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Wilms tumor is one of the most common pediatric solid tumors. The pair-like homeobox 2b
(PHOX2B) gene is an important transcription factor that regulates cellular proliferation and
differentiation in early life. The association between PHOX2B single nucleotide polymor-
phisms (SNPs) and Wilms tumor risk has not been investigated. Therefore, we conducted a
case-control study involving 145 Wilms tumor patients and 531 controls to explore the as-
sociation between the PHOX2B rs28647582 T>C polymorphism and Wilms tumor suscep-
tibility. The association between the PHOX2B rs28647582 T>C polymorphism and Wilms
tumor susceptibility was assessed by odds ratios (ORs) and 95% confidence intervals (CIs).
Our results indicated that PHOX2B rs28647582 T>C polymorphism did not significantly
alter Wilms tumor susceptibility. However, in the stratified analysis, we found that TC/CC
genotypes significantly increased Wilms tumor risk among children older than 18 months
(adjusted OR = 1.77, 95% CI = 1.07–2.95, P=0.027) and those with clinical stages III+IV
(adjusted OR = 1.75, 95% CI = 1.09–2.82, P=0.022), when compared with those with TT
genotype. Our study suggested that PHOX2B rs28647582 T>C was weakly associated with
Wilms tumor susceptibility. Our conclusions need further validation with a larger sample size.

Introduction
Wilms tumor, also known as nephroblastoma, is one of the most common pediatric malignant tumors,
accounting for 7–8% of tumors in childhood [1,2]. The prevalence of Wilms tumor in Chinese children
is approximately 3.3/million [3]. According to the report, 75% of patients are younger than 5-years old
and incidence peak is 3-year old [1,4]. Survival rate of Wilms tumor once was less than 30%. Benefitting
by the combined utilization of surgery, chemotherapy, radiotherapy and other treatment methods, 90%
of Wilms tumors patients can be cured nowadays [4]. But, approximately 25% of Wilms tumor patients
still have a poor survival rate of less than 70%, which results from unfavorable histopathological types [2].
Even though these patients survive, they also have a high recurrence rate and suffer from chronic health
problems. There are some theories that try to explain the origin of nephroblastoma. The more frequently
accepted theory is that posterior renal blastocyst fail to differentiate into glomeruli and renal tubules [5].
However, the mechanism of unsuccessful differentiation of posterior renal blastocyst is unknown. There-
fore, it is necessary to explore genetic etiology of Wilms tumor to provide theoretical basis for its prediction
and treatment.

With the development of genome-wide association studies (GWASs), more and more Wilms tumor
susceptibility genes have been discovered. For example, single nucleotide polymorphisms (SNPs) in the
FWT1 [6], FWT2 [7], BARD1 [8], CTR9 [9], HACE1 [10] and LMO1 genes [11] have been observed to
modify Wilms tumor susceptibility. There are plenty of gene polymorphisms worth further exploring.

The homeobox genes are transcription factors that play an important part in embryonic development,
including cellular differentiation, migration, apoptosis, signal transduction and angiogenesis [12]. The
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pair-like homeobox 2b (PHOX2B) gene belongs to the homeobox gene family which locates in 4p13. This gene
accounts for 4.8 k bases approximately, contains three exons and two introns, encodes a peptide containing 314 amino
acids [13]. PHOX2B is expressed during neural development in central autonomic circuits and peripheral neural crest
derivatives, particularly in retrotrapezoid nucleus, noradrenergic centers and hindbrain. PHOX2B is an indispensible
transcription factor in the proliferation and differentiation of neural crest tissue [14–17]. It can also regulate the
expression of cancer-related genes such as TH [18], PHOX2B itself [19], RET [20], TLX-2 [21], ALK [22], SOX10
[23] and MSX1 [24].

In the past, research about PHOX2B polymorphisms mostly focused on exons. With the continuous development
of biotechnology, many introns have been found to assume the regulation roles in genetic expression. Previous in-
vestigations have shown that the PHOX2B rs28647582 T>C polymorphism significantly alters Hirschsprung disease
susceptibility [25–27]. In addition, Perotti et al. [28] and Zin et al. [29] have widely found the heterozygous loss of 4p13
in sporadic Wilms tumor. To our knowledge, no study has investigated the association between PHOX2B rs28647582
T>C polymorphism and Wilms tumor susceptibility. Considering this polymorphism may affect the differentiation
of posterior renal blastocyst, we conducted this experiment about PHOX2B rs28647582 T>C polymorphism and
Wilms tumor susceptibility.

Materials and methods
Study population
It was a case-control study with 145 patients and 531 controls (Supplementary Table 1). The patients were collected
from the Guangzhou Women and Children’s Medical Center during March 2001 to June 2016 [30–32]. Wilms tumor
patients were histopathologically confirmed and distinguished depending on the NWTS-5 criteria. At the same time,
a total of 531 tumor-free controls were randomly selected from the same center and matched patients with age, gender
and ethnicity. In accordance with the relevant laws and regulations, participants or their guardians were requested
to sign informed consent. The present study was approved by the Institutional Review Board of Guangzhou Women
and Children’s Medical Center (ethic approve number: 2018022102).

Genotyping
DNA was extracted from 2 ml venous blood samples using TIANamp Blood DNA Kit (TianGen Biotech Co. Ltd.,
Beijing, China). The PHOX2B rs28647582 T>C polymorphism was genotyped by TaqMan real-time PCR [33–35].
The information of samples was kept secret from staffs for a reliably experimental results. Moreover, we randomly
selected 10% of the samples for repetitive test. The results showed that repeatability is 100%.

Statistical analysis
T-test was employed to check the differences in age. Frequency distribution of gender and genotype between patients
and the controls were evaluated by χ2 test. A goodness-of-fit test was used to estimate Hardy–Weinberg equilibrium
(HWE) in controls. After adjusting for age and gender, we performed an unconditional multiple logistic regression
model to assess the association between the PHOX2B rs28647582 T>C polymorphism and Wilms tumor suscep-
tibility by odds ratios (ORs) and 95% confidence intervals (CIs). Finally, stratified analysis was conducted by age,
gender and clinical stages. All data were analyzed by SAS statistical software, using a two-sided test. The results were
considered statistically significant when P<0.05.

Results
PHOX2B rs28647582 T>C polymorphism and Wilms tumor susceptibility
The genotype distribution of PHOX2B rs28647582 T>C polymorphism in Wilms tumor patients and controls is
shown in Table 1. The genotype distribution of PHOX2B rs28647582 T>C polymorphism obeyed the HWE ge-
netic balance in controls (P=0.505). Unfortunately, we could not observe significant association between PHOX2B
rs28647582 T>C polymorphism and Wilms tumor susceptibility (TC vs. TT: adjusted OR = 1.42, 95% CI =
0.95–2.12, P=0.090; CC vs. TT: adjusted OR = 0.78, 95% CI = 0.22–2.76, P=0.699; TC/CC vs. TT: adjusted OR
= 1.35, 95% CI = 0.91–2.00, P=0.133; CC vs. TC/TT: adjusted OR = 0.71, 95% CI = 0.20–2.48, P=0.587; and C vs.
T: adjusted OR = 1.22, 95% CI = 0.87–1.72, P=0.252).

Stratification analysis
We further conducted a stratified analysis by age, gender and clinical stages (Table 2). Stratified analysis revealed that
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Table 1 PHOX2B rs28647582 T>C polymorphism and Wilms tumor susceptibility

Genotype
Cases (N =
145)

Controls (N =
531) P*

Crude OR
(95% CI) P

Adjusted OR
(95% CI)† P†

rs28647582 (HWE = 0.505)

TT 95 (65.52) 380 (71.56) 1.00 1.00

TC 47 (32.41) 136 (25.61) 1.38
(0.93–2.06)

0.113 1.42
(0.95–2.12)

0.090

CC 3 (2.07) 15 (2.82) 0.80
(0.23–2.82)

0.729 0.78
(0.22–2.76)

0.699

Additive 0.249 1.21
(0.85–1.70)

0.280 1.22
(0.87–1.72)

0.254

Dominant 50 (34.48) 151 (28.44) 0.158 1.33
(0.90–1.96)

0.159 1.35
(0.91–2.00)

0.133

Recessive 142 (97.93) 516 (97.18) 0.616 0.73
(0.21–2.55)

0.618 0.71
(0.20–2.48)

0.587

T 237 (81.72) 896 (84.37) 1.00 1.00

C 53 (18.28) 166 (15.63) 0.279 1.21
(0.86–1.70)

0.279 1.22
(0.87–1.72)

0.252

*χ2 test for genotype distributions between Wilms tumor patients and controls.
†Adjusted for age and gender.

Table 2 Stratification analysis for the association between PHOX2B rs28647582 T>C polymorphism and Wilms
tumor susceptibility

Variables rs28647582 (cases/controls) Crude OR P Adjusted OR* P*

TT TC/CC (95% CI) (95% CI)

Age, month

≤18 51/174 15/59 0.87 (0.45–1.66) 0.667 0.86 (0.45–1.65) 0.651

>18 44/206 35/92 1.78 (1.07–2.96) 0.026 1.77 (1.07–2.95) 0.027

Gender

Females 45/164 19/69 1.00 (0.55–1.84) 0.991 1.02 (0.56–1.88) 0.945

Males 50/216 31/82 1.63 (0.98–2.73) 0.062 1.65 (0.98–2.76) 0.059

Clinical stage

I+II 37/380 16/151 1.09 (0.59–2.02) 0.788 1.14 (0.61–2.12) 0.685

III+IV 49/380 34/151 1.75 (1.08–2.81) 0.022 1.75 (1.09–2.82) 0.022

*Adjusted for age and gender, omitting the corresponding factor.
Results in bold indicate P <0.05.

TC/CC genotypes carriers had higher risk to develop Wilms tumor than those with TT genotype in the groups of
older than 18 months (adjusted OR = 1.77, 95% CI = 1.07–2.95, P=0.027) and clinical stages III+IV (adjusted OR
= 1.75, 95% CI = 1.09–2.82, P=0.022). No significant correlation was found between PHOX2B rs28647582 T>C
polymorphism and Wilms tumor susceptibility in other groups.

Discussion
PHOX2B mutations were observed in congenital central hypoventilation syndrome, neuroblastoma and
Hirschsprung disease [36,37]. Subsequent studies confirmed that polyalanine repeat expansion mutation (PARMs) in
exon 3 increased the risk of congenital central hypoventilation syndrome [38,39]. As for exon 3 NPARMs (exon 3 nu-
cleotide 673 G>T and 702 714dup13) and mutations in other locations (exon 2 nucleotide 299 G>T and nucleotide
421 C>G), they were more likely to modify the susceptibility to familial and sporadic neuroblastoma [40,41].

Introns are widely distributed in the genome of eukaryotic cells. They are much longer than exons and accumulate
more mutations, accounting for 95–97% in human genome. Although introns do not code for proteins, an increasing
number of studies found that introns not only played a regulatory role in transcription, but also had selective splic-
ing and promoter-like functions during mRNA maturation and translation [42]. PHOX2B rs28647582 is located in
intron 2. Existing studies had no idea how rs28647582 affected PHOX2B. In the past few years, some conflicting
results about PHOX2B rs28647582 polymorphism and Hirschsprung’s disease were drawn. Liu et al. [25] found that
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rs28647582 C allele increased Hirschsprung’s disease risk. But, Garcia-Barcelo et al. [26] and Xiao et al. [27] indicated
that rs28647582 CC/CT were protective genotypes to Hirschsprung’s disease. Interestingly, a meta-analysis showed
that the rs28647582 T>C polymorphism failed to significantly change Hirschsprung’s disease risk [43]. These re-
searches suggested that rs28647582 polymorphism may modify certain diseases susceptibility.

This is the first investigation about PHOX2B rs28647582 T>C polymorphism and Wilms tumor. We observed that
PHOX2B rs28647582 TC/CC genotypes significantly increased Wilms tumor susceptibility in subgroups older than
18 months or clinical stages III+IV. Based on previous studies [26,41], rs28647582 T>C polymorphism would change
PHOX2B structure and expression by abnormally splicing and regulating, which would weaken PHOX2B ability to
promote the proliferation and differentiation of renal cells. In addition, PHOX2B rs28647582 T>C polymorphism
may combine with tumor-related genes to modify Wilms tumor susceptibility.

Although we found the correlation between PHOX2B rs28647582 T>C polymorphism and Wilms tumor suscep-
tibility in stratified analysis, some limitations existed in our study. First, our research had a relatively small sample
size, containing 145 patients and 531 controls. It was difficult to discover the genuine association between PHOX2B
rs28647582 T>C polymorphism and Wilms tumor. Second, we selected only one polymorphism in PHOX2B, which
made genotype association analysis impossible. It may omit the combined effect of PHOX2B rs28647582 T>C poly-
morphism and other potential polymorphisms in Wilms tumor [44]. Third, as a hospital-based retrospective study,
hospital admission bias and information bias inevitably existed in population selection, information collection and
experimental operation. Finally, this paper merely revealed the connection between PHOX2B rs28647582 T>C poly-
morphism and Wilms tumor susceptibility. In order to achieve reliable results, we should expand the sample size, add
genotype association analysis and perform a strict quality monitoring in follow-up studies.

In conclusion, we have exposed that PHOX2B rs28647582 T>C polymorphism is weakly associated with Wilms
tumor susceptibility. Our result need further verified.
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