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ABSTRACT  Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling
up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a
solution to detect the presence of infections in the population, but the current paradigm requires collecting
physiological data continuously and for long periods of time on each individual, which poses limitations
in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the
physiological responses elicited by a short (~2 minutes) sequence of activities (i.e. ‘““snapshot’), to detect
symptoms associated with COVID-19. We employed a novel body-conforming soft wearable sensor placed
on the suprasternal notch to capture data on physical activity, cardio-respiratory function, and cough sounds.
Results: We performed a pilot study in a cohort of individuals (n=14) who tested positive for COVID-19 and
detected altered heart rate, respiration rate and heart rate variability, relative to a group of healthy individuals
(n=14) with no known exposure. Logistic regression classifiers were trained on individual and combined
sets of physiological features (heartbeat and respiration dynamics, walking cadence, and cough frequency
spectrum) at discriminating COVID-positive participants from the healthy group. Combining features yielded
an AUC of 0.94 (95% CI=[0.92, 0.96]) using a leave-one-subject-out cross validation scheme. Conclusions
and Clinical Impact: These results, although preliminary, suggest that a sensor-based snapshot paradigm
may be a promising approach for non-invasive and repeatable testing to alert individuals that need further
screening.

INDEX TERMS COVID-19, diagnostics, digital health, soft electronics, wearable sensors.

I. INTRODUCTION

THE COVID-19 pandemic is a global public health cri-
sis, with over 50 million confirmed cases and more
than 1.2 million deaths worldwide as of November 11% 2020.
Testing has continued to be a critical factor to control and
reduce the spread of the disease by timely isolating and/or
treating individuals who are suspected of infection [1]. With
a proportion of asymptomatic infections estimated between
20% to 30% [2], [3], rapid testing for pre-symptomatic or
asymptomatic patients could be key to ending the spread of
COVID-19 [4].

Ongoing efforts are being directed at the development of
novel rapid screening technologies [5], [6], but at present
the primary method to test an individual for the presence
of the virus is based on molecular testing, also known as
RT-PCR (reverse transcription polymerase chain reaction),
which detects the virus genetic material in a biological sample
from the patient respiratory tract or saliva [7]. Although this
is considered the most sensitive type of test, it has several
drawbacks: for many testing facilities, test samples must be
transported to a lab for analysis, creating a delay period into
the diagnostic process that can range from a few hours to a
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few days or over a week. Further, infections that occur imme-
diately prior to or following the test are not detected, and
repeated testing is often not feasible due to limited resources.
As a result, the current testing capacity, as well as delays
in processing and delivering test results, remain a bottleneck
that is limiting the effectiveness of public health containment
measures [8].

In addition to molecular testing approaches, early indica-
tions of COVID-19 could be detected through changes in
vital signs or other physiological characteristics. For exam-
ple, increased resting heart rate and heart rate variability
have been proposed as early predictors of illness [9]-[11].
Though unlikely to achieve the sensitivity or specificity of
molecular testing, physiological monitoring could become
a cost-effective and high-throughput method for first-pass
screening of individuals at risk of COVID-19 infection, such
as hospital staff, residents of long-term care facilities and
essential workers. Repeated, proactive monitoring is crucial
for such groups, and an approach based on easily measured
physiological signals, beyond the common skin tempera-
ture checks currently in use in many public places, could
help fill in the monitoring gaps between ‘“gold standard”
molecular tests.

Wearable sensors present an enticing avenue to detect
physiological signals indicative of COVID-19 [12]. Detec-
tion of adverse events such as atrial fibrillation [13], Lyme
Disease [14], stress [15], and even the spread of viral infec-
tions at the population level [10], proved to be possible
through continuous, long-term monitoring of vital signs using
consumer-grade wearables. Recent studies have adopted this
paradigm for detecting the onset of COVID-19 infections,
by recording changes in heart rate, physical activity, respi-
ration and sleep data [16]-[19] over long periods of time.
However, the logistics of a continuous monitoring approach,
when applied on a broad scale, could become quite chal-
lenging [20]. Continuous monitoring requires one device
per individual, and even when provided with a device, not
all individuals will use it consistently [21]. Furthermore,
the extremely large amount of data per person can create
challenges for proper data management and processing at
scale [22], [23].

Here, we discuss a different paradigm for detecting
alterations in physiology due to COVID-19 using wear-
able sensors, based on recording physiological responses
during a short sequence of activities, using a novel soft
body-conforming wearable sensor that adheres to the throat.
We present preliminary results of a larger trial and describe
a proof of concept of how this paradigm could enable
large-scale deployment of rapid testing to identify individuals
at-risk who need further screening.

Il. RESULTS

A. “SNAPSHOT” DETECTION OF COVID-19

To address limitations in continuous physiological monitor-
ing with wearable devices, we propose an alternative solution
to detecting changes in physiology related to COVID-19
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infections. Our method relies on two main components: a
sensing platform capable of measuring physiologically rel-
evant parameters, and a standardized sequence of activities
(Fig. 1), which we refer to as a “‘snapshot”, designed to
sensitively elicit responses indicative of a diseased state.
By collecting a range of physiological signals during a snap-
shot, including heart activity, respiration, physical activity,
and cough sounds, we hypothesized that changes due to
COVID-19 could be detected.

The sensing device consists of a safe, soft, and reusable
wearable sensor worn on the suprasternal notch and capable
of recording mechano-acoustic signals through an embedded
high-resolution accelerometer [24]. The device can measure
broad body motions, such as those corresponding to walking,
as well as subtle vibrations induced by sounds produced
by heart beats, coughing, or breathing, thus making it pos-
sible to quantify physical effort and changes or anomalies
in cardiac and respiratory physiology (see Section V for
details). While our paradigm can be extended to other wear-
able platforms, the form factor of this device allows a more
direct access to respiratory variables, including respiration
dynamics.

B. PILOT STUDY TO MEASURE PHYSIOLOGICAL TRENDS
FROM A SNAPSHOT

Three different cohorts of individuals were outfitted with
the soft wearable sensor to monitor physiological signals as
they performed activities: Inpatient COVID-positive (n=10),
Home-quarantining COVID-positive (n=5), and Healthy
Controls (n=14). The Inpatient cohort consisted of indi-
viduals being treated at the Shirley Ryan AbilityLab, who
had tested positive for COVID-19 and required physical
rehabilitation resulting from severe COVID symptoms. The
Home-quarantining cohort consisted of individuals who
had milder symptoms and could recover from the infec-
tion at home. The Healthy Controls had no COVID-like
symptoms or known exposure to the disease and were
enrolled for an in-lab data collection. Demographics for the
finalized set of participants are provided in Table 1 (see
Section V for details). For statistical analyses, the Inpa-
tient and Home-quarantining cohorts were combined into
the COVID-positive group, while the healthy controls were
labeled as COVID-negative.

For each subject, periods of rest, walking, and forced
coughs were recorded using the soft wearable sensor attached
to the suprasternal notch. We processed the accelerometer
time series to derive physiological signals (see Section V)
corresponding to respiration rates and R-R intervals during
the resting phases, as well as walking cadence, for each activ-
ity snapshot (a sequence of rest, walk, rest). We compared
the distributions of respiration rate, mean heart rate and heart
rate variability (HRYV, calculated as standard deviation of R-R
intervals) prior to walking, as well as their changes before and
after walking between COVID-positive and Healthy Controls
(Fig. 2A-C). Acoustic features were extracted for the data
collected during forced coughs.
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FIGURE 1. Accelerometer time series data were recorded using a soft wearable sensor [24] adhered to the suprasternal notch, as subjects
performed a short set of predefined activities. Respiration and heartbeat dynamics, physical activity, and cough frequency information were
derived from the recorded data. From these physiological signals, time and frequency domain features were extracted and fed into a symptom
detection classifier trained to predict the presence of COVID-symptoms. The classifier outputs the probability of suspect symptoms based on the

input signal features.
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FIGURE 2. Pre-walk and post-walk physiological signals in Healthy Controls and individuals who tested positive to COVID-19, derived from
accelerometer time series data. Participants who tested positive to COVID-19 (home-quarantined and inpatients) displayed altered heart rate (A),
heart rate variability (B), respiration rates (C) and heart rate / walking cadence (beats per minute / steps per minute, (D), compared to healthy

controls.

Mean heart and respiration rates at baseline (pre-walk)
were higher in participants who tested positive (median HR-
Healthy Controls: 71.4 beats per minute, COVID-Positive:
98.4 beats per minute U=18.0, p<.001; median Resp
Rate—Healthy Controls: 16.6 breaths per minute, COVID-
Positive: 26.8 breaths per minute; U=26.0, p<.001),
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while heart rate variability (HRV) was lower (median
HRYV Post — Healthy Controls: 0.052 s, COVID-Positive:
0.026 s; U=28.0, p=.0012), relative to the control group.
Therefore, we detected differences in individual physiolog-
ical features between the 2 groups, which may be associated
with a diseased state.

4900311



|EEE Journal of Translational

Engineering in
Health and Medicine

L. Lonini et al.: Rapid Screening of Physiological Changes Associated With COVID-19

TABLE 1. Patient demographics. Comorbidity abbreviations: HTN: Hypertension; DM: Diabetes Mellitus (type 1l); CA: Cancer; HF: Heart Failure; SLE:

Systemic Lupus Erythematosus; HLD: Hypersensitivity lung disease.

Demographics COVID-19 Related Data Availability
Subject ID Gender Age Height Weight Symptoms Comorbidities Instances Days
yrs cm kg Pre/Post Gait Pre/Post
/ Cough Gait / Cough
COVID+ SRAL2011F F 78 153 50.3 Cough, fever HTN, DM 2/4 1/3
Inpatients = SRAL2012BM M 55 180 78.9 SOB HTN, asthma 2/5 2/3
SRAL2014F F 65 165 63 Cough, increased CA 4/17 2/10
HR, fever, SOB
SRAL2019M M 60 175 68 SOB HTN, HF 3/5 2/3
SRAL2020BF F 64 97 SOB, cough HTN, CA 4/4 1/2
SRAL2024BM M 54 184 139.6 Cough, COB, fevers Obestiy 1/1 1/1
SRAL2025F F 53 165 82 SOB SLE, HF 4/6 2/4
SRAL2032BM M 52 187 80.9 Body pain, SOB HTN 3/10 2/5
SRAL2032F F 59 Cough, SOB, Resp. HTN, HLD 11/5 6/4
FX,
SRAL2033M M 32 190 127.8 Cough, SOB, Resp. Obesity, HTN 3/1 3/1
Fx
COVID+ SRAL-F-H1 F 31 170 70.3 Cough, mild - 1/21 1/3
Home symptoms
SRAL-F-H4 F 21 150 47.6 Chest pain, minor - 3/1 1/1
cough, lost sense
of smell and taste
SRAL-M-H3 M 59 178 66.7 Fever, coughing, - 3/2 2/2
fatigue, body
aches, chills

SRALH8M M 45 185 141.9 Fever Obesity 1/1 1/2

Healthy Control01M M 37 172 70.3 - - 1/2 1/1
Control ' controlo3F F 32 1626 635 - - 1/2 1/1
Control04F M 33 165.1 56.7 - - 1/2 1/1

Control06F F 43 172.7 79.38 - - 1/2 1/1
Control07M M 42 180.3 77.6 - - 1/2 1/1

Control10F F 22 160 59 - - 1/2 1/1
Control11M M 36 170.2 79.4 - - 1/2 1/1
Control14F F 23 152.4 47.6 - - 1/2 1/1
Control19M M 31 180.3 81.7 - - 1/2 1/1
Control20M M 24 170.2 68.0 - - 1/2 1/1
Control21M M 32 172.7 74.8 - - 1/2 1/1
Control22M M 34 182.9 98.9 - - 1/2 1/1

To understand the effect of exertion, we compared within-
group changes (Post-walk vs. Pre-walk) of vital signs: the
median heart rate in each group was higher following
walking (HR - Healthy Controls Post: 78.3 beats per
minute, Pre: 71.4 beats per minute; W=5.0, p=0.003;
COVID-Positive Post: 105.7 beats per minute, Pre:98.4
beats per minute; W=7.0, p=0.004); neither Respiration
Rate nor HRV changed significantly within each group as a
result of walking (p>0.12). Pairwise differences (Post-Pre)
in vital signs between groups were comparable, suggesting
that the COVID-positive group did not show larger changes
in any of the vital signs relative to the Healthy Controls
as a result of exertion (HR Post-Pre difference — Healthy
Controls: 6.7 beats per minute, COVID-Positive: 5.7 beats
per minute, U=98.0, p=0.49; Respiration Rate differ-
ence Post-Pre — Healthy Controls: -0.43 bpm, COVID-
Positive: 3.48 beats per minute; U=69.0, p=0.095; HRV
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Post-Pre difference — Healthy Controls: 0.0027 s, COVID-
Positive: 0.0037 s, U=95.0, p=0.45;). This could be due to
several factors, including the fact that the inpatient group
could have been already fatigued because of the physical
therapy session.

We also examined the ratio of post-walking heart rate
to walking cadence (Fig. 2D), as a further metric of car-
diac response related to effort. We observed that individu-
als who tested positive had significantly higher values than
controls (Healthy Controls: 0.73 beats per minute/steps
per minute; COVID-Positive: 1.33 beats per minute/steps
per minute; U=9.0, p<.001). Indeed, participants who
tested positive tended to walk at a slower pace while hav-
ing an increased heart rate after walking than the healthy
control group (median Cadence — Healthy: 106.9 steps
per minute, IQR=[102.5, 111.1]; Positive: 81.3 steps per
minute, IQR=[70.4,85.2]).
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C. DETECTING PHYSIOLOGICAL CHANGES DUE TO
COVID-19 FROM SNAPSHOTS

We also wanted to determine whether it is possible to detect
a diseased state associated with COVID-19 from the physio-
logical signals captured in a snapshot. Therefore, we trained
a statistical learning model (Logistic Regression with Elastic
Net regularization) on signal features derived from the R-R
intervals, steps, respiration and frequency spectrum of cough
signals. To evaluate the relative contribution of individual
physiological features, we compared models trained on each
individual physiological feature set (Pre/Post cardiac and
cadence, Pre/Post respiration or cough) against one trained
on the combined feature set (see Section V). The model was
trained to classify the probability of COVID infection based
on the label (COVID-positive vs. Healthy Control) of each
snapshot.

We validated the model using a leave-one-subject-out cross
validation, so to mimic the use-case of the paradigm [25],
i.e. training on snapshots from a cohort with known diag-
nosis and testing on snapshots of a new participant with
unknown diagnosis. Each COVID-positive participant had
a variable number of data points (see Table 1), as cough
and pre- and post-gait snapshots were recorded over multiple
days of monitoring in the hospital or at home. Given the
unbalanced number of datapoints between COVID-positive
and Healthy participants, we randomly sampled one walk
sequence and one cough sequence, with replacement, n=>5
times for each individual to build a dataset for training and
evaluating the model. This sampling was intended to simulate
a brief screening data collection where each sequence was
performed only once. This process was repeated 100 times to
estimate confidence intervals on the model predictions, and
ensured that each participant contributed the same weight to
the model reported accuracy.

While combining different physiological features aided in
separating the COVID-positive and negative groups (mean
AUC All = 0.94, CI=[0.92, 0.96]), the improvement was
marginal relative to a model trained using heart and walk-
ing cadence features only (AUC HR+-Cadence = 0.93,
CI=[0.91, 0.95]). Models trained on forced cough signals
alone showed the lowest discriminative performance (AUC
Cough=0.64, CI=[0.53,0.72]), suggesting that these fea-
tures alone did not have sufficient discriminatory power in
our cohorts. Whether this is due to a lack of resolution of
the sensing device at capturing subtle changes in tracheal
sounds, or the fact that these events were forced coughs from
COVID-positive participants, and they were no longer in the
acute phase of the disease, remains to be investigated in a
future study.

Combining multiple physiological features also increased
separability of the cohorts (Fig. 4). The model output prob-
ability, representing the probability of COVID infection for
an individual in the test set, was overall higher for inpatients
than for individuals quarantining at home, therefore suggest-
ing that a model trained on an augmented feature set could
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FIGURE 3. ROC curves for symptom detection models trained on different
subsets of physiological features derived from the sensor data.
Augmenting the set of physiological features aided detection of
COVID-positive individuals. Mean ROC curves and AUC values shown are
bootstrapped from for n=100 runs of the model. Shaded areas represent
95% confidence intervals.

help infer the likelihood of severe symptoms from mild ones
(Fig. 4 A-D).

I1l. DISCUSSION

Skin-integrated sensors hold promise for continuous on-body
sensing [26] which could be valuable for monitoring
COVID-19 symptoms in an unobtrusive manner [27]. Here,
we have shown that this technology could also be used to
gather a snapshot of cardio-respiratory parameters, prior to
and following physical effort, and determine whether an indi-
vidual may need further screening. Using a chest-mounted
soft accelerometer, we measured increased heart and res-
piratory rates and decreased HRV in individuals who had
tested positive to COVID-19, relative to a Healthy Control
group, while they performed a short set of standardized activ-
ities. This approach resembles stress tests that are commonly
used in physical medicine to evaluate cardio-respiratory fit-
ness [28]-[30]. However, we are not aware of any prior
attempt of measuring a mild-stress-induced response to
uncover changes in physiology of COVID-19.

The fact that alterations in physiological parameters were
present in both inpatients with several existing co-morbidities
and individuals quarantining at-home with no known under-
lying comorbidities suggests that the diseased state may have
been the underlying cause of physiologically observed differ-
ences. Decreased time-domain measurements of HRV have
been associated with a variety of conditions reflecting poor
health [31], including inflammation and acute or chronic
illness. Furthermore, we found that physical activity, cardiac,
respiratory, and cough features gathered from a snapshot
could be used to train a statistical learning model at discrim-
inating individuals who tested positive in our sample.
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FIGURE 4. Distributions of model confidence values split by different participant cohorts. Combining features increased the separation of
individuals by symptom severity: the output probability (confidence) for COVD detection was higher for individuals affected by severe

conditions (inpatients) than for individuals quarantining at-home.

Recent studies showed that crowdsourced data from smart-
phones or consumer-grade wearables on either respiratory,
cardiac or cough sounds [17], [32]-[35] could potentially
be used to develop biomarkers to predict the onset or detect
the presence of COVID-19. A targeted snapshot of activities
should exacerbate these physiological signs of Covid-19 to
allow for more sensitive detection through wearable sensors.
Further, fixing activities to a pre-defined sequence allows
defining a precise context and facilitates the comparison of
data across individuals, in contrast to the continuous sensing
paradigm where data is gathered opportunistically.

A sensor-based ‘‘snapshot” approach measuring the
physiological response to a physical stressor may provide
additional prognostic information to detect COVID-19. Snap-
shot measures may also facilitate large-scale deployment of
testing and be used to alert individuals that need further
screening. With less data required to produce an evaluation
of disease risk, early detection models could be more eas-
ily adapted and fine-tuned to specific populations, based on
relatively small amounts of data and with reduced risk of
statistical bias [36]. In addition to facilitating deployment,
this paradigm may allow rapid collection of targeted data on
diverse populations and provide insights into the manifesta-
tion of symptoms in these population, so to build a digital
biomarker that fit different subsets of individuals.

4900311

While these results are encouraging, we need to acknowl-
edge a number of limitations in our pilot study. First, our
sample of Healthy Controls and COVID-positive groups is
limited and not fully representative of the target popula-
tion required to assess an early-screening methodology [37].
Therefore, the model presented is at risk of overfitting, and
thus we are not yet able to quantify the actual sensitivity
of this approach for detecting COVID-positive individuals.
We also cannot ascertain whether the separation observed
between the COVID-positive and the Healthy Controls group
was uniquely caused by physiological changes induced by
COVID-19 infections, or was attributed to other potential
confounders, including co-morbidities existing in the inpa-
tient cohort and age differences. At the time of the study,
we were not able to enroll healthy age-matched individuals
because of the significant risks posed by the pandemic in
senior individuals, and thus were only able to run the trial
on healthy individuals who were willing to participate and
had a low risk of contracting the disease. As such, these
factors could have inflated the accuracy of the model. Finally,
the activities we selected here might not constitute the opti-
mal set to uncover physiological changes of an ongoing
COVID-19 infection. These factors limit the generalizability
of our findings until a larger dataset more representative of the
COVID-positive population is assembled. However, the main
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purpose of this study was not to create a generalizable statis-
tical model, but rather to investigate whether physiological
changes induced by COVID-19 could be detected from a
snapshot activity sequence using our sensing device.

A key weakness of a snapshot paradigm is the lack of
repeated measurements to assess changes in baseline phys-
iological measures. However, the method can be extended
to capture multiple snapshots over time, in order to monitor
changes across days in a participant. Such an approach could
eventually be used to measure the progression or regres-
sion of the respiratory infection. Similarly, in cases with
a pre-specified target population (e.g. hospital employees
or nursing home residents), this paradigm could easily be
adapted to incorporate measurements taken at regular inter-
vals in comparable circumstances, such as every other day at
the end of the shift or after breakfast.

We are currently deploying a next-generation version of
the sensing platform at multiple COVID-19 testing facilities,
with the aim of collecting snapshots from a large cohort com-
prising thousands of individuals who may be in the early stage
of the disease to obtain a reliable estimate of the sensitivity
of this approach against RT-PCR. The new chest-mounted
devices include an electrocardiogram (ECG), a temperature
sensor, and an additional SpO2 finger sensor; these additional
data will be used in conjunction with demographics and
medical history to understand which activities and physi-
ological features provide the highest diagnostic value in a
snapshot approach. A more comprehensive set of snapshot
activities is also being explored, which includes multiple
periods of resting, walking, deep breathing, coughing, and
breath-holding, to evaluate an optimal sequence of activities
for eventual clinical use. The results of the ongoing multi-site
trial will allow understanding the limits and potential use of
this method for large-scale monitoring.

IV. CONCLUSION

In conclusion, we showed that soft body-conforming
wearable sensors could be used to capture an array of
cardio-respiratory parameters during a short sequence of
activities, which may help uncover physiological changes
induced by respiratory diseases, such as COVID-19. While
the results presented here are based on the specific sensor
and activities we experimented with, the general approach
presented is applicable to any type of wearable sensor capable
of measuring relevant physiological signals. We hope that
other researchers may benefit from exploring similar methods
using different devices and activities, and help identify a
more optimal approach to this “Snapshot” monitoring for
COVID-19 symptoms.

V. METHODS AND PROCEDURES

All the participants provided written/verbal consent prior
to their participation in this research study. Study pro-
cedures were approved by the Northwestern University
Institutional Review Board (NU-IRB), Chicago, IL, USA
(STU#00212522) on April 20, 2020. All study related
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procedures were carried in accordance with the standards
listed in the Declaration of Helsinki, 1964.

A. PATIENT CHARACTERISTICS
During the first months of the pandemic, our hospital (the
Shirley Ryan AbilityLab) received a limited number of partic-
ipants who tested positive for COVID-19 and required physi-
cal rehabilitation as they recovered. Some of these individuals
(n=14) provided informed consent to participate in our study
and wear the sensor throughout the day, including during
physical therapy sessions. In addition, we enrolled a group
of 5 individuals who were recovering from the infection by
quarantining at home. Both groups were asked to period-
ically perform specific activities: 5 deep breaths, 5 forced
coughs, and 30 seconds of walking. Because of the severity of
fatigue, inpatients with COVID-19 omitted the walking por-
tion. These sequences were marked in the data via three taps
on the sensor at the beginning and end and were intended as a
reference set of activities while exploring the rest of the data.
In the course of our analysis of the data, we became inter-
ested in whether participants experiencing COVID-19 symp-
toms showed differences in vital signs, and whether these
would be exacerbated by exertion. If so, it might be feasible
to distinguish those with COVID from those without, based
on small amounts of data. Because we were interested in
resting vital signs both before and after exertion, segments of
walking with accompanying pre- and post-walking rest were
selected from the time series data for all participants. Isolation
precautions for COVID positive participants allowed only
trained nursing staff to interact with the individuals for sensor
application. Thus, sensors were applied by nursing staff in
the morning hours and were worn throughout the day (con-
tinuously) to ensure collection of gait during a given number
of physical therapy sessions. As a reference for non-COVID
physiological signals, several individuals (Healthy Controls,
n=14) with no COVID-like symptoms or known exposure
performed a sequence of activities that included 30 seconds of
rest, 30 seconds of walking and 30 seconds of rest, in addition
to the structured activities (cough, deep breathing) performed
by COVID-positive participants. Participant demographics
are provided in Table 1. Of the 19 individuals who tested
positive, only n=14 had usable data, while the remaining
ones were discarded due to data quality issues in the unmon-
itored data collection environment, such as loss of sensor
skin contact or motion artifacts from talking. Although not
logistically feasible for all of the COVID-positive subjects
in this initial collection of data, directing each subject to
perform the controlled sequence of activities without talking
or unintended movements, as was done with the Healthy
Control cohort in this study, would help reducing motion
artifacts in future work.

B. SENSING DEVICE

The soft wearable wireless sensor used in this study was
developed by the Rogers Research Group at Northwestern
University. The device, worn on the suprasternal notch, was
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utilized to record the physiological signals of interest. In pre-
vious work, this device has been shown to be capable of
measuring broad body motions, such as those corresponding
to walking, as well as subtle vibrations induced by sounds
produced by heart beats, coughing or breathing [24]. The
device consisted of a high resolution 3-axis accelerome-
ter embedded within a soft silicone package (Fig 1). The
accelerometer x-axis (superior-inferior) and y-axis (lateral-
medial) of the device sampled at 200 Hz. The accelerometer
z-axis (anterior-posterior) sampled at 1600 Hz. The range of
each accelerometer axis was £2g. The sensing device also
had a temperature sensor for continuous skin temperature
recording, although this sensing modality was not used in this
study, as a reliable reading of body temperature cannot be
obtained through a skin-mounted sensor in the short context
of our snapshot sequence due to environmental effects. The
silicone sensor package adhered to the suprasternal notch of
each subject using a disposable adhesive.

C. ESTIMATION OF RESPIRATION RATES

For each subject, the respiration rate during the pre-walk
and post-walk resting periods were calculated using the
accelerometer time series data. To compute the respiration
rate, we used an approach based on reconstructing the angu-
lar motion induced by breathing by tracking the rotation of
the gravity vector in the accelerometer signals [38]. This
approach is briefly summarized here. The z-axis accelerome-
ter signal was downsampled to 200 Hz to match the sampling
frequency of the x-axis and y-axis. Each axis signal was
filtered using a 2nd order Butterworth low-pass filter with
a cutoff frequency of 1 Hz. The signal was normalized at
each time point. The axis of rotation between two consecutive
measurements of acceleration is calculated as follows:

ry =day X ar—1

To reduce noise, each axis of rotation estimate was
weighted by the angle change associated with each mea-
surement, and the mean axis of rotation over a 5 second
window length was computed using a Hamming window
function. The current rotation angle, phi, was then computed
as follows:

¢r = sin~' (@ x 1) - ar)

To calculate the angular rate, ¢; was filtered with an gth
order Butterworth band-pass filter with cutoff frequencies
of 0.1 and 0.8 Hz, and then numerically differentiated with
respect to time. The power spectral density of the angular
rate was estimated using Welch’s method, and the respi-
ration rate (breaths per minute) was taken to be the fre-
quency at which the signal power is maximized (dominant
frequency) (Fig. 5).

To quantify the regularity of the respiration rate, we also
computed the number of peaks in the power spectrum, where
a peak was identified as any spectral value equal or greater
than 50% of the dominant frequency peak. These set of
4 features (Respiration Rate Pre- and Post-walk, number of
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FIGURE 5. Example respiration signal taken from a Healthy Control patient.
The peak corresponding to the respiration rate is highlighted in red.

FFT peaks Pre- and Post-walk) were input to the symptom
detection model.

D. COUGH SIGNAL FEATURES

Cough sequences performed and identified as five consecu-
tive, voluntary coughs, were manually clipped and extracted
from the sequence of activities captured in a snapshot. For
each sequence, x- and y- axes (200 Hz) were up-sampled to
the frequency of the z-axis sampling rate (1600 Hz). A fifth-
order, high-pass Butterworth filter (40 Hz) was applied to
each axis and the vector magnitude of the acceleration
signal was calculated. Cough sequences exceeding high-
noise thresholds, based on percentage of zero-crossings with
respect to the sequence duration, were discarded. Accepted
sequence data was then input into a frequency-based slid-
ing window cough detection function (window size of
0.2s, overlap of 50%). A wavelet denoising filter (5-level
wavelet decomposition, sym5, universal thresholding rule,
soft thresholding) was applied during this detection to elimi-
nate high frequency noise prior to extracting power from the
frequency domain of each sliding window. Those window
regions identified with a power greater than a sequence-based
threshold (25% of the sequence mean power) were designated
as presence of cough (Fig. 6). Binary presence of cough
was used to determine cough boundaries and clip data per
individual cough. Finally, the following set of time and fre-
quency domain features (21 total) were computed on each
individual cough signal and averaged across the 5 coughs.
These features were used as input to the symptom detection
model; some of these features were derived from previous
studies investigating classification of cough types from audio
signals [39]:

Time domain signal: 154" Statistical Moments, Root
Mean Square, Crest Factor, Duration, Maximum, Absolute
difference, inter-quartile range, Sample Entropy, Lempel-Ziv
complexity.

Frequency domain (Power Spectrum): 13-4 Statistical
Moments, Dominant frequency, Spectral Entropy, Spectral
Centroid, Spectral Spread.

VOLUME 9, 2021



L. Lonini et al.: Rapid Screening of Physiological Changes Associated With COVID-19

|EEE Journal of Translational

Engineering in
Health and Medicine

for sequence of coughs (5x)

Raw tri-axial accelerometer signal Filtered, magnitude signal clipped into Power spectral density of individual
* individual coughs via sliding window *

cough segments for feature extraction

Acceleration (g)
Acceleration (g)

g%/Hz

1 1 1 1 1
[
[ B |
B N .
np Hqg
iy g !
gy qp 1
gy np
gy g !
gy g
AN A
it 1 1 1 1

]
I
I
I
I
I
I
I
I
I
I
'l

Time

Time Hz

FIGURE 6. Signal processing of cough signals from an example Healthy Control subject.

Outer loop: LOSOCV

Subject 1

Training Data

Subject 2 -
Subject i -
Subject n

v

Save model scores for )
Subjects 1 ton

Inner loop
Parameter tuning C={C', C%, C .. 0}
For CkinC:
| | Inner Fold 1
% | I Inner Fold 2
Rerun | | Inner Fold n-1

outer

- with Cf G= argmgx[AUC}

Aggregate to report AUC
across all Subjects

FIGURE 7. Hyperparameter optimization using nested cross validation. A leave-one-subject-out cross validation
outer loop is utilized to report model performance (Area Under the Curve or AUC), where a single subject i is used as
the test set, and the remaining subjects as the training set. For each subject i in the outer loop, an inner loop is run
on the corresponding training data to find an optimal value of the regularization parameter. This optimal parameter
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E. ESTIMATION OF R-R INTERVALS

The R-R interval was extracted from sitting data that preceded
and proceeded the walk bout. In order to extract the R-R inter-
val from sensor data, a multi-tier signal filtering approach
was adopted. First, the raw sensor data was de-trended and
band pass filtered (2nd order Butterworth filter with cutoff
frequency 0.3 Hz to 600 Hz) to remove any experimental
noise and process noise. Following this, a Discrete Wavelet
Transform (DWT) approach [40], at different characteristics
scales, was used to filter the signal a second time. The charac-
teristic scales were chosen such that the filtered output signal
enhanced the energy of the signal and/or the peak of the signal
for reliable identification of the peak R-R occurrences on
the time series [41]. Following this, a threshold-based peak
detection algorithm was used to extract the R-R intervals
from the time series. Finally, the mean heart rate and heart
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rate variability (standard deviation of R-R intervals) were
computed from the time series of R-R intervals.

F. ESTIMATION OF WALKING CADENCE

To estimate the walking cadence, the walking portion of the
sensor recording was manually extracted. Then the L2-norm
of the acceleration was computed, and the stepping fre-

quency (cadence) was computed as the dominant frequency
of the FFT of this signal.

G. CLASSIFICATION MODEL AND STATISTICAL ANALYSIS

Statistical comparisons of physiological trends were per-
formed with non-parametric statistical tests (Wilcoxon
Signed-Rank Test and Mann-Whitney U Test) to account
for the non-normality of distributions and the small sam-
ple size. P-values were corrected for multiple comparisons
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using Bonferroni correction. We used a correction factor of
9 (3 x 3 comparisons) which yielded a corrected p-value of
0.0056.

We trained a regularized logistic regression (elastic
net [42]) model to detect the presence of COVID-like symp-
toms based on the physiological signal features. The model
was implemented using the Scikit-learn library 0.23.2 in
Python 3.7.6. The total number of data points (available
walking and cough snapshots) across all participants was
288. In each of the n=100 bootstrap runs, we sampled with
replacement n=>5 snapshots from each participant, for a total
of 135 samples. The full model combining all the features
used a total of 30 input features. We performed a grid search
to optimize the regularization hyperparameter C for each set
of features independently. To limit overfitting, we employed
a nested cross validation (i.e. nested loop within the leave-
one-subject-out cross validation used to report model per-
formance), as shown in Figure 7. The ratio of L1 to L2
regularization was set to 0.5. The feature selection processes
resulting from the elastic net regularization, indicated that
heart rate, HRV, respiration features and walking cadence all
had similar importance (i.e. coefficients) in the final model.
Amongst cough features, spectral spread and IQR had the
highest coefficients in the trained model, while the remaining
cough features had relatively low contribution.
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