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Abstract

The identification of genes essential for bacterial growth and survival represents a promising

strategy for the discovery of antimicrobial targets. Essential genes can be identified on a

genome-scale using transposon mutagenesis approaches; however, variability between

screens and challenges with interpretation of essentiality data hinder the identification of

both condition-independent and condition-dependent essential genes. To illustrate the

scope of these challenges, we perform a large-scale comparison of multiple published

Pseudomonas aeruginosa gene essentiality datasets, revealing substantial differences

between the screens. We then contextualize essentiality using genome-scale metabolic net-

work reconstructions and demonstrate the utility of this approach in providing functional

explanations for essentiality and reconciling differences between screens. Genome-scale

metabolic network reconstructions also enable a high-throughput, quantitative analysis to

assess the impact of media conditions on the identification of condition-independent essen-

tial genes. Our computational model-driven analysis provides mechanistic insight into

essentiality and contributes novel insights for design of future gene essentiality screens and

the identification of core metabolic processes.

Author summary

With the rise of antibiotic resistance, there is a growing need to discover new therapeutic

targets to treat bacterial infections. One attractive strategy is to target genes that are essen-

tial for growth and survival. Essential genes can be identified with transposon mutagenesis

approaches; however, variability between screens and challenges with interpretation of

essentiality data hinder the identification and analysis of essential genes. We performed a

large-scale comparison of multiple gene essentiality screens of the microbial pathogen

Pseudomonas aeruginosa. We implemented a computational model-driven approach to

provide functional explanations for essentiality and reconcile differences between screens.

The integration of computational modeling with high-throughput experimental screens

may enable the identification of drug targets with high-confidence and provide greater

understanding for the development of novel therapeutic strategies.
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Introduction

With the rise of antibiotic resistance, there is a growing need to discover new therapeutic tar-

gets to treat bacterial infections. One attractive strategy is to target genes that are essential for

growth and survival [1–4]. Discovery of such genes has been a long-standing interest, and

advances in transposon mutagenesis combined with high-throughput sequencing have

enabled their identification on a genome-scale. Transposon mutagenesis screens have been

used to discriminate between in vivo and in vitro essential genes [1,5], discover genes uniquely

required at different infection sites [6], and assess the impact of co-infection on gene essential-

ity status [7]. However, nuanced differences in experimental methods and data analysis can

lead to variable essentiality calls between screens and hamper the identification of essential

genes with high-confidence [8,9]. Additionally, a central challenge of these screens is in inter-

preting why a gene is or is not essential in a given condition, hindering the identification of

promising drug targets.

These data are often used to validate and curate genome-scale metabolic network recon-

structions (GENREs) [10,11]. GENREs are knowledgebases that capture the genotype-to-phe-

notype relationship by accounting for all the known metabolic genes and associated reactions

within an organism of interest. These reconstructions can be converted into mathematical

models and subsequently used to probe the metabolic capabilities of an organism or cell type

in a wide range of conditions. GENREs of human pathogens have been used to discover novel

drug targets [12], determine metabolic constraints on the development of antibiotic resistance

[13], and identify metabolic determinants of virulence [14]. Importantly, GENREs can be used

to assess gene essentiality by simulating gene knockouts. Through in silico gene essentiality

analysis, GENREs can be useful in the systematic comparison of gene essentiality datasets.

Here, we perform the first large-scale, comprehensive comparison and reconciliation of

multiple gene essentiality screens and contextualize these datasets using genome-scale meta-

bolic network reconstructions. We apply this framework to the Gram-negative, multi-drug

resistant pathogen Pseudomonas aeruginosa, using several published transposon mutagenesis

screens performed in various media conditions and the recently published GENREs for strains

PAO1 and PA14. We demonstrate the utility of interpreting transposon mutagenesis screens

with GENREs by providing functional explanations for essentiality, resolving differences

between the screens, and highlighting gaps in our knowledge of P. aeruginosa metabolism.

Finally, we perform a high-throughput, quantitative analysis to assess the impact of media con-

ditions on identification of core essential genes. This work demonstrates how genome-scale

metabolic network reconstructions can help interpret gene essentiality data and guide future

experiments to further enable the identification of essential genes with high-confidence.

Results

Comparison of candidate essential genes reveals variability across

transposon mutagenesis screens

We obtained data from several published transposon mutagenesis screens for P. aeruginosa
reference strains PAO1 and PA14 in various media conditions [15–19]. PAO1 is the most

widely used laboratory strain and was originally collected from the wound of a patient in Aus-

tralia [20]. PA14 is a highly virulent reference strain, originally collected from a burn wound

[21]. The genomes of the two strains are highly similar; however, the slightly larger genome of

PA14 contains pathogenicity islands not found in PAO1 [22]. For each collected screen, we

determined candidate essential genes as described in Methods (S1 Table). Briefly, where avail-

able, we used the published essential gene lists identified by the authors of the screen.

Reconciling gene essentiality data
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Otherwise, we defined genes as essential in a particular screen if the corresponding mutant did

not appear in that screen, suggesting that a mutation in the corresponding gene resulted in a

non-viable mutant.

Candidate essential gene lists ranged in size from 179 to 913 for PAO1 and from 510 to

1544 for PA14, suggesting substantial variability between the screens (Table 1, S1 Dataset, S2

Dataset). To investigate the similarity between the different candidate essential gene lists for

the two strains, we performed hierarchical clustering with complete linkage on the dissimilar-

ity between the candidate essential gene lists, as measured by Jaccard distance (Fig 1A and 1C).

Interestingly, the screens clustered by publication rather than by media condition for both

strains. As an example from the PAO1 screens, rather than clustering by lysogeny broth (LB)

media, sputum media, pyruvate minimal media, and succinate minimal media, all three of the

screens from the Lee et al. publication clustered together, all three of the screens analyzed in

the Turner et al. publication clustered together, and the Jacobs et al. transposon mutant library

clustered independently. This result suggests that experimental technique and downstream

data analysis play a large role in determining essential gene calls, motivating the importance of

comparing several screens to identify consensus essential gene lists, or genes identified as

essential across multiple screens.

We then measured the overlap of the candidate essential gene lists to calculate how many

genes were shared across all the screens as well as those unique to particular sets of screens,

defined as intersections (Fig 1B and 1D). This analysis revealed substantial differences in the

overlap of the candidate essential genes across the screens. Using the number of intersections

as an indicator of variability, comparison of the PAO1 screens resulted in more than 30 inter-

sections and comparison of the PA14 screens resulted in seven. Furthermore, we found 192

genes were shared by all PA14 screens and 17 genes were shared by all PAO1 screens. These

numbers of core essential genes are lower than expected, particularly for strain PAO1. Typi-

cally, essential genes average a few hundred for a bacterial genome [23]. We reasoned that the

low number of observed core essential genes as well as the number of observed intersections

might be due to the variety of media conditions tested across the PAO1 screens. We repeated

our analysis focusing only on the LB media screens for both PA14 and PAO1 (Fig 2). As antici-

pated, the number of observed intersections for both strains decreased, indicating that the con-

sidered media conditions impact the essentiality status of a gene. Interestingly, the trends for

the number of observed core essential genes remained unchanged, with 434 genes shared

across both PA14 LB media screens and only 44 genes shared across all PAO1 LB media

screens. This differential between the PA14 and PAO1 results could be due to comparing three

Table 1. Characteristics of the in vitro transposon mutagenesis screens.

Screen Strain Media Number of

Essential Genes

Publication

PAO1.LB.913 PAO1 LB 913 Jacobs et al., 2003

PAO1.LB.201 PAO1 LB 201 Lee et al., 2015

PAO1.LB.335 PAO1 LB 335 Turner et al., 2015

PAO1.Sputum.224 PAO1 Sputum 224 Lee et al., 2015

PAO1.Sputum.405 PAO1 Sputum 405 Turner et al., 2015

PAO1.Pyruvate.179 PAO1 Pyruvate minimal media 179 Lee et al., 2015

PAO1.Succinate.640 PAO1 Succinate minimal media 640 Turner et al., 2015

PA14.LB.1544 PA14 LB 1544 Liberati et al., 2006

PA14.LB.634 PA14 LB 634 Skurnik et al., 2013

PA14.Sputum.510 PA14 Sputum 510 Turner et al., 2015

https://doi.org/10.1371/journal.pcbi.1006507.t001
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screens for PAO1 versus comparing only two screens for PA14. The heterogeneity observed

from the PAO1 comparison could be attributed to a number of factors such as screening

approach (e.g., individually mapped mutants versus transposon sequencing), library complex-

ity, metrics of essentiality, data analysis, and the media conditions tested.

Overall, the PA14 screens had higher numbers of essential genes compared to those for

PAO1, with all the PA14 screens having at least 400 essential genes. There were four PAO1

screens with less than 350 essential genes. Strain-specific differences in essentiality have been

reported previously but are underappreciated [24]. This result adds to the growing literature

emphasizing how the genetic background of the strain analyzed may impact the identification

of essential genes.

Both the clustering and the overlap analysis revealed discordant essentiality calls between

the screens. These discrepancies could be due to differences in both experimental technique

and data analysis. To investigate the possibility that the heterogeneity was due to data analysis

alone, we re-analyzed the sequencing data for PAO1 transposon sequencing screens per-

formed on LB using the same analytical pipeline (Fig 3) [18,25]. We limited our re-analysis

efforts to screens with publicly available sequencing data. As expected, when the same analysis

pipeline was applied to the two screens, there was an increase in the number of commonly

essential genes compared to those between the published results. These results indicate that

data analysis accounts for some of the variability between the datasets. However, there were

still genes that were identified as uniquely essential to each screen. These results suggest that

experimental differences, such as differences in library complexity, the number of replicates,

and read depth, likely also contribute to variability between the datasets.

Taken together, results from this comparison revealed vast differences between the candi-

date essential gene lists across screens, even for those from the same media condition. These

differences may be due to numerous experimental and data analysis factors. Ultimately, this

variability complicates the discovery of essential genes with high-confidence.

Contextualization of gene essentiality datasets using genome-scale

metabolic network reconstructions

A central challenge of transposon mutagenesis screens lies in the interpretation of why a gene

is or is not essential in a given condition. Here, we demonstrate the utility of genome-scale

metabolic network reconstructions to contextualize gene essentiality and provide mechanistic

explanations for the essentiality status of metabolic genes. To do this, we compared the in vitro
candidate essential gene lists to predicted essential genes from the PAO1 and PA14 GENREs

[26]. These GENREs were previously shown to predict gene essentiality with an accuracy of

91% [26]. For both models, we simulated in silico gene knockouts under media conditions that

approximated those used in the in vitro screens and assessed the resulting impact on biomass

synthesis as an approximation for growth (S3 Dataset, S4 Dataset). Genes were predicted to be

essential if biomass production for the associated mutant model was below a standard thresh-

old. Predicted essential gene lists for both the PAO1 and PA14 models under the different

media conditions were compared to the candidate essential gene lists for each of the experi-

mental screens and the matching accuracy between model predictions and the in vitro screens

was assessed (Fig 4A, S2 Table).

As expected, most genes were identified as nonessential by both the screens and the models.

Several of these nonessential genes encode redundant features in the metabolic network, such

as isozymes or alternate pathways. For example, thioredoxin (Trx) reductase is an essential

enzyme critical for DNA synthesis and protection against oxidative stress [27]. However,

because there are two isozymes for Trx reductase in P. aeruginosa, neither of the Trx reductase

Reconciling gene essentiality data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006507 April 11, 2019 4 / 24

https://doi.org/10.1371/journal.pcbi.1006507


encoding genes, trxB1 and trxB2, were identified as individually essential in the single-gene

deletion screens. Additionally, several of the nonessential genes are involved in accessory

metabolism, such as the production of small molecule virulence factors. For instance, genes

involved in the synthesis of pyoverdine, a metabolite involved in iron scavenging, were non-

Fig 1. Comparison of candidate essential genes from transposon mutagenesis screens reveals variability. (A and C). Hierarchical clustering of

candidate essential gene lists from transposon mutagenesis screens for PAO1 and PA14, respectively. (B and D). Overlap analysis of candidate

essential gene lists for transposon mutagenesis screens for PAO1 and PA14, respectively. Blue bars indicate the total number of candidate

essential genes identified in each screen. Black bars indicate the number of candidate essential genes unique to the intersection given by the filled-

in dots. The orange bar indicates the overlap for all screens for either PAO1 (Panel B) or PA14 (Panel D).

https://doi.org/10.1371/journal.pcbi.1006507.g001
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essential (e.g., pvdA, pvdE, and pvdF). Interestingly, the number of screen-essential genes pre-

dicted as nonessential was significantly larger than the number of screen-nonessential genes

predicted as essential (p = 0.0195, as measured by Wilcoxon signed-rank test). We hypothesize

that the reason for this difference is due to the increased likelihood of an in vitro screen

Fig 2. Impact of media condition on identification of consensus essential genes. (A and C). Venn diagrams of

candidate essential gene lists for transposon mutagenesis screens performed on LB for PAO1 and PA14, respectively.

(B and D). Overlap analysis of candidate essential gene lists for transposon mutagenesis screens performed on LB for

PAO1 and PA14, respectively. Blue bars indicate the total number of candidate essential genes identified in each

screen. Black bars indicate the number of candidate essential genes unique to the intersection given by the filled-in

dots. The orange bar indicates the overlap for all screens for either PAO1 (Panel B) or PA14 (Panel D). The black and

orange bars correspond to the intersections identified in the venn diagrams in panels A and B.

https://doi.org/10.1371/journal.pcbi.1006507.g002

Reconciling gene essentiality data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006507 April 11, 2019 6 / 24

https://doi.org/10.1371/journal.pcbi.1006507.g002
https://doi.org/10.1371/journal.pcbi.1006507


missing a gene, potentially due to gene length or transposition cold spots [16], and subse-

quently incorrectly identifying it as essential.

This analysis can help to provide specific functional explanations for essentiality. Where

there is an agreement between the model predictions and in vitro screens, we can use the net-

work to explain why a gene is or is not essential. Similarly, we can analyze the network to

explain why a gene may be essential in one media condition versus another. A mismatch

Fig 3. Impact of data analysis on identification of consensus essential genes. (A and C). Venn diagrams of original

(Panel A) and re-analyzed (Panel B) candidate essential gene lists from PAO1 transposon mutagenesis screens

performed on LB. (B and D). Overlap analysis of original (Panel B) and re-analyzed (Panel D) candidateessential gene

lists for PAO1 transposon mutagenesis screens performed on LB. Blue bars indicate the total number of candidate

essential genes identified in each screen. Black bars indicate the number of candidate essential genes unique to the

intersection given by the filled-in dots. The orange bar indicates the overlap of both screens.

https://doi.org/10.1371/journal.pcbi.1006507.g003

Reconciling gene essentiality data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006507 April 11, 2019 7 / 24

https://doi.org/10.1371/journal.pcbi.1006507.g003
https://doi.org/10.1371/journal.pcbi.1006507


Reconciling gene essentiality data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006507 April 11, 2019 8 / 24

https://doi.org/10.1371/journal.pcbi.1006507


denotes some discrepancy between the model predictions and the experimental results. These

mismatches may point to a gap in the model, indicating that it is missing some relevant biolog-

ical information. Alternatively, the mismatches may be due to experimental variability such as

differences in environmental conditions or technique.

To begin contextualizing the gene essentiality datasets using the GENREs, we focused on

metabolic genes that were identified as essential or as nonessential in all LB screens for either

PAO1 or PA14 (which we termed “consensus essential genes” and “consensus nonessential

genes”, respectively) (S3 Table, S5 Dataset, S6 Dataset). Consensus essential genes have a

greater likelihood of being truly essential rather than experimental artifacts since they were

identified as such in multiple independent screens. We then compared these lists of consensus

essential genes and consensus nonessential genes to the model predictions of essentiality in LB

media.

From this comparison, we found 45 of 113 consensus essential genes predicted to be essen-

tial by the PA14 model and 777 of 800 consensus nonessential genes predicted to be nonessen-

tial by the PA14 model. For PAO1, we found seven of 15 consensus essential genes predicted

to be essential by the PAO1 model and 843 of 863 consensus nonessential genes predicted as

nonessential by the PAO1 model (S3 Table). The low number of consensus essential genes for

PAO1 reflects the high variability between screens, as highlighted in Figs 1 and S1. Several of

the model-predicted consensus essential genes are involved in pathways known to be critical

for bacterial cell survival. For example, both the model and the screens identified the gene folA
as essential in PA14. The gene product of folA, dihydrofolate reductase, is necessary for purine

and pyrimidine synthesis and is targeted by the antibiotic trimethoprim [28]. Additionally,

both the model and the screens identified the gene fabZ as essential in PA14. The gene product

of fabZ encodes for (3R)-hydroxymyristoyl-AC dehydratase and is involved in the synthesis of

type II fatty acids. Given the critical role of type II fatty acids in bacterial membrane formation,

enzymes involved in their synthesis are attractive antimicrobial targets [29]. Given that these

genes were found to be essential by both the screens and the model, there is higher confidence

in their essentiality status.

Next, we used the models to delineate subsystem assignments for the model-predicted con-

sensus essential and nonessential genes (Fig 4B for PA14 and S1 Fig for PAO1). As expected,

the consensus nonessential genes spanned most subsystems within the network, likely due to

redundancy in the network as well as the presence of accessory metabolic functions that are

not critical for biomass production. In contrast, for PA14, the consensus essential genes were

Fig 4. Contextualization of gene essentiality datasets using genome-scale metabolic network reconstructions. (A). Comparison of model essentiality

predictions to in vitro essentiality screens. In silico gene knockouts were performed for both PA14 and PAO1 genome-scale metabolic network

reconstructions to predict essential genes. Model-predicted essential genes were compared to the candidate essential genes for each in vitro screen. The

bars show the result of this comparison, with orange indicating the number of genes for which both the model and experimental screen identified the gene

as nonessential (match: both nonessential), red indicating the number of genes for which the model identified the gene as nonessential whereas the screen

identified the gene as essential (mismatch: model-nonessential, screen-essential), green indicating the number of genes for which both the model and

experimental screen identified the gene as essential (match: essential), and blue indicating the number of genes for which the model identified the gene as

essential whereas the screen identified the gene as nonessential (mismatch: model-essential, screen-nonessential). (B). Functional subsystems for PA14

consensus essential and nonessential genes that were also correctly predicted to be essential or nonessential in the PA14 GENRE. Consensus essential and

nonessential genes were identified for PA14 by comparing all three LB screens and determining genes essential or nonessential in all three screens. (C and

D). Metabolic pathways demonstrating essentiality for the consensus essential genes adk and glmS, respectively. Dashed lines represent inputs and outputs

of the pathway, or, as in D, multiple steps. Brown boxes indicate media inputs, while purple boxes indicate biomass outputs. Metabolites are labeled beside

the nodes, with bold metabolites indicating biomass components. Genes associated with the specific reaction are indicated. (E). Flux activity in pyrimidine

metabolism under both sputum and LB media conditions. Consensus LB essential genes were compared to consensus sputum essential genes for PAO1.

The PAO1 GENRE was used to explain differences in essentiality between the two media-types. Black lines indicate that the reaction is capable of carrying

flux under both sputum and LB conditions, while the gray lines indicate that the reaction does not carry flux in sputum conditions but does in LB

conditions. Brown boxes are media inputs, purple boxes are biomass outputs. Metabolites are labeled above the nodes, with bold metabolites indicating

biomass components. Many of these metabolites are involved in many reactions beyond pyrimidine metabolism. Gene-protein-reaction relationships are

indicated in italics beside each reaction edge.

https://doi.org/10.1371/journal.pcbi.1006507.g004
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limited to seven of the 14 subsystems within the network (note that this trend does not hold

for PAO1 because there were very few consensus essential genes to consider). These seven sub-

systems capture metabolic pathways that are critical for bacterial growth and survival. For

instance, lipid metabolism is essential for building and maintaining cell membranes, while car-

bohydrate metabolism is critical for ATP generation. None of the genes involved in transport

were consensus essential genes. Because we only considered screens performed in LB media,

transport of individual important metabolites, such as a specific carbon sources, was not a lim-

iting factor given the abundant availability of such compounds in rich media conditions. How-

ever, we would expect that if we considered screens performed under minimal media

conditions, relevant transport genes would be essential for bacterial growth.

Because these consensus essential genes were also predicted to be essential by the model, we

can use the network to provide functional reasons for essentiality. For example, both the

model and screens identified the gene adk, encoding adenylate kinase, as essential. Using the

model, we determined that when adk is not functional, the conversion of deoxyadenosine

diphosphate (dADP) to deoxyadenosine monophosphate (dAMP) cannot proceed, impacting

the cell’s ability to synthesize DNA and ultimately produce biomass (Fig 4C). The model can

also tease out less obvious relationships. For instance, both the model and the screens identi-

fied glmS, encoding glucosamine-fructose-6-phosphate aminotransferase, as essential. Using

the model, we found that when glmS is not functional, the conversion of L-Glutamine to

D-Glucosamine phosphate cannot proceed. D-Glucosamine phosphate is an essential precur-

sor to both Lipid A, a component of the endotoxin lipopolysaccharide, and peptidoglycan,

which forms the cell wall (Fig 4D). For each of the model-predicted consensus essential genes,

we identified which biomass components could not be synthesized when the gene was

removed from the model (S7 Dataset and S8 Dataset). Further analysis is necessary to tease out

the metabolic pathways that prevent synthesis of these biomass metabolites; however, from the

examples above it is evident that GENREs can provide both obvious and non-obvious func-

tional explanations for essentiality, streamlining the interpretation of transposon mutagenesis

screens.

In addition to identifying consensus essential and nonessential genes that were in agree-

ment with the models, we also uncovered discrepancies between model predictions and exper-

imental results. For PAO1 and PA14, respectively, there were 8 and 68 consensus essential

genes that the models predicted to be nonessential and 20 and 23 consensus nonessential

genes that the models predicted to be essential. These mismatches between model predictions

and experimental results provide insight into gaps in our understanding of P. aeruginosa
metabolism.

In the case where a consensus essential gene was predicted to be non-essential by the

model, this result suggests that the model has some additional functionality that is not available

in vitro. This result could be an inaccuracy of the network reconstruction or it could be a result

of using a non-condition-specific network where the model has access to all possible reactions

in the network. Because cells undergo varying states of regulation, gene essentiality can be

modulated as a result. Thus, profiling data such as transcriptomics could be integrated into the

network reconstruction to generate a condition-specific model to improve model predictions

under specified conditions [30,31].

Alternatively, the discrepancy between the model predictions and screen results could be

due to differing levels of enzyme efficiency, which is not captured by the P. aeruginosa GEN-

REs. For example, if a major isozyme is disrupted, minor isozymes with the same functionality

may not be efficient enough to overcome the disruption and allow growth of the mutant,

resulting in the gene for major enzyme being essential experimentally. However, because the

P. aeruginosa GENREs do not account for enzyme efficiency, the isozymes are able to

Reconciling gene essentiality data
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overcome the disruption, resulting in the gene for the major enzyme predicted as non-essen-

tial. To investigate the possibility that isozymes contribute to the discrepancy between the

model predictions and experimental results, we found isozymes associated with 19 of the 68

PA14 consensus essential genes predicted to be non-essential by the model. These 19 genes

warrant further testing to fully tease out their essentiality status.

In contrast, in the case where a consensus nonessential gene was predicted to be essential,

this result indicates that the model is missing key functionality, pointing to areas of potential

model curation. Using this list of discrepancies to guide curation (Table 2), we performed an

extensive literature review and found several suggested changes to the metabolic network

reconstruction (S9 Dataset). For instance, we incorrectly predicted as essential the gene fabI
(PA1806), which is linked to triclosan resistance; however, a recent study discovered an iso-

zyme of fabI in PAO1 called fabV (PA2950) [32]. To account for this new information, we sug-

gest changing the gene-protein-reaction (GPR) relationship for the 28 reactions governed by

fabI to be “fabI OR fabV”, making fabI no longer essential in the model. Additionally, our

model incorrectly predicted the genes ygiH (PA0581) and plsX (PA2969) to be essential due to

a GPR formulation of “ygiH AND plsX” for several reactions in glycerolipid metabolism. Liter-

ature evidence suggests that the gene-product of plsB (PA3673) is also able to catalyze these

reactions. Specifically, the gene-products of both plsB and the ygiH/plsX system are able to

carry out the acylation of glycerol-3-phosphate from an acyl carrier protein whereas only the

gene-product of plsB is able to carry out this reaction for acyl-CoA thioesters [33,34]. This

experimental evidence motivates changing the GPRs for 16 reactions in glycerolipid

metabolism.

In addition to changes in the GPR formulation for specific reactions, we also identified a

potential change to the biomass reaction. Two PAO1 genes, glgA (PA2165) and algC
(PA5322), are incorrectly predicted as essential for the synthesis of glycogen, a biomass

Table 2. Discrepancies between model predicted essential genes and in vitro identified consensus nonessential genes for PAO1.

PAO1 Locus Tag Name Function Subsystem

PA0265 davD Glutaric semialdehyde dehydrogenase Carbohydrate

PA0546 metK Methionine adenosyltransferase Amino Acid

PA0581 ygiH Glycerol-3-phosphate acyltransferase Lipid

PA1758 pabB Para-aminobenzoate synthase component I Cofactors and Vitamins

PA1806 fabI NADH-dependent enoyl-ACP reductase Lipid

PA1959 bacA Bacitracin resistance protein Glycan

PA2165 glgA Probable glycogen synthase Carbohydrate

PA2964 pabC 4-Amino-4-deoxychorismate lyase Cofactors and Vitamins

PA2969 plsX Fatty acid biosynthesis protein PlsX Lipid

PA3164 Frameshift 3-phosphoshikimate-carboxyvinyltransferase prephenate dehydrogenase Amino Acid

PA3296 phoA Alkaline phosphatase Cofactors and Vitamins

PA3333 fabH2 3-Oxoacyl-[acyl-carrier-protein] synthase III Lipid

PA3633 ygbP 4-Diphosphocytidyl-2-C-methylerythritol synthase Lipid

PA3659 dapC Succinyldiaminopimelate transaminase Amino Acid

PA3686 adk Adenylate kinase Nucleotide

PA4050 pgpA Phosphatidylglycerophosphatase A Lipid

PA4693 pssA Phosphatidylserine synthase Lipid

PA4770 lldP L-lactate permease Transport

PA5322 algC Phosphomannomutase AlgC Carbohydrate

PA5357 ubiC Chorismate pyruvate lyase Cofactors and Vitamins

https://doi.org/10.1371/journal.pcbi.1006507.t002
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component. Glycogen is not an essential metabolite for P. aeruginosa growth; however, it is

very important for energy storage, which is why it was initially included in the biomass reac-

tion [35]. Removal of glycogen from the biomass equation would make glgA and algC accurate

predictions as nonessential genes in PAO1. Implementing these proposed changes in the

PAO1 and PA14 GENREs resulted in enhanced predictive capability of the models (S10 Data-

set, S11 Dataset, S3 Table). The updated PAO1 model predicted consensus gene essentiality

status in LB media with an accuracy of 97.4% compared to 96.8% for the original model.

Meanwhile, the updated PA14 model predicted consensus gene essentiality status in LB media

with an accuracy of 90.5% compared to 90.0% for the original mode. It is worth noting that,

although these changes to the reconstructions were made to address essentiality discrepancies

in LB media conditions, they also improved the PAO1 model predictive capabilities for con-

sensus genes in sputum media, increasing accuracy from 92.6% to 93.0%.

While we identified several changes to the model to improve predictions, there were several

genes for which we could find no literature evidence to change their predicted essentiality sta-

tus. These genes highlight gaps in our current knowledge and understanding of Pseudomonas
metabolism and indicate areas of future research. Identification of these knowledge gaps is not

possible without the reconciliation of experimental data with model predictions. Ultimately,

this analysis demonstrates the utility of integrating data with GENREs to improve gene anno-

tation and suggest areas of future research.

In addition to contextualizing essentiality for a given media condition, we also used the

model to explain why certain metabolic genes are essential in one media-type versus another.

We compared consensus LB essential genes to consensus sputum essential genes for PAO1

and identified the essential genes that were either shared by both conditions or unique to one

condition versus the other. Overall, 18 genes were commonly essential, while 92 genes were

uniquely essential in sputum and 26 genes were uniquely essential in LB, indicating the pres-

ence of condition-dependent essential genes.

We then focused our analysis just on those genes that were also present in the PAO1 model

and compared these lists to model predictions. We found four genes that both the model and

the screens indicated as uniquely essential in sputum but not in LB. Interestingly, all four of

these genes (pyrB, pyrC, pyrD, and pyrF) are involved in pyrimidine metabolism. Applying

flux sampling [36] to the PAO1 metabolic network model, we investigated why these four

genes were uniquely essential in sputum but not in LB (Fig 2E). The pyrimidine metabolic

pathway directly leads to the synthesis of several key biomass precursors (UMP, CMP, dCMP

and dTMP), making it an essential subsystem within the network. Under LB media conditions,

there are two inputs into the pathway, one through L-Glutamine and the other through Cyto-

sine. However, in sputum media conditions, L-Glutamine is the only input into the pathway.

Because of this reduction in the number of available substrates in sputum media, the steps for

L-Glutamine breakdown must be active to synthesize the biomass precursors. Thus, the genes

responsible for catalyzing this breakdown are essential in sputum media conditions. In con-

trast, because there are two LB substrates that feed into pyrimidine metabolism, if a gene

involved in the breakdown of one of the substrates is not functional the other substrate is still

accessible, thus making the deletion of that gene nonessential.

As stated above, further constraining the model with profiling data from both media condi-

tions would help to further contextualize differences in the essentiality results by modulating

the availability of certain reactions. Nevertheless, as demonstrated here, the metabolic network

reconstruction can be a useful tool for providing functional explanations for why certain genes

are essential in one condition versus another.
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Quantitative evaluation of the impact of media formulation on condition-

independent essential gene identification

Given the variability in the number of candidate essential genes across the screens, we were

interested in using the models to quantitatively evaluate the impact of media conditions on

essentiality. We first focused our analysis on how the number of considered minimal media

conditions impacts the number of condition-independent essential genes identified, or the

number of genes found as essential in every condition. To do this, we simulated growth of the

PA14 model on 42 different minimal media and performed in silico gene knockouts, identify-

ing the genes essential for biomass production on each media condition (Fig 5A). We then

randomly selected groups of minimal media conditions and compared their essential gene lists

to determine the commonly essential genes, defined as the overlap. We performed this random

selection of minimal media conditions for group sizes ranging from two to 40 minimal media

conditions considered. For each group size, we randomly selected minimal media conditions

500 times. As expected, the more media conditions considered, the smaller the overlap of

essential genes (Fig 5B). This relationship between the number of media conditions considered

and the size of the overlap is best characterized by an exponential decay, with the size of the

overlap eventually converging on 131 genes as 40 conditions are considered. This result sug-

gests that to identify a core set of condition-independent essential genes, dozens of minimal

media screens need to be compared. However, variability between the screens, as indicated by

the error bars, could still confound interpretation, necessitating the comparison of replicates

and potentially even more screens to truly identify condition-independent essential genes with

high confidence.

Fig 5. Computational assessment of the impact of number of minimal media conditions considered on condition-independent essentiality. (A). Pipeline

for computational assessment of the impact of minimal media composition on condition-independent essentiality. The base PA14 model is grown on 42

different minimal media. For each minimal media condition, the in silico essential genes are identified, resulting in 42 essential gene lists. Initially, pairwise

comparisons are made between minimal media essential gene lists to identify the shared essential genes. Specifically, the essential gene lists from two

randomly selected minimal media conditions are compared to determine the overlap between the two gene lists. This random selection of two minimal media

conditions to compare is repeated 500 times. The average number of overlap genes for all 500 comparisons is calculated as well as the standard deviation.

Ultimately, this random selection of groups of minimal media conditions to compare is repeated for groups of three minimal media conditions, groups of

four, and so on, up to groups of 40 minimal media conditions. (B). Impact of minimal media differences on the identification of condition-independent

essential genes. Each data point represents the mean from 500 comparisons. Error bars indicate standard deviation.

https://doi.org/10.1371/journal.pcbi.1006507.g005
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We next assessed how modifications to a rich media, like LB, impact gene essentiality. LB is

a complex media with known batch-to-batch variability [37,38]. For instance, tryptophan can

degrade over time due to light exposure and autoclaving can affect the deamidation of l-aspar-

agine and l-glutamine [38]. These alterations can result in very low concentrations of usable

metabolite, which may impact the ability of mutants to grow. Given the challenge of modeling

concentration, here the simulations focus on the presence or absence of metabolites in LB

media. Specifically, we randomly selected carbon source components from LB media in sets of

varying sizes, ranging from two to 21 LB media components considered. We then used these

sets as the model media conditions and performed in silico gene knockouts to identify essential

genes for biomass production on each LB media formulation (Fig 6A). For each set size, we

randomly selected LB components 100 times and calculated the average number of essential

genes identified as well as the number of shared essential genes across all 100 sets. As the num-

ber of LB media components increases, we found that the size of the essential gene lists

decreases linearly (Fig 6B). If we were to consider even more media components beyond the

scope of LB, we predict that this linear relationship would eventually plateau due to limitations

in the metabolic network. This result suggests that a media richer than LB may be necessary to

identify a core set of condition-independent essential genes.

Interestingly, we found that as more complex LB media formulations are considered, the

number of shared essential genes across 100 simulations quickly converges on 111. Indeed,

only three LB media components were needed to achieve this overlap. Thus, even though the

average size of essential gene lists is larger for less complex media formulations, the overlap of

these larger essential gene lists still results in the same overlap as more complex media formu-

lations, suggesting that changes in complex media formulation have minimal impact on deter-

mining a core set of essential genes.

However, for this analysis, we had compared 100 random media formulations for each set

size, potentially masking the impact of media changes on essentiality. To identify how many

LB media formulations need to be compared to converge on this overlap value, we re-ran this

analysis 10 times and, for each iteration, determined the number of samples, or replicates,

needed to recapture the 111 overlapping genes (Fig 6C). In more complex media formulations,

relatively few comparisons are needed to identify the 111 overlapping essential genes. How-

ever, as fewer LB media components are considered, more comparisons need to be made. For

example, in the case of formulations consisting of only three LB media components, nearly 60

comparisons are needed to converge on the 111 overlap essential genes. Thus, as the media for-

mulation diverges from true LB due to batch-to-batch variability, more comparisons are neces-

sary to converge on a core set of essential genes.

Taken together, these computational analyses define the scope that is needed to identify

condition-independent essential genes. These results suggest that both the number of media

conditions and the number of replicates analyzed can impact our ability to determine condi-

tion-independent essential genes.

Discussion

The identification of both condition-dependent and condition-independent essential genes

has been a long-standing interest [39,40]. Determination of these essential processes can aid in

the discovery of novel antibacterial targets as well as the discovery of minimal genomes

required to sustain life [7,41]. In this study, we performed a large-scale comparison of multiple

gene essentiality datasets and contextualized essential genes using genome-scale metabolic net-

work reconstructions. We applied this approach to several P. aeruginosa transposon mutagen-

esis screens performed on multiple media conditions and demonstrated the utility of GENREs
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in providing functional explanations for essentiality and resolving differences between screens.

Finally, using the P. aeruginosa GENRE, we performed a high-throughput, quantitative analy-

sis to determine how media conditions impact the identification of condition-independent

Fig 6. Computational assessment of the impact of LB media composition on condition-independent essentiality.

(A). Pipeline for computational assessment of the impact of LB media formulation on condition-independent

essentiality. The PA14 model is grown on different media formulations consisting of random groups of LB

components. For instance, two random LB components are selected out of a pool of 23 LB components. The model is

grown on these randomly selected pairs and the essential genes for growth on this media formulation are identified.

This analysis is repeated 100 times for 100 pairs of LB media components. The average number of essential genes for

growth on these random pairs across 100 different formulations is calculated as well as the standard deviation.

Additionally, the essential genes common to all 100 different formulations is determined. Ultimately, this random

selection of groups of LB media components to support growth of the model and essential gene identification is

repeated for groups of three LB components, groups of four, and so on, to groups of 21 LB media components. (B)

Impact of LB media formulation on the identification of condition-independent essential genes. Circles represent the

average number of essential genes identified in different LB media formulations across 100 comparisons. Triangles

represent the shared essential genes (i.e., the overlap) across all 100 comparisons. Error bars indicate standard

deviation. (C) Number of replicates needed to converge on shared essential genes in different LB formulations. The

pipeline outlined in Panel A was repeated 10 independent times, with 100 replicates per set size. For each iteration, the

number of replicates needed to recapture the 111 overlapping genes was calculated. Each data point represents the

average number of replicates from the 10 runs. Error bars indicate standard deviation.

https://doi.org/10.1371/journal.pcbi.1006507.g006
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essential genes. The resulting insights would be challenging to develop without the use of a

computational model of P. aeruginosa metabolism. Our work enables the elucidation of mech-

anistic explanations for essentiality, which is challenging to determine experimentally. Ulti-

mately, this approach serves as a framework for future contextualization of gene essentiality

data and can be applied to any cell type for which such data is available. Additionally, by quan-

tifying the impact of media conditions on the identification of condition-independent essential

genes, we contribute novel insights for design of future gene essentiality screens and identifica-

tion of core metabolic processes.

Recent advances in deep-sequencing technologies combined with transposon mutagenesis

have enabled high-throughput determination of candidate essential genes for a variety of bac-

terial species in a wide range of environmental conditions [42]. While researchers have dem-

onstrated reasonable reproducibility within a given study [43], variability across studies has

been suggested but not assessed on a large-scale [1,44]. Our comparison of multiple P. aerugi-
nosa transposon mutagenesis screens revealed substantial variability in candidate essential

genes within and across media conditions, particularly for strain PAO1. This finding adds to

the growing body of literature highlighting discrepancies between purported essential gene

lists. For example, one study compared the putative essential genes identified from a transpo-

son-directed insertion site sequencing (TraDIS) generated mutant library of Escherichia coli to

the established Keio collection of single gene mutants and found numerous discrepancies [45].

Another study screened transposon sequencing (Tn-seq) generated mutant libraries for Strep-
tococcus pneumoniae in 17 in vitro conditions to identify core essential and conditionally

essential genes [5]. As part of their analysis, they compared their results to previous studies

and found both agreement and disagreement between the putative essential gene lists. Numer-

ous factors may contribute to this lack of overlap between the screens, such as differences in

experimental methodology, differences in data analysis and statistical determination of essenti-

ality, as well as environmental variability between the screens [8,9,45]. Using a mathematical

model, one study identified duration of mutant outgrowth, sensitivity of the mutant detection

method, and initial concentration of the mutant in the culture as having a large impact on

essentiality calls [9]. Thus, experimental and data analysis differences lead to discrepancies

between screens and complicate our ability to identify high-confidence sets of condition-

dependent and condition-independent essential genes.

Focusing on one of these factors, we used the metabolic model of P. aeruginosa strain PA14

to quantitatively assess how media formulation impacts the identification of condition-inde-

pendent essential genes. While previous in vitro studies have surveyed conditional essentiality

in numerous environmental conditions, these screens used an already established mutant

library for each media-type [46]. In this work, we computationally generated de novo mutant

libraries for individual media conditions, eliminating any bias from starting with an estab-

lished mutant library. Ultimately, we found that to determine a high-confidence set of core

essential genes for minimal media conditions, more than 40 minimal media formulations

need to be compared. We extended this analysis to consider how differences in rich media for-

mulations impact gene essentiality and found that as rich media formulations diverge, as many

as 60 replicates are needed to identify condition-independent essential genes with high-confi-

dence. Taken together, these computational results suggest a rich opportunity for a large-scale

experimental effort to identify with high confidence condition-independent essential genes.

These insights would be impossible to garner without computational modeling due to the

sheer number of comparisons made. While our analysis of rich media formulations investi-

gated how the presence or absence of media components impact essentiality calls, future work

could extend this analysis to determine how subtle variations in component concentration

alter the essentiality status of a mutant.
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In addition to variability between datasets, a central difficulty of performing gene essential-

ity screens lies in the interpretation of why a gene is essential in a given condition. Oftentimes,

laborious follow-up experiments are necessary to investigate the role of a gene in a given con-

dition using lower-throughput approaches [42]. Here, we presented a strategy for contextual-

izing gene essentiality data using genome-scale metabolic network reconstructions. We

demonstrated the utility of this approach by providing functional reasons for essentiality for

consensus LB media essential genes. For these genes, we determined which specific compo-

nents of biomass could not be synthesized when the gene was knocked out. Additionally, by

analyzing the network structure and flux patterns, we used the model to explain why certain

genes are essential in one condition versus another. Our computational approach provides

testable hypotheses regarding the functional role of a gene in synthesizing biomass in a given

environmental condition, streamlining downstream follow-up experiments. In future work,

profiling data could be integrated with the metabolic networks to further enhance the utility of

these models in contextualizing gene essentiality [30]. Additionally, integration of transcrip-

tional regulatory networks with the GENREs would further expand the number of genes con-

sidered [47].

In summary, genome-scale metabolic network reconstructions can guide the design of gene

essentiality screens and help to interpret their results. The identification of both condition-

independent and condition-dependent essential genes is vital for the discovery of novel thera-

peutic strategies and mechanistic modeling streamlines the ability to identify these genes. This

framework can be applied to numerous other organisms of both clinical and industrial

relevance.

Methods

Data sources

Transposon insertion library datasets were downloaded from the original publication for each

screen where available. Screens were renamed following this pattern: Strain.Media.NumEssen-
tials, where Strain indicated whether the screen was for strain PAO1 or PA14, Media indicated

which media condition the screen was performed on, and NumEssentials indicated the number

of essential genes identified for the given strain on the given media condition. Specifically, for

the PAO1.LB.201, PAO1.Sputum.224, and PAO1.Pyruvate.179 datasets, Dataset_S01 was

downloaded from [19]. For the PAO1.LB.335, PAO1.Sputum.405, and PAO1.Succinate.640

datasets, Dataset_S01 was downloaded from [18]. For the PA14.LB.634 dataset, S1 Table was

downloaded from [17]. For the PA14.Sputum.510 dataset, Dataset_S04 was downloaded from

[18]. For the PAO1.LB.913 dataset, PA_two_allele_library5.xlsx was downloaded from the

Manoil Laboratory website (http://www.gs.washington.edu/labs/manoil/libraryindex.htm).

For the PA14.LB.1544 dataset, NRSetFile_v5_061004.xls was downloaded from the PA14

Transposon Insertion Mutant Library website (http://pa14.mgh.harvard.edu/cgi-bin/pa14/

downloads.cgi).

The PAO1 and PA14 genome-scale metabolic network reconstructions were downloaded

from the Papin Laboratory website (http://www.bme.virginia.edu/csbl/

Downloads1-pseudomonas.html).

Generation of candidate essential gene lists

Candidate essential genes were determined for each screen as follows. For PAO1.LB.201, we

considered genes to be essential if they were not disrupted in all six of the Tn-seq runs on LB

in the original dataset. For PAO1.Sputum.224, we considered genes to be essential if they were

not disrupted in all four of the Tn-seq runs on sputum in the original dataset. For PAO1.
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Pyruvate.179, we considered genes to be essential if they were not disrupted in all three of the

Tn-seq screens on Pyruvate minimal media in the original dataset. For PAO1.LB.335, PAO1.

Sputum.405, and PAO1.Succinate.640, we used the genes that were labeled as essential in the

original dataset. For PAO1.LB.913, the mutants listed in the transposon insertion library were

compared to a list of all known genes in the PAO1 genome. Genes in the PAO1 genome that

were not in the mutant library list were considered to be essential. For PA14.LB.634, we used

the genes listed as essential in the original dataset. For PA14.BHI.424 and PA14.Sputum.510,

we used the genes that were labeled as essential in the original dataset. For PA14.LB.1544, the

mutants listed in the transposon insertion library were compared to a list of all known genes in

the PA14 genome. Genes in the PA14 genome that were not in the mutant library list were

considered to be essential.

Comparison of candidate essential gene lists

Hierarchical clustering with complete linkage was performed on the candidate essential gene

lists for the PA14 and PAO1 screens and visualized with a dendrogram. The overlap between

the datasets was visualized using the R-package, UpsetR [48].

Re-analysis of transposon sequencing datasets

PAO1.LB.335 sequencing data were downloaded from NCBI SRA under the accession number

SRX031647. PAO1.LB.201 sequencing data were downloaded from NCBI SRA under the

accession number PRJNA273663. Data were analyzed using methods adapted from [18,25].

Briefly, reads were mapped to the PAO1 reference genome (GCA_000006765.1 ASM676v1

assembly downloaded from NCBI) using bowtie2 v.2.3.4.1. Open reading frame assignments

were modified where 10% of the 3’ end of every gene was removed in order to disregard inser-

tions that may not interrupt gene function. Aligned reads were mapped to genes and we

removed the 50 most abundant sites to account for potential PCR amplification bias. We

applied weighted LOESS smoothing to correct for genome position-dependent effects. One-

hundred random datasets were generated by randomizing insertion locations. Previous analy-

sis showed that results begin to converge after 50 random datasets [18]. We compared the ran-

dom datasets to the experimental datasets with a negative binomial test in DESeq2. We

corrected for multiple testing by adjusting the p-value with the Benjamini-Hochberg method.

We used the mclust package in R to test whether a gene was ‘reduced’ or ‘unchanged’. Genes

were called ‘essential’ if they were assigned to the ‘reduced’ category by mclust with an adjusted

p-value <0.05 and uncertainty <0.1.

Model gene essentiality predictions

In silico gene essentiality screens were performed in relevant media conditions using the

PAO1 and PA14 genome-scale metabolic network reconstructions [26]. Specifically, media

formulations were computationally approximated for LB, sputum, pyruvate minimal media,

and succinate minimal media for the PAO1 simulations and LB and sputum for the PA14 sim-

ulations. Systematically, genes were deleted from the models one-by-one and the resulting

impact on biomass production was assessed. If biomass production for the associated mutant

model was below 0.0001 h-1, a standard threshold, the knocked-out gene was predicted to be

essential [26]. For each in silico predicted essential gene, we determined which biomass com-

ponents specifically could not be synthesized using the COBRA toolbox function, biomassPre-

cursorCheck() [49]. Statistical significance for the comparison of the “mismatch: model

nonessential, screen essential” category and the “mismatch: model essential, screen nonessen-

tial” category was assessed using the Wilcoxon signed-rank test.
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Subsystem assignment of consensus essential and nonessential genes

For each of the consensus essential and nonessential genes that were also present in the PAO1

and PA14 models, we determined which subsystems they participated in using an in-house

script (see Supplementary Information). Briefly, we first converted model subsystems to broad

subsystems based on KEGG functional categories [50]. We then identified the reactions associ-

ated with the gene of interest and used the broad subsystem of this reaction to indicate the sub-

system assignment for the gene of interest. Where there was more than one reaction

connected to a gene, we used the reaction associated with the first instance of the gene in the

network for subsystem assignment.

Flux sampling in LB and sputum

The impact of media conditions on flux through pyrimidine metabolism in the PAO1 meta-

bolic network reconstruction was assessed using the flux sampling algorithm optGpSampler

[36]. Briefly, optGpSampler samples the solution space of genome-scale metabolic networks

using the Artificial Centering Hit-and-Run algorithm and returns a distribution of possible

flux values for reactions of interest. Three-thousand flux samples were collected for each simu-

lation, using one thread and a step-size of one. Maximization of biomass synthesis was set as

the objective function. Flux sampling simulations were performed for PAO1 grown in LB

media and sputum media. The median flux values for every reaction in pyrimidine metabolism

were compared between the LB and sputum simulations to determine whether flux was higher,

lower, or unchanged in sputum versus LB.

Media formulation impact on essentiality

The impact of media formulation on gene essentiality predictions was assessed using the PA14

genome-scale metabolic network reconstruction. For the minimal media analysis, the PA14

model was grown on 42 different minimal media and in silico essential genes were identified as

described above. We then randomly selected groups of minimal media conditions of varying

sizes, ranging from two to 41 minimal media conditions considered, and found the intersec-

tion of the group’s predicted essential gene lists, or the genes that were identified as essential in

every condition considered within that group. For each group size, we randomly selected mini-

mal media conditions 500 times.

For the LB media analysis, we randomly selected components from LB media in sets of vary-

ing sizes, ranging from two to 21 LB media components considered, used these sets as the model

media conditions, and identified in silico essential genes as above. For each set size, we randomly

selected LB components 100 times and calculated the average total number of essential genes

identified and the intersection of the essential genes across all 100 sets. To determine how many

LB media formulations needed to be compared to converge on this intersection, we re-ran this

LB media formulation analysis 10 times and, for each iteration, determined the number of sam-

ples needed to achieve the size of the overlap if all 100 samples were considered at each set size.

Code and data availability

Code and files necessary to recreate figures and data can be found here: https://github.com/

ablazier/gene-essentiality

Computational resources

The COBRA Toolbox 2.0.5 [49], the Gurobi 6.5 solver, and MATLAB R2016a were used for

model simulations. optGPSampler1.1 was used for flux sampling simulations [36]. Bowtie2
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v.2.3.4.1 [51] and Samtools v.1.3.1 [52] were used for transposon sequencing analysis. R 3.3.3

was used for all other analyses and figure generation.

Supporting information

S1 Dataset. PAO1 candidate essential genes for in vitro screens. Candidate essential genes

lists for each PAO1 transposon mutagenesis screen. Candidate essential genes are marked with

a ‘1’, while non-essential genes are marked with a ‘0’.

(XLS)

S2 Dataset. PA14 candidate essential genes for in vitro screens. Candidate essential genes

lists for each PA14 transposon mutagenesis screen. Candidate essential genes are marked with

a ‘1’, while non-essential genes are marked with a ‘0’.

(XLS)

S3 Dataset. PAO1 model predicted essential genes for in silico screens. Model predicted

essential genes lists for PAO1 growth simulated on LB media, Sputum media, Pyruvate mini-

mal media, and Succinate minimal media. Model predicted essential genes are marked with a

‘1’, while non-essential genes are marked with a ‘0’.

(XLS)

S4 Dataset. PA14 model predicted essential genes for in silico screens. Model predicted

essential genes lists for PA14 growth simulated on LB media and Sputum media. Model pre-

dicted essential genes are marked with a ‘1’, while non-essential genes are marked with a ‘0’.

(XLS)

S5 Dataset. PAO1 consensus metabolic essential/non-essential genes. Lists of consensus

metabolic essential and non-essential genes for PAO1 on LB media and Sputum media.

(XLS)

S6 Dataset. PA14 consensus metabolic essential/non-essential genes. Lists of consensus

metabolic essential and non-essential genes for PA14 on LB media.

(XLS)

S7 Dataset. Biomass precursors for PAO1 model predicted consensus essential genes. List

of biomass precursors that cannot be synthesized when PAO1 model predicted consensus

essential genes are removed from the model.

(XLS)

S8 Dataset. Biomass precursors for PA14 model predicted consensus essential genes. List

of biomass precursors that cannot be synthesized when PA14 model predicted consensus

essential genes are removed from the model.

(XLS)

S9 Dataset. Proposed model changes. Table of proposed model changes based on discrepan-

cies between model predictions and consensus metabolic non-essential genes for PAO1 on LB.

(XLS)

S10 Dataset. PAO1 model predicted essential genes for in silico screens for the updated

PAO1 model. Model predicted essential genes lists for PAO1 growth simulated on LB media

and Sputum media. Model predicted essential genes are marked with a ‘1’, while non-essential

genes are marked with a ‘0’.

(XLS)
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S11 Dataset. PA14 model predicted essential genes for in silico screens for the updated

PA14 model. Model predicted essential genes lists for PA14 growth simulated on LB media.

Model predicted essential genes are marked with a ‘1’, while non-essential genes are marked

with a ‘0’.

(XLS)

S1 Fig. Distribution of PAO1 consensus essential and nonessential genes across model sub-

systems.

(TIF)

S1 Table. Detailed description of in vitro transposon mutagenesis screens.

(TIF)

S2 Table. Percent accuracy between model predictions of essentiality and in vitro identified

essential genes.

(TIF)

S3 Table. Consensus metabolic essential and non-essential genes for PAO1 and PA14

media conditions with more than two screens.

(TIF)
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