
Original Article
Differentiating gastric cancer and
 gastric lymphoma using texture
analysis (TA) of positron emission tomography (PET)
Yi-Wen Sun1, Chang-Feng Ji2, Han Wang2, Jian He2, Song Liu2, Yun Ge3, Zheng-Yang Zhou1

1Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China;
2Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China;
3School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210093, China.
Abstract
Background: Texture analysis (TA) can quantify intra-tumor heterogeneity using standard medical images. The present study aimed
to assess the application of positron emission tomography (PET) TA in the differential diagnosis of gastric cancer and gastric
lymphoma.
Methods: The pre-treatment PET images of 79 patients (45 gastric cancer, 34 gastric lymphoma) between January 2013 and
February 2018 were retrospectively reviewed. Standard uptake values (SUVs), first-order texture features, and second-order texture
features of the grey-level co-occurrence matrix (GLCM) were analyzed. The differences in features among different groups were
analyzed by the two-way Mann-Whitney test, and receiver operating characteristic (ROC) analysis was used to estimate the
diagnostic efficacy.
Results: InertiaGLCM was significantly lower in gastric cancer than that in gastric lymphoma (4975.61 vs. 11,425.30, z=�3.238,
P= 0.001), and it was found to be the most discriminating texture feature in differentiating gastric lymphoma and gastric cancer.
The area under the curve (AUC) of inertiaGLCM was higher than the AUCs of SUVmax and SUVmean (0.714 vs. 0.649 and 0.666,
respectively). SUVmax and SUVmean were significantly lower in low-grade gastric lymphoma than those in high grade gastric
lymphoma (3.30 vs. 11.80, 2.40 vs. 7.50, z=�2.792 and �3.007, P= 0.005 and 0.003, respectively). SUVs and first-order grey-
level intensity features were not significantly different between low-grade gastric lymphoma and gastric cancer. EntropyGLCM12 was
significantly lower in low-grade gastric lymphoma than that in gastric cancer (6.95 vs. 9.14, z=�2.542, P= 0.011) and had anAUC
of 0.770 in the ROC analysis of differentiating low-grade gastric lymphoma and gastric cancer.
Conclusions: InertiaGLCM and entropyGLCM were the most discriminating features in differentiating gastric lymphoma from gastric
cancer and low-grade gastric lymphoma from gastric cancer, respectively. PET TA can improve the differential diagnosis of gastric
neoplasms, especially in tumors with similar degrees of fluorodeoxyglucose uptake.
Keywords: Image processing; Computer-assisted; Stomach neoplasms; Lymphoma; Fluorodeoxyglucose F18; Positron emission
computed tomography
Introduction

Gastric cancer is a common malignancy and a major cause
of cancer-related death globally.[1] Gastric lymphoma is
the most common extranodal lymphoma.[2] Despite the
similarities in clinical and radiological features, the
treatment strategies and clinical outcomes highly differ
between gastric cancer and gastric lymphoma.[3-6] There-
fore, the importance of differentiating gastric cancer from
gastric lymphoma has been highlighted.

Although endoscopic biopsy is a solid differential method,
it is an invasive procedure with sampling limitations, and it
can hardly assess lesions outside the submucosal layer.[7,8]
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On the other hand, non-invasive imaging modalities can
simultaneously display the entire lesion and its adjacent
structures. Contrast-enhanced multidetector-row comput-
ed tomography (CT) can reflect the blood supply, capillary
density, and dysfunctional neo-vessels of gastric tumors,
and is presently the most widely used imaging technique
for gastric tumors.[9,10] However, the use of CT in
differentiating gastric cancer from gastric lymphoma
based on features such as lesion distribution, wall
thickness, and enhancement pattern remains controver-
sial.[11] Magnetic resonance imaging (MRI) has been
increasingly used because of its excellent soft-tissue
resolution. Although diffusion-weighted imaging of
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106 patients assessed for eligibility

27 patients excluded
- 8 patients had past cancer history
- 1 patient treated before PET/CT scan
- 9 patients had incomplete clinical or

pathological data
- 1 patient’s interval between scan and biopsy or

surgery longer than 2 weeks
- 8 patients had no observable FDG uptake in

lesions

79 patients included

45 patients
with gastric
cancer

34 patients
with gastric
lymphoma

Figure 1: Flowchart of study enrollment shows the ultimate inclusion of 79 patients (45
with gastric cancer and 34 with gastric lymphoma). PET/CT: Positron emission tomography/
computed tomography; FDG: Fluorodeoxyglucose.
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MRI, which reflects the mobility of water protons in
biological tissues,[12] has been reported to exhibit a higher
apparent diffusion coefficient in gastric lymphoma, than
that in gastric cancer,[13] it has the disadvantages of
artifacts and a long scanning time, and the application of
MRI in gastric lymphoma is limited. 18F-fluorodeoxyglu-
cose (FDG) positron emission tomography (PET) can
visibly and comprehensively assess the glucose metabolism
of tissues and has been widely used in a variety of
malignant tumors including gastric cancer and lympho-
ma.[14-16] Semi-quantitatively, the standard uptake value
(SUV) and its derivatives, which correlate to the degree of
FDG uptake in tissues, have been demonstrated to help
differentiate gastric cancer from gastric lymphoma.[17,18]

Nonetheless, FDG uptake has a wide range in both gastric
cancer and gastric lymphoma,[15,17,19] which is partially
due to the differences between pathological subtypes.
Therefore, the differential diagnostic accuracy based on
only SUV and its derivatives is moderate.

Texture analysis (TA) refers to a variety of mathematical
methods that describe the frequency distribution of the
grey-level intensities of pixels or voxels, and the spatial
relationship between them.[20-22] As a technique to
quantitively estimate intra-tumor heterogeneity, TA can
extract numerous features from standard clinical images,
providing additional information beyond visual interpre-
tation.[23] In gastric lesions, CT texture features have
exhibited potential in assisting in the differential diagnosis,
assessing histopathological characteristics, evaluating
the therapeutic response, and predicting clinical out-
comes.[10,24,25] However, CT TA only presents variability
in tissue density, which may have resulted from diversified
cellularity, necrosis, vascularization, or perfusion. In
contrast, since 18F-FDG PET is a metabolic imaging
modality, its TA conveys the spatially varying distribution
of 18F-FDG uptake, which is associated with cellular and
molecular characteristics such as cell proliferation, glucose
transporter expression, and hexokinase activity.[20] Previ-
ous studies have shown that PET TA can be a useful tool
for the diagnosis, staging, response predicting, and
prognosis in a variety of tumors.[20,26,27] However, to
the best of our knowledge, limited studies have reported
the applications of PET TA in improving the differential
diagnosis of gastric cancer and gastric lymphoma.

Therefore, the present study retrospectively analyzed the
texture features derived from standard PET images of
gastric cancer and gastric lymphoma to explore the role of
PET TA in the differential diagnosis.

Methods

Ethics

The present study was approved by the Ethics Committee
of Nanjing DrumTowerHospital (No. 2018-143-01). As a
retrospective and anonymous study, the requirement for
informed consent was waived.

Patient selection

The data of 106 patients clinically diagnosed with gastric
carcinoma or gastric lymphoma from January 2013 to
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February 2018 were gathered and reviewed. The inclusion
criteria were as follows: (1) a diagnosis of gastric
carcinoma or gastric lymphoma confirmed by gastroscopic
biopsy or surgical pathology, and (2) 18F-FDG PET/CT
scan before treatment. The exclusion criteria were as
follows: (1) past cancer history (n= 8), (2) any local or
systemic treatment before the PET/CT scan (n= 1), (3)
incomplete clinical or pathological data (n= 9), (4) the
interval between the scan and biopsy or surgery was longer
than 2 weeks (n= 1), and (5) no observable FDG uptake in
the lesions (n= 8). The flowchart for study enrollment is
presented in Figure 1.
18F-FDG PET/CT image acquisition

All patients were requested to fast for at least 6 h before
tracer injection with a serum glucose level of <11.1 mmol/
L. 18F-FDG (JYAMS PET Research and Development
Limited, Nanjing, Jiangsu, China) was intravenously
injected at a dose of 5.2 MBq (±10%) per kilogram of
body weight. After sitting still for 50 to 90min, the patients
were instructed to drink 600 to 1000 mL of water to
achieve gastric distension and were scanned in the supine
position with breathing at rest.

The 18F-FDG PET/CT scans were performed using a 16-
slice hybrid PET/CT scanner (Gemini GXL16, Philips
Medical System, Cleveland, OH, USA). An unenhanced
CT scan from the skull base to the upper thigh was
performed for attenuation correction (CT scanning
parameters: 50 mA, 120 kV, 5 mm section thickness,
5 mm increment, and a pitch of 0.813). A three-
dimensional PET scan of the same region was subsequently
acquired (8–9 fields of view, 70 s per field). Then, the PET
images were reconstructed in a 144� 144 matrix with a
voxel size of 4 mm� 4mm� 4mm and a slice thickness of
4 mm by a line-of-response algorithm. CT images were
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reconstructed to a 512� 512 matrix with a pixel size of
1.17 mm� 1.17 mm. The attenuation-corrected PET/CT
fusion images on three orthogonal (transaxial, coronal,
and sagittal) planes were reviewed.
Table 1: Clinical and pathological characteristics of patients with
gastric cancer and gastric lymphoma included (n= 79).

Characteristics

Gastric
carcinoma
(n= 45)

Gastric
lymphoma
(n= 34)

Gender
Male 32 15
Female 13 19

Age
<60 years 18 21
≥60 years 27 13

Location
Cardia and fundus 15 4
Body 20 22
Antrum 10 8

Histological type
Adenocarcinoma 32 –

Signet-ring cell carcinoma 9 –

Neuroendocrine carcinoma 3 –

Undifferentiated carcinoma 1 –

MALT lmphoma – 8
Diffuse large B cell lmphoma – 21
High-grade B cell lmphoma – 3
SUV measurement and TA

All 18F-FDG PET/CT images were transferred to a MedEx
workstation (MedEx Technology Limited Corporation,
Beijing, China) and retrospectively interpreted by one
experienced radiologist (Y.S. with 9 years of experience in
oncologic PET/CT) who was blinded to the histological
results. To avoid the effect of FDG uptake in the normal
gastric wall, the abnormalities on the CT images and the
tumor location confirmed by gastroscopy or surgical
specimens were reviewed. The gastric lesions presented as
abnormal FDG-avid foci were analyzed. After enclosing
each tumor in a cropping sphere, the MedEx workstation
automatically generated the SUVmax and SUVmean
using the threshold of 0.4� SUVmax as the border of
the tumor.

To proceed with the TA, the PET and CT images were
downloaded from the MedEx workshop and uploaded
into the in-house software Image Analyzer 2.0 (School of
Electronic Science and Engineering, Nanjing University,
Nanjing, Jiangsu, China). The regions of interest (ROIs)
were manually drawn slice by slice to cover the entire
volume of the gastric lesions on the standard PET images,
referring to the hybrid low-dose CT images. The gastric
lumen and any metastatic lesions (metastatic lymph node,
hepatic metastasis, etc) close to the primary tumors were
carefully avoided. The ROIs were drawn by the same
radiologist after three months to evaluate the intra-
observer agreement and by another radiologist (S.L. with
8 years of experience in gastroenterology imaging) to
estimate the interobserver agreement. After drawing all the
ROIs, the software automatically read the grey-level
intensity of each pixel within the ROIs, and generated a
set of texture features, as follows: (1) histogram features:
mean, standard deviation (SD), max-frequency, mode,
minimum, maximum, cumulative percentiles (the 5th,
10th, 25th, 50th, 75th, and 90th percentile), skewness,
kurtosis, entropy, volume, area, and max-diameter; and
(2) local textural features of the grey-level co-occurrence
matrix (GLCM): entropyGLCM and inertiaGLCM (The
entropyGLCM was defined by the formular EntropyGL=
-
P

i
P

jG(i,j)logG(i,j). It describes the randomness of grey-
level intensities of pairs of pixels, the more chaotically
the intensities of pairs of pixels distributed, the higher
the entropyGLCM will be. InertiaGLCM was defined by the
formular InertiaGLCM=

P
i
P

j(i-j)2G(i,j). It describes
the local variation between a pixel and its neighbors,
the more the grey-level intensities vary from pixels to their
neighbors, the higher the inertiaGLCM will be).
Low-grade B cell lmphoma – 1
Peripheral T cell lymphoma – 1

Histopathology access
Gastroscopic biopsy 35 34
Surgery 10 0

Data are presented as n. MALT: Mucosa associated lymphoid tissue; –:
Not aplicable.
Statistical analysis

The normality of the data was analyzed using the
Kolmogorov-Smirnov test. The two-way Mann-Whitney
test was used to compare the differences in SUVs and
texture features between gastric cancer vs. gastric
lymphoma, low-grade vs. high-grade gastric lymphoma,
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and low-grade gastric lymphoma vs. gastric cancer. The
correlations among SUVmax, SUVmean, and histogram
parameters were assessed by Spearman correlation test.
The differential efficacy of the SUVmax, SUVmean, and
texture parameters in different types of gastric neoplasms
was evaluated through receiver operating characteristic
(ROC) analysis, and the areas under the curves (AUCs)
were compared by z-test. The intra-observer and inter-
observer agreement in the measurement of the PET texture
features was estimated by intra-class correlation coeffi-
cients (ICCs; 0–0.200, poor; 0.201–0.400, fair; 0.301–
0.600, moderate; 0.601–0.800, good; 0.801–1.000, excel-
lent). The ROC analysis was performed using Med-Calc
Statistical Software version 19.0.7 (Med-Calc Software
bvba, Ostend, Belgium). Other statistical analyses were
performed using SPSS version 22.0 (IBM SPSS, Chicago,
IL, USA). A two-tailed P value of <0.05 was considered
statistically significant.
Results

Patient characteristics

A total of 79 patients (47 males and 32 females; age range:
23–88 years; median age: 60 years) served as our study
cohort, including 45 in the gastric carcinoma group and
34 in the gastric lymphoma group. The clinical and
pathological characteristics are displayed in Table 1.

http://www.cmj.org


Table 2: Differences of SUVs and texture features between gastric cancer and gastric lymphoma.

Parameters Gastric cancer Gastric lymphoma z P

Mean 2218.99 (921.79–3416.51) 2999.42 (1628.44–5861.95) �2.277 0.023
SD 350.14 (168.68–876.44) 624.21 (279.75–2212.96) �2.277 0.023
Max-frequency 4.00 (3.00–5.00) 4.00 (2.00–4.00) �0.764 0.445
Mode 1774.00 (886.00–2661.00) 2002.00 (1347.75–4014.25) �1.698 0.089
Minimum 1010.00 (541.00–1773.00) 1449.50 (893.00–2001.00) �2.104 0.035
Maximum 3246.00 (1405.00–6360.50) 5333.50 (2309.00–12,873.75) �2.188 0.029
5th percentile 1430.00 (653.50–2376.50) 1737.50 (1196.25–3023.75) �1.901 0.057
10th percentile 1546.00 (711.50–2479.50) 1909.50 (1267.25–3291.00) �2.030 0.042
25th percentile 1720.00 (792.50–2742.50) 2236.00 (1386.50–3893.25) �2.099 0.036
50th percentile 2063.00 (935.00–3225.00) 2869.50 (1627.50–5400.00) �2.188 0.029
75th percentile 2437.00 (1046.00–3845.00) 3347.00 (1730.50–7341.75) �2.297 0.022
90th percentile 2838.00 (1123.00–4397.00) 3923.50 (1797.25–9056.50) �2.248 0.025
Skewness 0.48 (0.07–0.92) 0.47 (0.16–0.82) �0.069 0.945
Kurtosis 3.05 (2.60–3.91) 2.78 (2.38–3.26) �1.852 0.064
EntropyHIST 5.73 (4.72–6.63) 5.70 (4.72–7.13) �0.584 0.559
Volume 29,632.00 (9920.00–72,032.00) 19,552.00 (9184.00–95,584.00) �0.223 0.824
Area 7408.00 (2480.00–18,008.00) 4888.00 (2296.00–23,893.00) �0.223 0.824
Max-diameter 60.22 (35.93–78.18) 46.36 (32.98–79.79) �0.446 0.656
EntropyGLCM10 9.00 (7.30–10.15) 7.61 (7.11–10.12) �1.074 0.283
EntropyGLCM11 9.33 (7.60–10.28) 7.90 (7.25–10.25) �1.129 0.259
EntropyGLCM12 9.14 (7.34–10.11) 7.71 (6.71–10.16) �1.069 0.285
EntropyGLCM13 9.26 (7.59–10.25) 8.04 (7.31–10.34) �0.970 0.332
InertiaGLCM10 6020.79 (1700.47–16,367.30) 19,602.65 (4466.55–40,418.13) �2.921 0.003
InertiaGLCM11 4975.61 (747.88–8615.51) 11,425.30 (4415.08–26,092.18) �3.238 0.001
InertiaGLCM12 8179.52 (1291.79–20,038.60) 21,663.40 (7375.84–28,800.30) �2.842 0.004
InertiaGLCM13 3761.54 (585.62–10,314.60) 13,716.45 (2627.29–18,225.03) �2.842 0.004
SUVmax 4.90 (3.05–9.80) 9.40 (3.60–19.50) �2.258 0.024
SUVmean 3.10 (2.10–5.85) 5.75 (2.63–12.00) �2.516 0.012

Data are presented as median (interquartile range). SUV: Standard uptake value; SD: Standard deviation; HIST: Histogram; GLCM: Grey-level co-
occurrence matrix.
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Difference between gastric cancer and gastric lymphoma

The SUVs and some texture features did not comply
with the normal distribution. Thus, the two-way Mann-
Whitney test was used to compare the differences in SUVs
and texture features among the groups.

There were significant differences in terms of SUVmax,
SUVmean, maximum, mean, SD, minimum, percentiles
(10th, 25th, 50th, 75th, and 90th), and inertiaGLCM10-13
(P= 0.001–0.042) between the gastric cancer group and
the gastric lymphoma group [Table 2]. Representative
images of gastric cancer and gastric lymphoma are
presented in Figure 2. The max-frequency, mode, 5th
percentile, skewness, kurtosis, entropy, volume, area, max
diameter, and entropyGLCMwere not significantly different
between gastric cancer and gastric lymphoma.
Difference between low-grade and high-grade gastric
lymphoma

There were nine low-grade gastric lymphoma cases (eight
cases of mucosa-associated lymphoid tissue [MALT]
lymphoma and one case of low-grade B cell lymphoma)
and 25 high-grade gastric lymphoma cases (21 cases of
diffuse large B cell lymphoma, three cases of high-grade
B cell lymphoma, and one case of peripheral T cell
lymphoma). SUVmax, SUVmean, SD, volume, area, max-
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diameter, and entropyHIST were significantly lower in low-
grade gastric lymphoma than those in high-grade gastric
lymphoma (the z value ranged from �3.007 to �2.01, the
P value ranged from 0.003 to 0.044) [Table 3].
Difference between low-grade gastric lymphoma and gastric
cancer

EntropyGLCM10-13 was found to be significantly lower in
low-grade lymphoma than that in gastric cancer (the z
value ranged from �2.542 to �2.309, the P value ranged
from 0.011 to 0.021). Volume and area were also found to
be significantly lower in low-grade lymphoma than those
in gastric cancer (z=�2.066 and �2.066, P = 0.039 and
0.039, respectively). However, there were no significant
differences in the SUVs or other grey-level intensity
features between low-grade gastric lymphoma and gastric
cancer.
Correlations between SUVs and histogram features

The mean, SD, maximum, minimum, and percentiles
(10th, 25th, 50th, 75th, and 90th) derived from the grey-
level intensity histogram analysis showed significant
positive correlations with SUVmax and SUVmean, with
P � 0.001 [Table 4].
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Table 3: Differences of SUVs and texture features between low-grade and high-grade gastric lymphoma.

Parameters Low-grade gastric lymphoma High-grade gastric lymphoma z P

Mean 2292.44 (1125.39–3599.91) 3349.84 (1788.23–7814.44) �1.542 0.123
SD 285.14 (147.74–537.37) 1023.41 (344.54–3275.63) �2.596 0.009
Max-frequency 4.00 (2.00–4.00) 4.00 (2.00–5.00) �0.782 0.434
Mode 1919.00 (1073.00–3349.50) 2085.00 (1316.50–4428.00) �0.644 0.520
Minimum 1283.00 (792.50–1916.5.00) 1533.00 (874.00–2085.00) �0.527 0.598
Maximum 3265.00 (1574.00–5333.50) 6745.00 (2777.50–16,148.50) �2.088 0.037
5th percentile 1715.00 (915.0–2217.50) 1760.0 (1207.00–3438.00) �0.870 0.380
10th percentile 1872.00 (970.50–2401.00) 1919.00 (1291.50–3847.50) �1.034 0.301
25th percentile 2101.00 (1017.5–2691.50) 2309.00 (1475.00–5063.50) �1.152 0.250
50th percentile 2263.00 (1112.50–3405.50) 3367.00 (1746.00–7359.00) �1.374 0.178
75th percentile 2466.00 (1201.5–4216.00) 4711.00 (1978.00–10,063.50) �1.698 0.089
90th percentile 2601.00 (1335.500–4557.00) 3923.50 (2192.50–12,051.50) �1.854 0.064
Skewness 0.38 (0.14–0.72) 0.55 (0.15–0.91) �0.800 0.424
Kurtosis 2.90 (2.33–3.21) 2.76 (2.32–3.31) �0.215 0.830
EntropyHIST 4.49 (4.72–5.17) 6.17 (5.07–7.30) �2.557 0.011
Volume 9088.00 (6496.00–13,696.00) 40,320.00 (11,680.00–146,976.00) �2.518 0.012
Area 2272.00 (1624.00–3424.00) 10,080.00 (2920.00–36,744.00) �2.518 0.012
Max-diameter 37.72 (27.24–52.25) 51.02 (36.02–89.06) �2.010 0.044
EntropyGLCM10 7.30 (5.97–7.93) 9.06 (7.16–10.30) �1.854 0.064
EntropyGLCM11 7.33 (6.43–8.02) 9.35 (7.34–10.45) �2.049 0.040
EntropyGLCM12 6.95 (5.60–7.93) 9.16 (7.13–10.33) �2.128 0.033
EntropyGLCM13 7.63 (6.25–8.09) 9.44 (7.44–10.50) �1.854 0.064
InertiaGLCM10 4484.86 (836.16–15,181.25) 23,842.40 (11,422.04–44,727.15) �2.518 0.012
InertiaGLCM11 5682.64 (948.69–12,101.45) 14,568.40 (6680.19–27,752.70) �1.815 0.069
InertiaGLCM12 22,103.70 (1505.08–36,206.75) 21,423.00 (9680.64–29,780.65) �0.176 0.861
InertiaGLCM13 6522.99 (400.27–20,267.20) 14,595.40 (3264.66–18,549.15) �0.956 0.339
SUVmax 3.30 (2.75–4.45) 11.80 (6.85–21.75) �2.792 0.005
SUVmean 2.40 (1.95–5.10) 7.50 (5.10–13.25) �3.007 0.003

Data are presented as median (interquartile range). SUV: Standard uptake value; SD: Standard deviation; HIST: Histogram; GLCM: Grey-level co-
occurrence matrix.

Figure 2: Axial positron emission tomography image (A) and grey-level intensity histogram (B) of an 84-year-old male with gastric adenocarcinoma. Axial PET image (C) and (D) grey-level
intensity histogram of a 58-year-old woman with diffuse large B-cell lymphoma. PET: Positron emission tomography.
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Table 5: ROC analysis of SUVs and texture parameters in differentiating gastric cancer vs. gastric lymphoma, low-grade gastric lymphoma vs.
high grade gastric lymphoma and low-grade gastric lymphoma vs. gastric cancer.

Parameters Cut-off Sensitivity Specificity Accuracy AUC P

Gastric cancer vs. gastric lymphoma
Mean 3687.22 0.822 0.471 0.671 0.650 0.018
SD 238.50 0.422 0.853 0.608 0.650 0.018
Minimum 1349.00 0.689 0.559 0.633 0.639 0.028
Maximum 1741.00 0.333 0.912 0.582 0.644 0.023
10th percentile 805.00 0.311 0.912 0.570 0.634 0.036
25th percentile 2056.00 0.622 0.618 0.620 0.639 0.029
50th percentile 3131.00 0.756 0.500 0.646 0.644 0.023
75th percentile 4581.00 0.844 0.441 0.671 0.652 0.017
90th percentile 6868.00 0.933 0.324 0.671 0.648 0.020
InertiaGLCM10 13,232.50 0.733 0.618 0.684 0.693 0.002
InertiaGLCM11 8625.99 0.778 0.647 0.722 0.714 <0.001
InertiaGLCM12 20,258.70 0.800 0.529 0.684 0.688 0.002
InertiaGLCM13 11,737.40 0.844 0.559 0.722 0.688 0.003
SUVmax 15.40 0.933 0.382 0.696 0.649 0.023
SUVmean 7.10 0.889 0.441 0.696 0.666 0.009

Low-grade gastric lymphoma vs. high grade gastric lymphoma
SD 434.37 0.720 0.778 0.735 0.796 <0.001
EntropyHIST 5.22 0.720 0.889 0.765 0.791 0.001
Volume 16,064 0.680 0.889 0.735 0.787 0.001
Area 4016 0.680 0.889 0.735 0.787 0.001
Max-diameter 42.9 0.720 0.778 0.735 0.729 0.014
SUVmax 5.00 0.880 0.889 0.882 0.818 0.001
SUVmean 3.10 0.880 0.889 0.882 0.842 <0.001

Low-grade gastric lymphoma vs. gastric cancer
EntropyGLCM10 7.45 0.733 0.778 0.741 0.746 0.004
EntropyGLCM11 8.36 0.644 0.889 0.685 0.762 0.001
EntropyGLCM12 7.45 0.711 0.778 0.722 0.770 0.001
EntropyGLCM13 7.70 0.733 0.778 0.741 0.746 0.005
Volume 16,064.00 0.600 0.889 0.648 0.720 0.019
Area 4016.00 0.600 0.889 0.648 0.720 0.019

ROC: Receiver operating characteristic; SUV: Standard uptake value; SD: Standard deviation; HIST: Histogram; GLCM: Grey-level co-occurrence
matrix; AUC: Area under the curve.

Table 4: Correlations between SUVs and grey-level intensity histogram features.

SUVmax SUVmean

Parameters Correlation coefficients P Correlation coefficients P

Mean 0.643 <0.001 0.653 <0.001
SD 0.818 <0.001 0.802 <0.001
Minimum 0.369 0.001 0.401 <0.001
Maximum 0.760 <0.001 0.751 <0.001
10th percentile 0.479 <0.001 0.506 <0.001
25th percentile 0.520 <0.001 0.543 <0.001
50th percentile 0.603 <0.001 0.671 <0.001
75th percentile 0.680 <0.001 0.686 <0.001
90th percentile 0.718 <0.001 0.719 <0.001

SUV: Standard uptake value; SD: Standard deviation.
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ROC analysis

Parameters with significant differences between groups
were subjected to ROC analysis. The results are presented
in Table 5. In the differentiation of gastric lymphoma
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and gastric cancer, inertiaGLCM had the highest AUC
(sensitivity= 0.778, specificity= 0.647, accuracy = 0.722,
AUC= 0.714,P< 0.001). SUVmaxand SUVmeanwere the
most discriminating parameters in differentiating low-grade
and high-grade gastric lymphoma (sensitivity= 0.880 and
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Figure 3: Receiver operating characteristic curves of inertiaGLCM11 (A), SUVmean (B), and entropyGLCM12 (C) in differentiating gastric lymphoma vs. gastric cancer, low-grade vs. high-grade
lymphoma, and low-grade gastric lymphoma vs. gastric cancer, respectively. AUC: Area under the curve; CI: Confidence interval; GLCM: Grey-level co-occurrence matrix; SUV: Standard
uptake value.
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0.880, specificity= 0.889 and 0.889, accuracy= 0.882 and
0.882, AUC= 0.818 and 0.842, P= 0.001 and <0.001,
respectively). EntropyGLCM had the highest AUC in
distinguishing low-grade gastric lymphoma and gastric
cancer (sensitivity= 0.711, specificity= 0.778, accuracy=
0.722, AUC= 0.770, P= 0.001) [Figure 3].
Intra-observer and inter-observer agreement analysis

Mean, SD, maximum, percentiles (10th, 25th, 50th, 75th,
and 90th), kurtosis, entropy, volume, area, max diameter,
inertiaGLCM10, inertiaGLCM11, inertiaGLCM12, and iner-
tiaGLCM13 exhibited excellent intra-observer agreement
(the ICCs ranged from 0.827 to 0.999). Max frequency,
mode, minimum, 5th percentile, skewness, entro-
pyGLCM10, entropyGLCM11, entropyGLCM12, and entro-
pyGLCM13 exhibited good intra-observer agreement (the
ICCs ranged from 0.724 to 0.800).

Mean, SD, max frequency, maximum, percentiles (25th,
50th, 75th and 90th), kurtosis, entropy, volume, area,
max diameter, entropyGLCM10, entropyGLCM11, entro-
pyGLCM12, entropyGLCM13, inertiaGLCM10, inertiaGLCM11,
inertiaGLCM12, and inertiaGLCM13 exhibited excellent
interobserver agreement (the ICCs ranged from 0.801 to
0.998). Mode, minimum, 5th percentile, 10th percentile,
and skewness exhibited good interobserver agreement (the
ICCs ranged from 0.717 to 0.800). The details of the ICCs
are provided in Supplemental Tables 1 and 2, http://links.
lww.com/CM9/A377.
Discussion

The present study explored the role of PET TA in
differentiating gastric lymphoma vs. gastric cancer, low-
grade gastric lymphoma vs. high-grade gastric lymphoma,
and low-grade gastric lymphoma vs. gastric cancer. The
differential efficacies of the texture features were compared
with those of traditional SUVs.

SUVs, grey-level intensity features, percentiles and iner-
tiaGLCM were discriminating features in differentiating
gastric lymphoma from gastric cancer, and inertiaGLCM11
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had the highest AUC among these features. However, no
significant differences in the FDG uptake level existed
between low-grade lymphoma and gastric cancer, while
the texture feature entropyGLCM exhibited good efficacy in
differentiating low-grade lymphoma and gastric cancer.

SUVmax and SUVmean are the commonly used semi-
quantitative parameters in daily 18F-FDG PET scans. They
represent the degree of FDG uptake in ROIs, which
depends on glucose transporter (GLUT) expression and
hexokinase activity. In general, SUVs are lower in gastric
cancer due to the lower expression of GLUT-1 trans-
porters, a decrease in cellular density, and an increase in
intracellular mucin.[28] However, low-grade lymphoma,
such as gastric MALT lymphoma, was found to have low
FDG avidity, thus usually had relatively low SUVs.[19] In
the present study, the SUVs were not significantly different
between low-grade gastric lymphoma and gastric cancer.
Thus, it remains difficult to differentiate these malignancies
when relying on these routinely used semiquantitative
parameters.

The maximum, minimum, mean, and percentiles describe
the distribution of grey-level intensities in an ROI. FDG
uptake is transferred to grey-level intensity in PET images.
The higher the radioactivity counts one pixel has, the
higher the grey-level intensity it presents. Similar to SUVs,
grey-level intensity parameters actually reflect the degree of
FDG uptake in PET images, resulting in the substantial
correlation between these parameters and SUVs, as well as
the similar efficacy in the differentiation of gastric cancer
and gastric lymphoma.

Inertia describes the variation in local grey-level intensity
values between a pixel and its neighbors.[29] In a GLCM,
the elementG(i, j) is the sum of the number of times that the
pixel with grey-level intensity value i occurs in the specified
spatial relationship (with a given distance and on a given
direction) to a pixel with a grey-level intensity value j in the
input image.[30] InertiaGLCM is defined by the formula,
Inertia =

P
i,j(I–j)2G(i, j). The greater the difference is

between value i and j, the higher the inertiaGLCM becomes.
The importance of inertia in differential diagnosis and

http://links.lww.com/CM9/A377
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prognosis has been demonstrated by several stud-
ies.[29,31,32] In the present study, inertiaGLCM was found
to be higher in gastric lymphoma than that in gastric cancer
on all four directions in the cross-sectional PET image (that
is inertiaGLCM10, inertiaGLCM11, inertiaGLCM12, and iner-
tiaGLCM13), making it capable of differentiating gastric
lymphoma from gastric cancer with AUCs (0.688–0.714)
higher than those of all other parameters being analyzed.
These results suggest that the local FDG uptake variation
was significantly higher in gastric lymphoma, which could
be important in differentiating gastric lymphoma from
gastric cancer. Although the cause of this characterization
was unclear, the investigators hypothesized that this could
be attributed to regional tissues with extremely higher
FDG uptake than the surroundings in gastric lymphoma.
Notably, the specificity of inertiaGLCM11 was higher than
that of SUVmax and SUVmean (0.647 vs. 0.382 and
0.441, respectively). Since gastric lymphoma was set to be
“negative” in the ROC analysis, this suggested that
inertiaGLCM11 was more capable than SUVs in differenti-
ating gastric lymphoma from gastric cancer.

Entropy quantitatively characterizes intra-tumor hetero-
geneity. Histogram entropy describes the distribution of
grey-level intensities inside the ROI, and second-order
entropies (such as entropyGLCM) provide information on
the positional relationship between groups of two
pixels.[33] The more chaotic the image is, the higher the
entropy would be. Low-grade lymphoma lesions tend to be
comprised of aligned monomorphic lymphoid cells. Thus,
these can be characterized as more homogeneous in
medical images, which generates lower entropies. In the
present study, entropyGLCM was found to be significantly
lower in the low-grade gastric lymphoma group. This
allows it to be able to discriminate low-grade gastric
lymphoma and gastric cancer, and it was superior to SUVs
and other texture features.

Kurtosis and skewness, describe the sharpness of the peak
and asymmetry of the grey-level intensity distribution,
respectively. However, these were found to have no
significant differences among the groups. The grey-level
intensity distributions of both groups were leptokurtic
right-skewed. The kurtosis and skewness in PET TA varied
according to the objects of study. In a study that included
40 uterine leiomyoma patients and 15 uterine sarcoma
patients, kurtosis and skewness were significantly higher in
uterine sarcoma.[34] Although the authors did not provide
a clear explanation, we considered that a possible reason is
that the FDG uptake in uterine sarcoma is significantly
higher than that in leiomyoma, resulting in extremely
higher grey-level intensity values in uterine sarcoma.
Another PET TA of 50 patients with thyroid incidentaloma
revealed that the skewness of thyroid malignancies was
significantly lower than that of benign nodules, while
kurtosis was not significantly different between groups.[35]

In contrast, kurtosis and skewness were found to have no
significant differences between the baseline and intra-
treatment PET images in patients with non-small cell lung
cancer.[36] In PET TA, due to the diversity of the tumor
biological characteristics, especially the diversity of cellular
FDG uptake, the application value of kurtosis and
skewness fluctuates according to the tumor being studied.
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The present study had some limitations. First, this was a
preliminary retrospective study, and all the hypotheses
were only supported by statistical analysis. Due to the
limited cohort size, it was not reliable enough to generate a
regression model for the differential diagnosis. Thus, it is
important to validate these results with enlarged sample
size or a prospective study in the future. Second, diffuse or
focal increased FDG uptake could be observed in normal
gastric walls. To avoid this pitfall, the gastric wall
thickness in the hybrid CT images and positional
information from the pathologic examination were taken
into consideration during the ROI delineation. The ICC
analysis also confirmed the reliability of the present results.
Third, considering the heterogeneous FDG uptake in the
different subtypes of lymphoma, the investigators roughly
divided the gastric lymphoma cases into low-grade and
high-grade gastric lymphoma groups. Hence, there could
still be potential differences due to the variety of
pathological subtypes (such as T-cell lymphoma vs. B-
cell lymphoma). In addition, the gastric cancer cases were
not divided into subgroups based on histological subtypes,
since the FDG avidity of different subtypes of gastric
cancer is not as heterogeneous as that of gastric lymphoma.
Further studies will be performed to explore the use of PET
TA in gastric cancer and gastric lymphoma with unified
pathological subtypes.

In conclusion, inertiaGLCM was the most discriminating
feature in differentiating gastric lymphoma from gastric
cancer, and entropyGLCM could differentiate between low-
grade gastric lymphoma and gastric cancer. PET TA could
serve as a promising non-invasive tool for improving the
differential diagnosis of gastric neoplasms, especially for
tumors with a similar degree of FDG uptake.
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