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A B S T R A C T   

Little is known about how exposure to limited socioeconomic resources (SER) in childhood gets “under the skin” 
to shape brain development, especially using rigorous whole-brain multivariate methods in large, adequately 
powered samples. The present study examined resting state functional connectivity patterns from 5821 youth in 
the Adolescent Brain Cognitive Development (ABCD) study, employing multivariate methods across three levels: 
whole-brain, network-wise, and connection-wise. Across all three levels, SER was associated with widespread 
alterations across the connectome. However, critically, we found that parental education was the primary driver 
of neural associations with SER. These parental education associations with the developing connectome 
exhibited notable concentrations in somatosensory and subcortical regions, and they were partially accounted for 
by home enrichment activities, child’s cognitive abilities, and child’s grades, indicating interwoven links be
tween parental education, child stimulation, and child cognitive performance. These results add a new data- 
driven, multivariate perspective on links between household SER and the child’s developing functional 
connectome.   

1. Introduction 

Childhood socioeconomic resources (SER), measured by parental 
education and economic resources within home and neighborhood 
contexts, shape adult outcomes in economic (e.g., earnings, employ
ment), educational (e.g., cognitive skills, college completion), and 
physical and mental health domains (Green et al., 2010; Cohen et al., 
2010; Duncan et al., 2010). Disparities in access to SER (e.g., by ra
cialized identity, age, urbanicity) are larger in the United States than 
other industrialized countries (Reardon and Bischoff, 2011), have grown 
over time (Piketty and Saez, 2003; Hoffmann et al., 2020), and reflect 
broader structural inequities (e.g., residential segregation, wealth 
accumulation). Thus, though measured imperfectly, variation in edu
cation, income, and neighborhood resources exerts wide-ranging im
pacts on wellbeing across the life course (Cooper and Pugh, 2020). This 

implication has encouraged neuroscientists to investigate pathways 
through which SER influences the developing brain (Hackman and 
Farah, 2009; Johnson et al., 2016). Yet our current understanding of 
these pathways remains highly incomplete, particularly during critical 
developmental windows such as early adolescence, marked by extensive 
neural reorganization (Paus, 2005) and when many serious psychosocial 
challenges (e.g., problems in interpersonal, academic, and mental health 
domains) first emerge (Paus et al., 2008). 

The human brain is organized as a complex network (Sporns, 2011, 
2014), with interconnections among regions implicated in diverse 
cognitive and socioemotional functions (Laird et al., 2011). Task-free 
“resting state” functional magnetic resonance imaging (fMRI) uses 
coherence in spontaneous activity across brain regions to yield maps of 
functional connectivity patterns (Smith et al., 2013), which, in turn, can 
be linked to individual difference variables such as such cognition, 
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personality traits, or psychopathology (Castellanos et al., 2013). 
Previous studies of the impact of SER on resting state functional 

connectivity patterns have mostly relied on region-specific approaches 
that focus on individual connections (e.g., amygdala-ventromedial 
prefrontal connectivity) (Rakesh and Whittle, 2021), requiring strong 
a priori knowledge about which connections are (and are not) impli
cated. There is, however, convergent evidence that characteristics of 
social, psychological, and clinical interest often involve distributed and 
wide-ranging changes at tens of thousands of connections distributed 
across the entire brain (Woo et al., 2017), rather than focal changes 
involving individual pairs of regions. Additionally, previous studies 
often used small samples consisting of tens to hundreds of subjects. 
Recent widely discussed results (Marek et al., 2022) demonstrate that 
these studies are liable to produce spurious findings, and several thou
sand subjects are typically needed to derive statistically reliable con
clusions. At the present time, however, no previous studies have 
investigated SER-associated functional connectivity patterns using 
multivariate methods across tens of thousands of brain connections in 
large, adequately powered samples. 

Additionally, SER is a multi-dimensional construct that incorporates 
features of parental education, household income, and neighborhood 
disadvantage (Ensminger et al., 2003). Different components of SER 
implicate different underlying environmental mechanisms (e.g., 
maternal education may impact cognitive stimulation in the home, 
whereas neighborhood disadvantage may operate through school 
quality). Understanding which component(s) of SER affect the devel
oping brain is critical for designing targeted interventions and for 
informing housing, school, and redistributive policies (Raver and Blair, 
2020; Hyde et al., 2020a). But the unique effects of each dimension of 
SER in shaping brain-wide connectivity patterns remains unclear. 

To address these gaps in understanding, we leveraged the Adolescent 
Brain and Cognitive Development (ABCD) Study (Volkow et al., 2018; 
Karcher and Barch, 2020), a population-based study of 11,875 9- and 
10-year-olds from 22 sites across the United States with substantial 
sociodemographic diversity (Garavan et al., 2018). ABCD is the largest 
developmental neuroimaging study ever undertaken, providing a 
unique opportunity to study how SER shapes connectivity patterns of the 
developing brain. To convergently establish results at multiple levels of 
analysis, we employed three complementary multivariate methods: a 
whole-brain approach (multivariate predictive modeling) (Sripada 
et al., 2019); a network-wise approach (network contingency analysis) 
(Sripada et al., 2014a, 2021a; Donoho and Jin, 2004), and a 
connection-wise approach (quantile-quantile modeling) (Schweder and 
Spjøtvoll, 1982). 

These analyses jointly indicated that a combination of all the three 
dimensions of SER (i.e., parental education, household income-to-needs, 
and neighborhood disadvantage) was associated with widespread indi
vidual variation in connectivity across the entire brain, with significant 
effects observed in 78 out of 120 “cells”, i.e., sets of connections linking 
pairs of large-scale brain networks. In additional analyses that dissected 
the unique contribution of individual components of SER, we found the 
most potent associations with parental education, even after controlling 
for the contributions of household income-to-needs and neighborhood 
disadvantage. Moreover, functional connectivity patterns associated 
with parental education were uniquely concentrated in sensorimotor 
and subcortical networks. Our results may help to illuminate why SER is 
associated with a variety of outcomes across the life course, while also 
highlighting the need for more research to explore proximal bio
psychosocial mechanisms of SER-connectome associations. 

2. Methods 

2.1. Sample and data 

The ABCD study is a multisite longitudinal study with 11,875 chil
dren between 9 and 10 years of age from 22 sites across the United 

States. The study conforms to the rules and procedures of each site’s 
Institutional Review Board, and all participants provide informed con
sent (parents) or assent (children). Data for this study are from ABCD 
Release 3.0. 

2.2. Data acquisition, fMRI preprocessing, and connectome generation 

High spatial (2.4 mm isotropic) and temporal resolution (TR=800 
ms) resting state fMRI was acquired in four separate runs (5 min per run, 
20 min total). Preprocessing was performed using fMRIPrep version 
1.5.0 (Esteban et al., 2019). Briefly, T1-weighted (T1w) and 
T2-weighted images were run through recon-all using FreeSurfer v6.0.1, 
spatially normalized, rigidly coregistered to the T1, motion corrected, 
normalized to standard space, and transformed to CIFTI space. 

Connectomes were generated for each functional run using the 
Gordon 333 parcel atlas (Gordon et al., 2016), augmented with parcels 
from high-resolution subcortical (Tian et al., 2020) and cerebellar 
(Diedrichsen et al., 2011) atlases. Volumes exceeding a framewise 
displacement (FD) threshold of 0.5 mm were marked to be censored. 
Covariates were regressed out of the time series in a single step, 
including: linear trend, 24 motion parameters (original trans
lations/rotations + derivatives + quadratics, aCompCorr 5 CSF and 5 
WM components and ICA-AROMA aggressive components, high pass 
filtering at 0.008 Hz, and censored volumes. Next, correlation matrices 
were calculated. Full details of preprocessing and connectome genera
tion can be found in the Supplement as well as the 
automatically-generated FMRI Prep Supplement. 

2.3. Inclusion/exclusion 

There are 11,875 subjects in the ABCD Release 3.0 dataset. Subjects 
were excluded for: failing ABCD QC, insufficient number of runs each 4 
min or greater, failing visual QC of registrations and normalizations, and 
missing data required for regression modeling. This left us with N =
5821 subjects across 19 sites for the main sample analysis, and details of 
exclusions are provided in the Supplement. 

2.4. Neuroimaging analysis 

To quantify brain-wide relationships between functional connectiv
ity patterns and outcome variables of interest including SER, we used 
principal component regression (PCR) predictive modeling (Sripada 
et al., 2019, 2020a) (see Fig. S2). In brief, this method performs 
dimensionality reduction on resting state connectomes, fits a regression 
model on the resulting components, and applies this model out of sample 
in a leave-one-site-out cross-validation framework. To identify 
network-wise brain-behavior relationships, we used network contin
gency analysis (NCA) (Sripada et al., 2014a, 2021a; Donoho and Jin, 
2004). In brief, for each cell (set of connections linking pairs of 
large-scale networks), this method identifies whether the count of con
nections significantly related to an outcome variable of interest exceeds 
what is expected by chance. To quantify connection-wise brain-behavior 
relationships, we used quantile-quantile modeling (Schweder and 
Spjøtvoll, 1982). In brief, we first calculated the p-value at each 
connection for the association between that connection and an outcome 
variable of interest. We then rank ordered these p-values and compared 
them to the rank-ordered distribution of p-values expected under the 
global null hypothesis. 

In implementing the three preceding methods, we control for the 
effect of a number of nuisance covariates, specifically sex assigned at 
birth, parent-reported race-ethnicity, age, age squared, mean FD and 
mean FD squared. For all three methods, we assessed statistical signifi
cance with non-parametric permutation tests, in which the procedure of 
Freedman and Lane (Freedman et al., 1983) was used to account for 
covariates. In addition, exchangeability blocks were used to account for 
twin, family, and site structure and were entered into Permutation 
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Analysis of Linear Models (PALM) (Winkler et al., 2014) to produce 
permutation orderings. Details on all the preceding neuroimaging ana
lyses are provided in the Supplement. 

2.5. Latent variable modeling 

We constructed a latent variable for socioeconomic resources by 
applying exploratory factor analysis to household income-to-needs, 
parental education, and neighborhood disadvantage. Household 
income-to-needs represents the ratio of a household’s income relative to 
its need based on family size, and details on its calculation are provided 
in the Supplement. Parental education was the average educational 
achievement of parents or caregivers. Neighborhood disadvantage 
scores reflect an ABCD consortium-supplied variable (reshist_ad
dr1_adi_wsum). In brief, participant’s primary home address was used to 
generate Area Deprivation Index (ADI) values (Fan et al., 2021), which 
were weighted based on results from Kind et al (Kind et al., 2014). to 
create an aggregate measure. 

The general psychopathology factor (P-factor) was produced from 
bifactor modeling of the parent-rated Child Behavior Checklist (CBCL) 
(Achenbach and Ruffle, 2000), and was described in detail in our pre
vious studies in ABCD (Clark et al., 2021; Brislin et al., 2021). The 
general cognitive ability (GCA) variable was produced from bifactor 
modeling of the ABCD neurocognitive battery, and was also described in 
detail in our previous studies in ABCD (Sripada et al., 2021b; Clark et al., 
2021). Additional details on construction of the preceding latent vari
ables are provided in the Supplement. 

2.6. Code availability 

The ABCD data used in this report came from NDA Study 901, 
10.15154/1520591, which can be found at https://nda.nih.gov/study. 
html?id= 901. Code for running analyses can be found at https://github. 
com/SripadaLab/ABCD_Resting_Socioeconomic_Resources. 

3. Results 

3.1. Across three levels of analysis (i.e., whole-brain, network-wise, and 
connection-wise), socioeconomic resources are associated with large, 
brain-wide changes in functional connectivity 

Whole-Brain-Level Analysis: We built and assessed multivariate 
predictive models for socioeconomic resource (SER) scores using a 
leave-one-site-out cross-validation approach. At each fold of the cross- 

validation, we trained a multivariate predictive model to use individ
ual differences in brain connectivity patterns to predict SER scores. We 
then applied the trained model to brain connectivity data from subjects 
at the held-out site, yielding predictions of their SER, and we repeated 
this sequence with each site held out once. We accounted for nuisance 
covariates (youth sex assigned at birth, age, parent-reported race- 
ethnicity [a social construct linked to historical and present structural 
discrimination], and head motion) by applying regression coefficients 
for covariates learned in the train data to covariates in the test data, thus 
preserving complete independence between train and test datasets. We 
found that the correlation between actual versus predicted SER, con
trolling for covariates and averaging across the 19 folds of the cross- 
validation, was 0.28 (Fig. 1, upper left panel). That is, after account
ing for covariates, brain connectivity patterns accounted for 9.0% of the 
variance in SER in held-out samples of youth (cross-validated r2). Cross- 
site generalizability was remarkably consistent: Correlations between 
predicted and actual scores were statistically significant in all 19 out of 
19 held-out sites (all 19 site-specific permutation p-values < 0.0001; 
observed correlations were higher than all 10,000 correlations in the 
permutation distribution). 

Network-Level Analysis: The human brain is organized into a num
ber of large-scale networks (Power et al., 2011) defining a set of “cells”, 
which are sets of connections linking pairs of large-scale networks. We 
performed network contingency analysis (NCA) (Sripada et al., 2014a, 
2021a; Donoho and Jin, 2004), which identifies cells in which the count 
of connections associated with SER (controlling for covariates) exceeds 
the count expected by chance, established by non-parametric permuta
tion tests. As shown in Fig. 2 and Supplemental Table S3, a total of 78 
out of 120 cells exhibited significant associations with SER (FDR<0.05; 
shaded in the Fig. 2), and these cells were notably widespread 
throughout the brain spanning all large-scale networks. 

Connection-Level Analysis: We additionally assessed associations 
with SER on a connection-by-connection basis using quantile-quantile 
modeling (Schweder and Spjøtvoll, 1982). We first calculated the 
p-value at each connection for the association between that connection 
and SER (controlling for covariates). We then rank ordered these 
p-values and plotted them against the rank-ordered distribution of 
p-values expected under the global null hypothesis, which was calcu
lated with non-parametric permutation-based methods (Fig. 3). If there 
is no association between SER and brain functional connections, this plot 
should follow the 45◦ line shown in in red in Fig. 3. But the observed plot 
strongly deviated from this line. Moreover, “lift off”, where the observed 
distribution deviates from the 95% confidence interval of the null line, 
occurred very early and persisted through the range of the x-axis. This 

Fig. 1. Correlations Between Actual Socioeconomic Re
sources Scores and Scores That Are Predicted Based on 
Whole-Brain Connectivity Patterns. We applied multivar
iate predictive models to 5821 subjects at 19 sites to 
identify brain-wide connectivity patterns that are associ
ated with SER scores. (Upper Left Panel) In leave-one-site- 
out cross-validation, functional connectivity patterns 
associated with SER scores generalized to 19 out of 19 held 
out sites. (Upper Right Panel) The overall mean correlation 
between observed SER scores and predicted SER scores 
(predicted exclusively from brain connectivity patterns) 
was 0.28, pPERM< 0.0001 (observed correlation was higher 
than all 10,000 correlations in the permutation distribu
tion). (Lower Panel) Scatter plots for four largest held-out 
sites (blue, orange, green, purple) show consistent perfor
mance at individual sites.   
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result is consistent with widespread associations of SER with most 
functional connections across the brain. 

3.2. Parental education is the primary driver of brain-wide changes in 
functional connectivity, with household income-to-needs and neighborhood 
disadvantage having weaker (or absent) unique associations 

The preceding results established strong and widespread associations 
between SER and children’s connectomes across whole-brain, network- 
wise, and connection-wise levels of analysis. We next sought to identify 
unique contributions of the three components of the SER variable: 
parental education, household income-to-needs, and neighborhood 
disadvantage. We thus repeated the preceding analyses, this time with 

one of these three dimensions of SER as the variable of interest and the 
other dimensions entered as additional covariates. We repeated these 
analyses three times in total with each SER dimension as the variable-of- 
interest. 

Results showed that parental education (controlling for household 
income-to-needs and neighborhood disadvantage; left column in Fig. 4; 
Supplemental Table S4) exhibited consistently strong effects at all three 
levels of analysis. Household income-to-needs (controlling for parental 
education and neighborhood disadvantage; middle column of Fig. 4) 
showed modest but statistically significant effects in multivariate pre
dictive modeling analysis, no significant cells in network analysis, and 
did not deviate from the null hypothesis line in quantile-quantile anal
ysis. Neighborhood disadvantage (controlling for parental education 
and household income-to-needs; right column of Fig. 4) did not show 
any statistically significant effects in any of the three analyses. 

The preceding analysis was performed with an ABCD-furnished 
neighborhood disadvantage variable, based on area deprivation index 
weightings from Kind and colleagues (Kind et al., 2014), which was used 
in previous studies using ABCD data of effects of SER on resting state 
connectivity (Rakesh et al., 2021a, 2021b). We in addition repeated the 
preceding analysis with an alternative measure of neighborhood 
disadvantage used in another recent ABCD Study (Taylor et al., 2020), 
which uses a subset of ADI metrics that emphasize core aspects of 
disadvantage. Results (see Supplemental Fig. S5) continued to show a 
relatively weak neighborhood disadvantage effect, while effects of 
parental education and income-to-needs were virtually unchanged. 

3.3. Parental education exhibits a sensorimotor/subcortical pattern that 
differentiates it from other youth phenotypes also associated with resting 
state connectivity 

Given evidence of robust associations between parental education 
and resting state functional connectivity, we next compared the parental 
education connectivity pattern with corresponding connectivity pat
terns observed for general cognitive ability and the general factor of 
psychopathology, i.e., “P factor”, which were recently studied by our 
group in this same ABCD sample (Sripada et al., 2021a, 2021b). We 
focused on connectivity patterns observed with network contingency 
analysis, which is well-suited for localizing associations to sets of con
nections linking pairs of networks. Bubble graphs (Fig. 5) capture the 
proportion of significant cells associated with each network for each 
variable. Consistent with our previous reports, the general factor of 
psychopathology implicated interconnections between the default mode 
network and a number of control networks (Sripada et al., 2021a), while 
general cognitive ability implicated highly distributed connectivity 
patterns involving all networks (Sripada et al., 2021b). Though there 
was some overlap across the three variables, parental education pref
erentially implicated somatosensory/subcortical networks, with espe
cially prominent involvement of the visual and subcortical networks. 
Non-parametric tests of concentration showed that the proportion of 
significant cells within somatosensory/subcortical networks exceeded 
what is expected by chance (pPERM=0.003). 

3.4. Parental education’s associations with the functional connectome are 
related to home enrichment activities, child’s grades, and child’s cognitive 
abilities 

Previous literature, reviewed in (Conger and Donnellan, 2007a), 
suggests that parental education may impact children’s behavioral and 
cognitive outcomes through provision of greater cognitive stimulation 
and parenting behaviors that promote academic and social competence 
(e.g., warmth and support). To gain some initial insight into why 
parental education was associated with children’s brain connectivity 
patterns, we performed an exploratory analysis that accounted for po
tential additional explanatory variables: 1) parent-reported enrichment 
activities (e.g., having intellectual discussions, reading with the child); 

Fig. 2. Network-to-Network Connections Exhibiting Significant Associations 
with Socioeconomic Resources. We performed network contingency analysis 
(NCA) which identifies cells (i.e., sets of connections linking pairs of large-scale 
networks) where the number of edges related to SER scores exceeds the number 
expected by chance. A total of 78 out of 120 cells exhibited significant effects of 
SER (FDR<0.05; shaded in the figure), and these cells were notably widespread 
throughout the brain. 

Fig. 3. Quantile-Quantile Model of Associations between Socioeconomic Re
sources and Functional Connections of the Connectome. The red line and its 
associated 95% confidence interval (in gray) represent the global null hy
pothesis that household SER scores are unrelated to functional connections of 
children’s connectomes. The plot shows strong deviation of the observed data 
(blue line) from the red line with a pattern of early “lift-off”, in which the 
deviation occurs towards the left of the plot and is sustained throughout. This 
pattern is consistent with widespread, diffuse influences of SER scores 
throughout the connectome. 
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2) child-reported family support (e.g., smiling at the child, discussing 
the child’s worries, providing support); 3) child-reported school support 
(e.g., availability of extracurricular activities, praise when the child does 
a good job); 4) child’s grades in school; and 5) child’s general cognitive 
ability. This analysis was performed in a subsample of 3223 children for 
whom all the preceding variables were available. We focused on 
whole-brain predictive modeling, which affords a single dependent 
measure (out-of-sample brain-phenotype association) as well as quan
titative bootstrap-based tests for attenuation of this association (see 
Supplement). A finding of significant attenuation of brain-parental ed
ucation associations with the inclusion of contextualizing variables in 
the model indicates overlapping variance among these variables (though 
it does not indicate directionality of the relationships among these 
variables). Results showed that home enrichment activities, child’s 
grades, and child’s general cognitive ability each individually signifi
cantly attenuated the association between parental education and youth 
brain connectivity patterns (Table 1). In contrast, these associations 
were not meaningfully attenuated by controlling for family support
iveness and school supportiveness. In combination, 29% of the multi
variate association between parental education and the functional 
connectome was accounted for by these five candidate explanatory 
variables. 

4. Discussion 

Using data from a large population-based sample of 5821 9- and 10- 
year-olds in the ABCD Study, we evaluated associations between so
cioeconomic resources (SER) and youth functional connectomes using 
whole-brain, network-wise, and connection-wise approaches. Across 

Fig. 4. Parental education has widespread and unique associations with children’s resting state connectomes. We used whole-brain-level (top row), network-level 
(middle row), and connection-level (bottom row) methods to identify unique effects on children’s resting state connectomes of three SER variables: parental edu
cation (left column), household income-to-needs (middle column), and neighborhood disadvantage (right column), Across the three-levels of analysis, parental 
education (controlling for household income-to-needs and neighborhood disadvantage) demonstrated consistent strong effects. Household income-to-needs (con
trolling for parental education and neighborhood disadvantage) showed modest, statistically significant effects in multivariate predictive modeling analysis, but 
showed no significant cells in network analysis and did not deviate from the null hypothesis line in quantile-quantile analysis. Neighborhood disadvantage (con
trolling for parental education and household income-to-needs) did not show any statistically significant effects in all three analyses. rcv = cross-validated out-of- 
sample correlation between actual scores and predicted scores using resting state connectivity data; * = observed correlation higher than all 10,000 correlations 
in the permutation distribution. 

Fig. 5. Parental Education Associations are Concentrated in Somatosensory/ 
Subcortical Networks. We compared parental education connectivity patterns 
with corresponding patterns observed for general cognitive ability and the 
general factor of psychopathology (P Factor). The bubble graph captures the 
proportion of significant cells, i.e. sets of connections linking large-scale net
works, associated with each network. The graph shows each variable has a 
distinct profile across the connectome, with parental education preferentially 
implicating somatosensory/subcortical networks. 
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these three levels of analysis, we observed widespread associations be
tween SER and the developing connectome, with convergent evidence 
that parental education was the primary driver of these associations. 
Moreover, these parental education associations with the functional 
connectome were concentrated in somatosensory and subcortical net
works, suggesting a spatial profile for parental education effects that is 
somewhat distinct from other recently studied constructs (i.e., general 
cognitive ability and general psychopathology). Overall, these results 
add a new data-driven multivariate perspective on links between 
household SER and the child’s developing functional connectome. 
Moreover, they potentially illuminate a primary role for parental edu
cation in explaining how socioeconomic adversity gets “under the skin” 
to shape the developing brain. 

Previous examinations of the associations between SER and func
tional connectivity patterns in the brain have largely relied on region
alist and apriorist methods (e.g., 31, 32), see (Rakesh and Whittle, 2021) 
for a review. That is, SER-brain associations have been examined within 
individual pre-selected regions (e.g., amygdala – ventromedial pre
frontal connectivity) based on prior theory. In addition, previous studies 
have generally been small, involving tens to hundreds of subjects 
(Rakesh and Whittle, 2021), and these sample sizes may generally be too 
small for reliable statistical inference (Marek et al., 2022). Against the 
backdrop of this previous work, our study takes breaks new ground in 
taking a multivariate, brain-wide, data-driven approach. In whole-brain 
analysis, we found functional connectivity patterns across the entire 
connectome captured 9.0% of the variance in SER in held-out subjects, 
with statistically significant generalization of these SER-associated 
connectivity patterns to all 19 out of 19 held-out sites. In 
network-wise analysis, we found SER has distributed effects throughout 
the brain, with statistically significant effects observed at 78 of 120 cells 
(i.e., sets of connections linking large-scale networks). In 
connection-wise analysis, we found strong deviations between observed 
versus expected p-value distributions, with a notable pattern of “early 
lift-off” (see Fig. 3), indicating the presence of highly distributed 
SER-related associations throughout the connectome. 

Interestingly, our results are reminiscent of the distributed archi
tecture of complex traits now recognized in genetics (Goddard et al., 
2016). There too, it was initially assumed that complex traits were 
represented by few genetic loci, each of large effect, leading to the 

popularity of candidate genes studies in which loci were selected for 
study based on prior theory. However, the polygenic nature of complex 
human traits is now considered the norm, wherein phenotypes result 
from the cumulative impact of hundreds of thousands of genetic vari
ants, each of very small effect (Visscher et al., 2017; Boyle et al., 2017). 
We here demonstrate a similar pattern in which SER-brain associations 
with the brain are analogously highly “poly-connectic”, implicating 
thousands of connections across the connectome, see also (Zhao et al., 
2021). Our results highlight the need for developmental neuroscience 
research on the associations between environmental conditions and 
brain function to expand the toolkit of analysis methods beyond 
region-specific approaches to better capture what are likely to be highly 
distributed brain-wide associations (Woo et al., 2017; Varoquaux and 
Poldrack, 2019; Rosenberg et al., 2018). 

We disentangled neural patterns of three indices of SER (parental 
education, household income-to-needs, and neighborhood disadvan
tage) using three different multivariate methods, each focused on 
different levels of analysis (whole-brain, network-wise, and connection- 
wise). These three methods convergently supported the conclusion that 
parental education has the most potent relationships with brain con
nectivity patterns in this large, population-based sample. Each of the 
three preceding method has its own strengths and weaknesses. For 
example, predictive modeling is optimized for aggregating widespread 
signals across the brain (Zhao et al., 2021), but it is poor at localizing 
signals (Tian and Zalesky, 2021). Meanwhile, NCA is better for local
izing effects but makes assumptions about network boundaries that may 
turn out to be suboptimal. Quantile-quantile modeling makes no as
sumptions about network boundaries but is not well suited for quanti
fying multivariate effect sizes. By using these three methods in 
combination, however, we address the limitations of each method and 
provide evidence of the robustness of our results across different analytic 
choices. 

Parental education neural associations were preferentially concen
trated in somatosensory/subcortical regions. This result agrees with 
previous seed-based studies that also found SER associations with con
nectivity in amygdala, hippocampus, and striatum (Barch et al., 2016; 
Hanson et al., 2019; Dégeilh et al., 2019). The present study nonetheless 
goes beyond previous work in providing a brain-wide comparative 
perspective (i.e., parental education-associated connectivity is more 
concentrated in somatosensory/subcortical networks compared to other 
networks)—something that cannot be readily revealed by seed-based 
methods. Moreover, we showed this pattern of preferential somato
sensory/subcortical concentration contrasts with general psychopa
thology (which is concentrated in default network and control networks; 
11) and general cognitive ability (which is widespread across all net
works; 12). Taken together, these results point to a distinctive spatial 
profile across the connectome of parental education that should be the 
focus of further investigation. 

Several recent studies have also examined associations between SER 
and resting state functional connectivity in the same ABCD study dataset 
and reached somewhat different conclusions (Rakesh et al., 2021a, 
2021b; DeJoseph et al., 2022). These studies generally found much 
weaker brain-behavior associations than what is reported here. In 
addition, one study (Rakesh et al., 2021b) found significant unique ef
fects of neighborhood disadvantage, which were not observed here. Key 
differences in analytic approach may shed light on these divergent 
findings. The present study used connection-resolution connectomic 
data for each subject, encompassing 87,153 connections per con
nectome, as the input datatype for all analyses. In contrast, these other 
studies used summary statistics (available through the ABCD Data 
Exploration and Analysis Portal; https://deap.nimhda.org) in which 
each subject’s connectome is reduced to 78 numbers representing mean 
connectivity between each pair among 12 large-scale networks. In 
Supplement Fig. S6 and Table S2, we report results from the current 
study alongside results that would have been seen were we to have used 
these summary statistics. We found that for SER, as well as for parental 

Table 1 
Associations Between Parental Education and Brain Connectivity Patterns 
Controlling for Aspects of the Family and School Environment and Child Char
acteristics. We quantified the attenuation of the relationship between parental 
education and brain connectivity patterns after controlling individually and 
jointly for six candidate explanatory variables. Overall, 1/3 of the multivariate 
association between parental education and brain connectivity patterns was 
accounted for by the six candidate explanatory variables. rcv = cross-validated 
out-of-sample correlation between actual scores and predicted scores using 
resting state connectivity data.  

Contextualizing 
Variable 

Parental 
Education rcv 

Attenuation 
Magnitude 

Attenuation p 
value 

No Contextualizing 
Variables  

0.247 – – 

Enrichment Activities‡ 0.230 0.016 0.0439 
Family Support§ 0.247 -0.001 n.s. 
School Support¶  0.246 0.000 n.s. 
Child’s Grades  0.219 0.028 0.0001* 
Child’s General 

Cognitive Ability#  
0.189 0.058 0.0001* 

All Contextualizing 
Variables  

0.175 0.071 0.0001* 

‡ Intellectual/Cultural Orientation subscale of the Family Environment Scale 
§ Acceptance subscale of the Children’s Report of Parental Behavior Inventory 
¶ School Environment subscale of the School Risk and Protective Factors Survey 
# Latent Variable Created from ABCD Neurocognitive Battery 
% Latent Variable Created from Child Behavior Checklist – Parent Report 
* Observed attenuation larger than all 10,000 in the permutation distribution. 
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education, household income-to-needs, and neighborhood disadvan
tage, between 68% and 80% of the multivariate signal associated with 
these variables is lost when using the cell mean summary data (with 78 
features per subject) rather than the connection resolution data (with 
87,153 features per subject). It is likely that this signal loss, as well as 
other differences in analysis choices (discussed in Supplement §10), 
explain the weaker effect sizes observed in these studies and the 
different pattern of effects. Of note, the use of summary statistics in place 
of connection-level data has not been extensively validated, and the 
preceding results suggest the need for caution in adopting this approach. 

One pathway through which SER (and particularly parental educa
tion) is thought to shape youth cognitive and socioemotional develop
ment is through the provision of cognitively-stimulating activities 
(Conger and Donnellan, 2007b; Bradley et al., 2001; Ursache and Noble, 
2016) that shape cognitive skills (e.g., general cognitive abilities and 
academic skills (Hyde et al., 2020b; Hackman and Farah, 2009; Rosen 
et al., 2019) and non-cognitive skills including socioemotional skills (e. 
g., emotion regulation and impulse control). To better understand these 
pathways, we conducted additional multivariate predictive modeling 
analyses with additional control variables. Home enrichment activities, 
child’s grades, and child’s cognitive abilities partially attenuated the 
multivariate association between parental education and resting-state 
connectivity patterns. The full set of five contextualizing variables 
accounted for nearly 30% of the multivariate association between 
parental education and resting-state connectivity patterns. Overall, 
these findings suggests there are rich, interwoven links between parental 
education, cognitive stimulation, and child cognitive/academic out
comes (Conger and Donnellan, 2007a; Rosen et al., 2019). However, 
given the cross-sectional, observational nature of the data, the direc
tional natures of these associations cannot be determined. Moreover, 
though the provision of cognitively stimulating activities in the home is 
one example of a proximal mechanism through which parental educa
tion is associated with brain connectivity, access to educational re
sources (i.e., through libraries, transportation, information) is filtered 
through policies and other structural forces (e.g., spatial allocation of 
resources). 

Regarding the remaining 70% of the multivariate association be
tween parental education and resting-state connectivity patterns, it is 
likely that the contextualizing variables that we assessed were measured 
imperfectly, and improved measurement would lead to larger attenua
tion. Alternatively, it is possible that other contextualizing variables that 
were not assessed at the current time in the ABCD dataset play an 
important role in the parental education-functional connectivity 
association. 

One such variable is parental educational expectations, which are 
found to predict youth educational outcomes longitudinally and over- 
and-above SER (Pinquart and Ebeling, 2020). Another may be geno
type (Krapohl and Plomin, 2016), wherein genetic variants shared by 
parent and child may account for some of the parental 
education-functional connectivity association (note: children’s genetic 
data are collected in the ABCD study but parents’ are not). A third 
possibility is that these connectivity patterns linked to parental educa
tion have behavioral sequalae at later ages (e.g., mid- to late adoles
cence), and thus they do not share variance with the contextualizing 
variables measured at ages 9 and 10. Finally, parental education is one 
node in a dense, complex matrix of contextual influences that span 
multiple units of analysis (individual, family, neighborhood, district, 
region, etc.), where many elements of this matrix are unmeasured in the 
current study. Notable constructs include small area-level measures of 
structural inequality, which can be captured (albeit imperfectly) by 
historical maps of race-based redlining policies and inequities in the 
density of local services (e.g., libraries, healthcare) (Lynch et al., 2021). 
Ongoing efforts by ABCD-associated workgroups will expand measures 
of neighborhood resources to include aspects of the built and natural 
environments (Fan et al., 2021), which in the United States are also 
linked to structural racism through purposeful spatial patterning (Lynch 

et al., 2021; Braveman et al., 2022). Thus, overall, although the present 
study establishes that distributed functional connectivity patterns are 
associated with levels of parental education, the larger causal matrix 
that contextualizes and explains this association, and the directional 
relationships between key nodes, await further elucidation (Hyde et al., 
2020a). 

This study has additional limitations and caution should be taken in 
interpreting its results. A key limitation is that this is a correlational 
study that uses cross-sectional data from the baseline wave of the ABCD 
study. This type of study cannot be used to infer causal relationships 
between modeled variables (MacKinnon et al., 2012). Thus, while we 
performed analyses that identify shared connectivity-related variance 
among parental education, home enrichment activities, child’s grades, 
and child’s cognitive abilities, this study cannot identify directional 
relationships among these variables. In particular, stronger inferences 
about “mediation” and/or causal relationships require other kinds of 
data, such as longitudinal data or experimental manipulations (MacK
innon et al., 2012; Dearing and Hamilton, 2006). Another limitation is 
that the ABCD Study sample is disproportionately higher in SER relative 
to the national population, and inclusion criteria for our analysis 
(especially cutoffs for head motion) exacerbate this overrepresentation 
(Cosgrove et al., 2022), so care should be exercised in extrapolating our 
results to the general population. 

Finally, the results of the current study should not be used to 
perpetuate static, deficit interpretations of development (Simmons et al., 
2021). The brain is a highly plastic organ with abundant capacities to 
learn/relearn, modify, and adjust, consistent with the observation that 
substantial neural change and reorganization extends through late 
adolescence up to young adulthood (Casey et al., 2005; Grayson and 
Fair, 2017). Additionally, it is altogether possible that many of the 
SER-associated neural patterns we observed represent compensatory 
adjustments that help youth adaptively navigate features of their local 
environmental milieu (e.g., constrained opportunities, uncertainty) 
(Nketia et al., 2021). 

In sum, in a large, rigorously characterized sample of youth, we 
identified highly distributed, brain-wide functional connectivity pat
terns linked to SER. Moreover, we demonstrated that parental education 
was the primary driver of these associations, advancing our under
standing of how socio-environmental factors are linked to the devel
oping connectome. 
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