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Department Overview

The Department of Alternative Medicine and

Experimental Therapeutics employs a wide array of

experimental models of neurodegenerative and stress-

related diseases, such as Parkinson’s disease (PD) and

depression, in order to establish the neuroprotective and

anti-stress strategies that can be applicable for both

normal humans and patients with the diseases.
A central theme of our Department is to verify the

alternative medical approaches to prevent and/or treat

neurodegenerative and stress-related diseases in animal

models. To achieve this goal, we focus on three

nonpharmacological approaches: nutrition, exercise and

control of mental environment. In addition to investigat-

ing the usefulness of these nonpharmacological strategies,

we elucidate detailed action mechanisms of alternative

medical approaches to clearly demonstrate neuroprotec-

tive effect and improvement of emotional abnormality.
In this section, background for the nutritional research

in our Department is summarized.

Research Background

PD is a progressive neurodegenerative disorder charac-
terized by the core symptom bradykinesia, rest tremor,
rigidity and postural stability (1). Currently, pharma-
cotherapy and surgical approaches for the treatments of
PD can only improve the neurological symptoms.
Although these symptomatic therapies can provide
benefit, intervention that can slow or halt the progression
of PD is an important consideration of overall treatment.
Post-mortem examination of parkinsonian brains reveals
a number of neurochemical and histological abnormal-

ities. The most striking phenomenon is the loss of
nigrostriatal dopaminergic neurons. This manifests as
a loss of pigmented cells in the substantia nigra and of
dopamine (DA) in the caudate and putamen of the dorsal
striatum. Extensive degeneration of these neurons is
required for clinical deficits. Indeed, even patients with
relatively mild symptoms have striatal DA depletions of
80% (2,3). Therefore, neuroprotective therapies using
pharmacological and nonpharmacological approaches
may delay the progression of pathogenesis in PD.
Neuroprotection Exploratory Trials in Parkinson’s

Disease (NET-PD) sponsored by the National Institute
of Neurological Disorders and Stroke in the United

States were begun to test whether several possible
neuroprotective agents could prevent the progression of
PD. NET-PD is a series of clinical research studies
conducted at many centers in an effort to find drugs to
slow the progression of PD. For this trial, several
neuroprotective agents were identified through a systema-
tic assessment by a group comprising experts in PD,
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clinical trials and clinical pharmacology (4). If promising
results for potential neuroprotective agents are found
in these pilot studies, the agents will be evaluated
in larger, more definitive Phase III trials. The preliminary
study in NET-PD shows that creatine and minocycline
may warrant further study in PD (5). On the other
hand, Olanow and colleagues recently reported the
results of a clinical trial of the propargylamine TCH 346
(N-methyl-N-propargyl-10-aminomethyl-dibenzo[b,f]oxepin)
as a neuroprotective drug in early PD (6). TCH346
provides neuroprotection in animal models of PD
through interaction with a glycolytic enzyme GAPDH
(7,8). GAPDH protein expression is substantially
increased after exposure to various toxins long before
the appearance of the classic markers of apoptosis (9)
and blocking expression of GAPDH is anti-apoptotic
(10). In the clinical trial, there were no significant
differences between the drug-treated group and placebo
with respect to the primary outcome measure of time to
require dopaminergic treatment or the secondary out-
come measures, including changes in clinical scores or
quality-of-life measures (6).

Mitochondrial Function as a Therapeutic
Target in PD

The cause of PD remains unknown, but our under-
standing of mechanisms of nigral dopaminergic neuronal
death was advanced by the discovery of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin
that selectively damages the nigrostriatal dopaminergic
system and cause a parkinsonian syndrome in humans,
monkeys and mice (11–14). The discovery that MPTP
acts through inhibition of complex I of the electron
transport chain stimulated study of mitochondrial func-
tion in the brains from patients with PD. Schapira et al.
(15) reported that complex I activity was selectively
reduced in the substantia nigra of patients with PD.
Parker et al. (16) reported a significant reduction in
complex I activity in platelets from patients with
relatively advanced PD. Platelets mirror certain biochem-
ical processes that occur in the brain. For example,
platelets have been shown to take up dopamine, and they
contain monoamine oxidase B and a-synuclein.
Mizuno et al. (17) proposed that energy crisis is the

most important mechanism of nigral cell death in PD.
In addition, oxidative stress has also been implicated
as an important contributor to nigral cell death in PD,
but it’s a secondary phenomenon on respiratory failure,
because respiratory failure will increase oxygen-free
radical and consume glutathione. On the other hand,
exposure of nigral neurons to a high risk for oxidative
damage because of its high dopamine content may be the
reason for more pronounced nigral complex I deficiency
compared with systemic organs. Oxidative stress and

mitochondrial failure produce a vicious cycle in nigral
neurons.
The processes leading to death of dopaminergic

neurons in PD are not fully understood. Current evidence
suggests that cell death in PD occurs by either apoptosis
or necrosis or both (18). Whether mitochondrial
dysfunction contributes to necrosis in chronic forms of
the neurodegeneration is less clear. However, it is at least
theoretically possible that defects in mitochondrial
electron transport could be severe enough to compromise
total cellular ATP production and thereby result in
necrosis. Therefore, mitochondria could be an important
target for neuroprotection even if the destruction of
neuron appears to be apoptotic, necrotic or intermediate
between the two extremes (19,20).

Mitochondrial Nutrition for the Treatment
of PD

Coenzyme Q10 (CoQ10) is an essential cofactor of the
electron transport chain where it accepts electrons from
complexes I and II. Coenzyme Q also serves as an
important antioxidant in both mitochondria and lipid
membranes. It is particularly effective within mitochon-
dria. Substantial data have implicated mitochondrial
dysfunction and excessive production of reactive oxygen
species in the pathogenesis of PD. Furthermore,
a significant reduction (33%) in the level of CoQ10 in
mitochondria has been reported in PD patients compared
with that in age/gender matched control subjects (21).
The central role of CoQ10 in two areas implicated in the
pathogenesis of PD, mitochondrial dysfunction and
oxidative damages, suggest that it may be useful in
slowing the progression of PD. Parkinson Study Group
conducted a phase II study of CoQ10 in patients with
early untreated PD in North America and found that,
particularly at the highest dosage studied, 1200mg/day, it
appeared to reduce the functional decline in the patient,
as measured by the change in the total score on the
Unified Parkinson Disease Rating Scale (UPDRS) (22).
Although the benefit was found in all three parts of the
UPDRS [part 1 (mention, behavior and mood), part 2
(activities of daily living) and part 3 (motor examina-
tion)], these results should be considered preliminary until
confirmed by a larger phase III study.
It is important to clarify how the exogenous CoQ10

works in the brain to reduce the dopaminergic neurode-
generation. Previous in vitro studies have demonstrated
that CoQ10 can reduce the death of dopaminergic cells
induced by rotenone (23) and H2O2 (24). These studies
indicate that CoQ10 offers neuroprotection at the
mitochondrial level in the apoptotic pathway against
mitochondrial dysfunction and oxidative stress. Although
CoQ10 attenuated the toxin-induced reduction of dopa-
mine content and tyrosine hydroxylase-immunoreactive
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neurons in the striatum of the MPTP mouse model, it is
still unknown how this nutrition affects the mitochon-
drial function (25). Horvath et al. (26) reported that the
mechanism of the neuroprotective effect of CoQ10 in a
primate PD model was through activation of uncoupling
protein 2 (UCP2), which regulates mitochondrial inner
membrane potential, ATP levels and local thermogenesis.
Interestingly, lack of UCP2 increased the sensitivity of
dopamine neurons to MPTP, whereas UCP2 overexpres-
sion decreased MPTP-induced nigral dopamine cell
loss in mice (27). The authors suggested the critical
importance of UCP2 in normal nigral dopamine cell
metabolism and offer a novel therapeutic target, UCP2,
for the prevention/treatment of PD.
From a scientific point of view, we would like to know

if CoQ10 improves mitochondrial function to protect
dopaminergic neurons from in vivo MPTP neurotoxicity.
To demonstrate their neuroprotective effects, we now
focus on whether brain mitochondrial function under
pathological conditions and normal aging can be
improved by nutritional supplements and natural
products.
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