [238]. One of the
most common known scaffolds in bone tissue engineering
to seed DSCs with human dental pulp or exfoliated decid-
uous teeth origin is included collagen sponge membranes
(to repair defects in the human mandible bone) and
hydroxyapatite/tri-calcium phosphate ceramic granules
[14]. Hernández-Monjaraz et al.‘s study showed that in
patients with periodontal problems, DSCs implanted on
collagen-polyvinylpyrrolidone sponge scaffold increased
bone density and decreased tooth mobility and periodontal
pocket depth in the bone defect area [239]. Tanikawa also
managed to reconstruct bone and fill alveolar defects in cleft
lip and palate patients through DSCs with a hydroxyapatite-
collagen sponge scaffold [240]. In a study, Chamieh et al.
found that DSCs implanted in dense collagen gel scaffolds
had a greater effect on the healing process of the skull and
face than cell-less scaffolds [241]. Ferrarotti et al. used
DSCs implanted in collagen sponges to treat patients with
chronic periodontitis with deep intraosseous defects, which
significantly improved periodontal regeneration [242]. The
important point in a successful cell transplant is the optimal
number of DSCs. Moreover, the composition of the scaffold
and its surface properties play a critical role in the bone
differentiation of DSCs and the process of bone tissue
regeneration [238, 243]. For example, DSCs implanted in a

type I collagen matrix, fibrin, hyaluronic acid, and poly-
esteramide type-C play a vital role in mineralization [244].
Due to ceramic scaffolds’ chemical and structural similarity
to native bone, they are commonly used to enhance bone
regeneration and repair DSCs [245]. Strong bone formation
in the femoral bone defect area of rats was observed after
applying DSCs implanted in bioactive glass nanoparticles/
chitosan-gelatin bionocomposite compared to mesoporous
bioactive glass nanospheres [246]. Some biomaterial scaf-
folds facilitate biomolecule-induced tissue formation. Fu
showed that the 3D matrix scaffold enriched with DSCs in
nude mice increased BMP-9-induced osteogenesis and
mineralization in ectopic bones [247].

5.3 Nerve regeneration

In addition to the abovementioned points, DSCs can dif-
ferentiate into neuron-like cells, Schwann, glia, and oligo-
dendrocytes [248]. Various studies have indicated that the
implantation of DCSs in different scaffolds increases the
lifespan of cells and their differentiation into neuronal-like
cells [249, 250]. The use of combined DSCs with different
scaffolds, including chitosan, heparinpoloxamer, silicone
tubes, and poly-ε-caprolactone/ poly-lactide-co-glycolic
acid, improves the function of damaged nerve tissues and
reduces inflammatory responses [251]. For example, in
experimental models of spinal cord injury, the transplanta-
tion of DSCs with chitosan scaffolds enhanced motor
function and suppressed inflammatory responses, in which
glial cell-derived neurotrophic factors and brain-derived
neurotrophic factors seem to play a vital role. Combining
DSCs with scaffolds also reduces caspase activity, thereby
preventing cell damage and death [252]. Human DSCs
isolated from periodontal ligament gingival tissues and
enclosed in three-dimensional alginate and hyaluronic acid
scaffolds in the presence of nerve growth factor (NGF)
differentiate DSCs to neural tissues [253]. Human DSCs
with the expression strength of STRO-1, c-Kit, and CD34
markers, when implanted on collagen scaffolds, could have
axonal regeneration from proximal to distal stumps in mice
with sciatic nerve defects [63].

Figure 6 demonstrates the application of dental tissue-
derived stem cells combined with growth factors and scaf-
folds in oral regenerations.

6 Discussion

In recent years, there have been many studies on stem cell
therapy. This field is revitalizing in various fields of medi-
cine such as dentistry and medical diseases. Because the
oral and maxillofacial areas are a promising source of SCs,
physicians and dentists need to have adequate and up-to-
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date information on SCs recognition and access during
patients’ treatment. According to such studies, different
types of DSCs have been introduced [101, 254], all of
which are well suited for early research in resuscitation
medicine. Preclinical studies and some clinical trials have
yielded successful results regarding the use of DSCs. It has
been observed that tooth SCs are safe and supportive for
regenerating lost or damaged tooth tissues [255–257].

Most SCs used in dentistry come from dental structures
such as dental/apical papilla, PDLs, and even decayed
deciduous teeth. These dental cells have features such as a
high proliferation rate, wide differentiation potential in
different mesenchymal cell lineages, and weak immuno-
genic effects, making them special in regenerative medicine
and dentistry [254].

The results of various studies show the strong potential
of DSCs in the production of dental components such as
dentin, pulp, cement, and periodontal ligament associated
with the presence of odontoblasts and cementoblasts. For
example, some DSCs can form chondrocytes, osteocytes,
neurons, and adipocytes in vitro. According to the research
findings, DSCs such as DPSCs can regenerate dentin/pulp

[221, 258, 259], SHEDs and DFPCs can strengthen bone
[83, 256, 260], and PDLSCs play a role in periodontal
regeneration [101, 257, 261].

Before using DSCs for tissue regeneration, the key point
is to find reliable ways to control previous inflammatory
environments. Further studies are needed to elucidate the
underlying mechanisms of lost tissue regeneration and the
immune system modifying features of the DSCs, followed
by human clinical trials [78].

7 Conclusion

Recently, stem cell-mediated therapeutic interventions have
received much attention and have made significant
advancement in treating diseases, especially those not cured
by conventional methods. Although many studies have
addressed the use of biomolecules with appropriate scaf-
folds to treat effective cell transplantation with DSCs and
have yielded significant results, there is still a long way to
identify these molecules for better therapeutic outcomes and
their interaction with ECMs and DSCs. Importantly, the

Fig. 6 Application of dental
tissue-derived stem cells
combined with growth factors
and scaffolds in dentistry
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focus is on the innovative combinations of biomaterials and
biomolecules to enhance the ability of DSCs to provide new
therapeutic approaches. Stem cell transplantation is a pro-
mising option; however, at the moment, it cannot be con-
sidered a therapeutic miracle. In general, although the SCs
of dental origin have many applications they also have
certain limitations. One of its main limitations is the diffi-
culty in identifying, isolating, purifying, and growing these
cells continuously in laboratories. Rejection by the immune
system is another problem requiring further thorough
investigation. However, autologous cells can help solve this
problem. SCs research in dentistry has its own challenges
and risks, and this necessitates further research.
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