
INTRODUCTION

Despite the status of stroke as one of the principal causes of death 
and disability worldwide, there is currently a paucity of treatments 
available to ameliorate its devastating effects [1, 2]. Over 250 clini-
cal trials have failed [3], suggesting that the discovery of effica-
cious treatments may require further investigation of the basic 
biology of stroke pathogenesis [4-6]. One promising focus of basic 
stroke science investigation is the field of stroke immunobiology. 

Ischemic stroke pathogenesis is complex, culminating in mito-
chondrial and DNA damage, release of reactive oxygen species, 
inflammation, and programmed cell death [7, 8]. Several studies 
support the status of immune responses and inflammation as 
important factors in the pathogenic process: inflammation, initi-
ated by stagnant blood flow, activation of intravascular leukocytes, 
and the release of pro-inflammatory mediators from the ischemic 
endothelium, has been shown to increase brain injury [9, 10]. The 
immune system is involved in all stages of stroke. Local inflam-
matory responses mainly occur through activation of innate and 
adaptive immunity [11, 12]. After an acute stroke, sensors of the 
innate immune system such as Toll-like receptors (TLRs) and in-
nate immune cells, are activated by brain ischemia, leading to am-
plification of the inflammatory cascade. Subsequently, the adaptive 
immune system mediated by lymphocytes is activated and further 
amplifies the inflammatory response [13]. In particular, there is a 
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growing body of evidence linking TLRs to the deleterious inflam-
matory effects of ischemia/reperfusion injury associated with 
stroke [14, 15]. Moreover, the finding that genes responsible for 
innate inflammatory regulation comprise the majority of those 
acutely modulated in the post-stroke circulation suggests the im-
portance of inflammation as an injury mechanism [16-18].

Research has demonstrated that immunoregulation may limit 
excessive inflammation after reperfusion. Inhibition of post-stroke 
inflammation, as exemplified by the effect of TAM/Gas6 signaling 
on the innate immune response promoted by TLRs [19], is recog-
nized as a promising neuroprotective strategy. Additional innate 
immune-mediated protection against stroke is conferred by anti-
inflammatory molecules such as IL-1 receptor antagonist (IL-1Ra), 
IL-10, and TGF-β. IL-1Ra, for instance, not only limits brain injury 
by ischemic stroke, but also appears to confer benefit in patients 
with subarachnoid hemorrhage (SAH) [20-22]. Accordingly, both 
the TAM/Gas6- and cytokine-mediated pathways will be dis-
cussed in this review.

Following innate immune activation, inflammatory mediators 
produced in this initial response recruit the cellular effectors of the 
adaptive immune response. T-lymphocytes, in particular, play an 
integral role in the inflammatory response after stroke [23]. These, 
and the regulatory subset that has been implicated in neuroprotec-
tive immunosuppression, will also be discussed below after the 
initial section that describes the innate response.

Finally, a discussion of the neuro-immunomodulatory effects of 
the vagal cholinergic anti-inflammatory pathway, paired with a re-
lated discussion regarding the regulatory roles played by activation 
of the SNS and HPA axes, will conclude the review. Because neuro-
immunomodulation negatively correlates with infarct volume 
[24], this pathway may represent an endogenous target for future 
pharmacologic neuroprotective strategies. 

POST-STROKE SUPPRESSION OF THE INNATE IMMUNE  
SYSTEM

TLRs and TAM/Gas6 

TLRs are transmembrane proteins composed of three structural 
domains: a leucine-rich repeats (LRRs) motif, a transmembrane 
domain, and a cytoplasmic Toll/IL-1 receptor (TIR) domain. Thus 
far, TLR1-TLR10 have been identified in humans [15]. Through 
the downstream actions of MyD88 and TRIF, these receptors have 
been shown to activate the innate immune response [25]. The TLR 
signaling pathway plays a crucial role in the pathogenesis of stroke 
[26]. TLR2 and TLR4 have been found to be especially important 
in this context: previous research has reported that these TLRs 
are widely expressed in the brain following cerebral ischemia, and 

may exacerbate tissue damage [27]. In a clinical study of ischemic 
stroke patients, it was reported that increased TLR2 and TLR4 
expression was independently associated with poor functional 
outcome [28]. Recognition of this association may pave the way 
toward future therapies, as was illustrated by the same study in an 
in-vitro model of stroke, in which blocking TLR2 and TLR4 re-
duced the monocytic inflammatory response.

The TAM receptor class consists of three receptors: Tyro3, Axl, 
and MerTK. Growth arrest-specific gene 6 (Gas6) is a common 
ligand of these TAM receptors [29]. All three TAM receptors 
have similar extracellular domain structures, including two tan-
dem N-terminal immunoglobulin-like domains (IGs) and two 
membrane-proximal fibronectin type III-like (FNIII) domains. 
TAM receptors and their ligands exert anti-inflammatory action 
and may be thought of as a countervailing force against the effects 
of TLRs [30]. TAM receptor activation may inhibit TLR activation 
and the associated signal transduction cascades, including those 
involving NF-ĸB and MAPK, and has been shown to inhibit the 
level of TLR-induced pro-inflammatory cytokines, such as TNF, 
IL-6, and IL-12 [31]. 

TAM/Gas6-mediated immunosuppression

As previously mentioned, TLRs are critical initiators of post-
stroke inflammation. They are activated by the release of danger-/
damage-associated molecular patterns (DAMPs), resulting in the 
production of pro-inflammatory mediators [15]. Activation of 
TLRs initiates signal transduction cascades that involve kinases, 
including the transcription factors activator protein-1 (AP-1) and 
NF-ĸB, which induce the expression of inflammation-associated 
molecules and cytokines [32]. To avoid cerebral damage second-
ary to chronic inflammation, the TLR signaling pathway must be 
tightly regulated. Recent studies have demonstrated that TAM 
receptors act as innate immune system regulators by inhibiting 
the TLR-mediated pro-inflammatory response [30], and they have 
been identified as a potential therapeutic target in the setting of 
stroke [33].

Under both physiological and pathological conditions, TAM 
receptors are widely expressed in cells of the immune and nervous 
systems [34, 35]. The level of TAM receptor expression is signifi-
cantly increased after birth and remains high in adults, suggesting 
the importance of these receptors in normal physiology. This was 
further confirmed by a study of TAM knockout mice, in which 
peripheral lymphoid organs began to enlarge three weeks after 
birth. The spleens and lymphoid cell populations of these mice 
demonstrated excessive proliferation at 6 months, resulting in an 
imbalanced immune response [36]. The negative immunoregula-
tory mechanism of TAM receptors proceeds through downstream 
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signaling cascades involving SOCS1 and SOCS3 E3 ubiquitin 
ligases. These, in turn, inhibit inflammatory responses mediated 
by regulatory signaling molecules such as TLRs and NF-ĸB [37]. 
TAM receptors are critical to the maintenance of immunohomeo-
stasis: excessive inflammation mediated by the TLR signaling 
pathway would upregulate TAM/Gas6, yielding a TAM-initiated 
damping of TLR inflammatory signaling. In addition, the func-
tion of TAM receptor signaling has been demonstrated in central 
nervous system physiology. Tyro3, Axl, and MerTK are involved in 
the early development of the nervous system [38]. They have also 
been linked to CNS pathophysiology: the endogenous expression 
of Gas6 and Axl decreased significantly 24 h after middle cerebral 
artery occlusion (MCAO), and recombinant Gas6 reduced brain 
injury and inhibited the TLR/TRAF/NF-ĸB pathway [39]. 

Microglia, which act as resident macrophages within the central 
nervous system and are known mediators of neuroinflammation 
[40], express cytokine receptors, such as TLRs [41].Activation of 
microglia results in neuronal damage through the release of pro-
inflammatory cytokines. Several reports have shown that TAM 
receptors may regulate the function of microglia [42]. Microglia 
express all three TAM receptors [43], and microglial neuroinflam-
mation is subject to inhibition by the TAM/Gas6 system, which 
has been shown to maintain the cells’ phagocytic ability while 
inhibiting LPS-induced IL-1β expression. A recent study showed 
how this pathway may be exploited in stroke therapy [39]. Further 

evidence comes from studies that have investigated microglial 
function in the context of TAM signaling deficiencies. For in-
stance, microglia lacking TAM receptors were found to produce a 
large number of proinflammatory cytokines after activation [43]. 
Additionally, deficient activity of both Axl and MerTK was found 
in adult mice to result in reduced microglial activity and impaired 
apoptotic cell clearance [42]. Finally, MerTK expression was found 
to be stimulated by immunosuppressive drugs, such as dexa-
methasone [44]. Taken together, this body of research suggests that 
TAM receptors participate in the negative regulation of microglial 
innate immune responses. 

Astrocytes represent another type of immunomodulating cell 
capable of producing inflammatory neurotoxic mediators [45]. 
They have been shown to exhibit strong expression of Tyro3 and 
Axl, along with low expression of the MerTK receptor [46]. Analo-
gous to the aforementioned microglia research, TAM-deficient 
astrocytes were found to release higher levels of IL-6 after LPS 
activation than was observed in wild type (WT) counterparts. Ad-
ditionally, TAM-deficient astrocytes produced a stronger IL-1β 
expression response to pro-inflammatory stimulation, than WT 
cells [45] (Fig. 1).

Fig. 1. Anti-inflammatory effect 
of TAM receptors. The negative 
immunoregulatory mechanism 
of  TAM receptors proceeds 
through downstream signaling 
cascades involving SOCS1 and 
SOCS3 E3 ubiquitin ligases. 
These, in turn, inhibit inflam-
matory responses mediated by 
regulatory TLR signaling. TAM 
receptors can also decrease ex-
pression of IL-1β and IL-6 via 
negative regulation of microglial 
and astrocytic activation.
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POST-STROKE MEDIATORS OF THE ANTI-INFLAMMATORY 
RESPONSE 

IL-1 receptor antagonist

IL-1 is an important pro-inflammatory mediator of brain injury, 
and its inhibition has yielded neuroprotective efficacy in experi-
mental models over the past two decades [47, 48]. There is a grow-
ing body of evidence indicating that rapid up-regulation of the two 
principal IL-1 ligands, IL-1α and IL-1β, occurs after stroke [49, 50]. 
Recently, a third ligand was discovered, and found to be a competi-
tive antagonist: IL-1Ra [51]. This antagonist has been investigated 
in the context of subarachnoid hemorrhage: Greenhalgh et al. [52] 
reported that IL-1Ra is beneficial in a rat SAH model, and a phase 
II randomized controlled trial further demonstrated that IL-1Ra is 
safe for SAH patients. In the latter study, IL-1Ra was found to cross 
the blood–brain barrier (BBB) and appeared to decrease (albeit 
not to a degree that reached statistical significance) the concentra-
tion of IL-6, an inflammatory marker and downstream product 
of IL-1, in the cerebrospinal fluid (CSF) [53]. The therapeutic po-
tential of IL-1Ra was also demonstrated in a mouse model of isch-
emic stroke, in which increased expression of IL-1Ra in leukocytes 
conferred neuroprotection [21]. These findings were echoed by 
another recent experiment by Pradillo et al. [54], in which IL-1Ra 
administration reduced ischemic brain injury in rats. In humans, 
intravenous IL-1Ra has been found in Phase II trials to be safe 
for use in ischemic stroke [55]; additionally, a recent Phase II trial 
of subcutaneous IL-Ra in ischemic stroke patients demonstrated 
reductions in inflammatory markers associated with poor acute 
post-stroke outcome [56].

IL-10 and TGF-β

Like IL-1Ra, IL-10 acts in the context of brain injury as an 
anti-inflammatory cytokine, promoting neuronal survival and 
suppressing inflammatory responses by producing inhibition 
at a number of steps in cytokine signal transduction, including 
cytokine synthesis, cytokine receptor expression, and cytokine 
receptor activation [57, 58]. It is mainly produced by astrocytes 
and microglia [59, 60]. The protection conferred by this cytokine 
against ischemic brain damage is illustrated by an experiment that 
compared response to permanent MCAO between IL-10-/- mice 
and wild-type mice. Compared with the latter, knockout mice had 
30% larger infarct volumes 24 h post-stroke [61]. Similarly, IL-10 
has been reported to improve neurological outcomes and limit in-
farct volume in experimental stroke [62, 63], while IL-10 polymor-
phisms have been implicated in increased susceptibility to stroke 
[64]. A study that employed intracerebroventricular injection in a 
mouse ischemic stroke model highlighted the genetic component 

of the effects of IL-10, showing that this method produced down-
regulation of over 300 genes that were upregulated by ischemia; 
moreover, most of these genes were associated with inflammation 
[65]. Additionally, several epidemiologic studies have demonstrat-
ed a relationship between IL-10 and ischemic stroke risk. A study 
in a south Indian population, for instance, showed that possession 
of the A allele of the IL-10 promotor SNP rs1800896, which is as-
sociated with low IL-10 production, conferred an increased risk 
of ischemic stroke [66]. Another study, in this case of a population 
of Eastern Finnish origin, found that plasma IL-10 correlated with 
high-risk sources of cardioembolic stroke, which suggested its util-
ity in improving identification of stroke etiology [67].

TGF-β is another neuroprotective and anti-inflammatory medi-
ator that shows promise as an effective therapeutic agent in stroke. 
TGF-β is mainly produced by astrocytes and microglia. Like IL-
10, blocking TGF-β exacerbates brain damage [68], while TGF-β 
overexpression leads to a decreased inflammatory response and 
reduced brain injury in mice following MCAO [69]. In rats, TGF-β 
antagonism can aggravate brain damage caused by focal cerebral 
ischemia [16]. Pretreatment with TGF-β, however, attenuated the 
activation of NF-κB and upregulation of IL-1 mRNA levels, thus 
reducing production and release of proinflammatory cytokines 
[70]. Additionally, TGF-β has been reported to function on the cel-
lular level by decreasing the chemotactic activity of microglia [71]. 

Anti-inflammatory regulation of Hsp70

Heat Shock Proteins (Hsps) are evolutionarily conserved mol-
ecules that reduce brain injury. They have been divided into six 
major families, including Hsp100, Hsp90, Hsp70, Hsp60, Hsp40, 
and small Hsps. Among these, it has been reported that Hsp70 
confers an anti-inflammatory effect through inhibition of both 
pro-inflammatory transcription factor NF-ĸB activation, and of 
ROS [72]. Hsp70 has been detected in neurons, astrocytes, microg-
lia, and endothelial cells after brain infarction, and appeared in the 
context of a stroke model to function through direct association 
with NF-ĸB and IĸB, whereupon it prevents IĸB phosphorylation 
[73]. Other experimental findings that have helped to delineate 
the function of Hsp70 include that intracellular overexpression of 
Hsp70 decreases NF-ĸB activation in astrocytes [74]; overexpres-
sion in an experimental stroke model produced downregulation 
of TNF-α and IL-1β [75]; extracellular Hsp70 modulates immune 
responses [76]; and intravenous injection of Hsp70 in rat model 
reduced the volume of infarction produced by experimental stroke 
induction [77]. 

l 
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POST-STROKE SUPPRESSION OF THE ADAPTIVE IMMUNE 
SYSTEM 

T cells are rapidly recruited to the ischemic brain within 24 h 
post-stroke, at which point they generally function to aggravate 
brain damage [78, 79]. This is not invariably the case, however, as is 
illustrated by the Treg subset of T cells, which plays an important 
protective role in immunohomeostasis and the pathophysiology 
of ischemic stroke [80]. Treg cells accumulate within the ischemic 
hemisphere, spleen, and proximal and distal lymph nodes in 
experimental models of stroke [81], and Dolati et al. [82] dem-
onstrated that Treg depletion may promote stroke. Conversely, 
the augmentation of Treg activity was shown to decrease both 
the volume of an experimentally-induced infarct, and subse-
quent post-stroke deficit [81]. There are many subpopulations 
of Tregs, including Th3, Trl, CD8 Tregs, natural killer Tregs, and 
CD4+CD25+FoxP3+Tregs [83]. Among these, CD4+CD25+FoxP3+ 
Tregs are the most well-characterized. CD4+CD25+FoxP3+Tregs 
mainly arise from progenitor cells in the bone marrow and de-
velop in the thymus through the processes of positive and negative 
selection (Fig. 2) [84]. CD4+CD25+FoxP3+Tregs can be activated 
via T cell receptors [85]. In the context of stroke, a growing body of 
evidence implicates CD4+CD25+FoxP3+Tregs as important neu-
roprotective immunomodulators, but the mechanism by which 
this effect proceeds remains unclear [86, 87]. One experiment ob-
served that, in mice, CD4+CD25+Tregs were beneficial to neuronal 

survival after an ischemic insult by modulating autoimmunity [88]. 
In another mouse study, these Tregs were reported to be associated 
with cocaine-and-amphetamine-regulated-transcript-mediated 
neuroprotection after stroke [89]. A third study, in this case per-
formed on patients following acute ischemic stroke, reported both 
an increase of CD4+CD25+FoxP3+Tregs in the peripheral blood, 
and a reduction in the suppressive effects of these cells on T cell 
proliferation [90]. 

Another manner by which the function of Treg cells has been 
investigated is through their interactions with microglia. Foxp3, 
which functions as a repressor of microglial activation, plays an 
important role in reducing microglia-mediated neuroinflam-
mation. Cerebral Foxp3+ Tregs were shown to inhibit the LPS- 
induced inflammatory response of microglia in vitro [91], while 
a Foxp3-mutation appeared to increase microglial release of pro-
inflammatory factors, such as CXCL10 and MCP-1, in a mouse 
model [92]. Mechanistically, Tregs appear able to promote polar-
ization of microglia toward an M2 phenotype accompanied by 
lowered IL-6 and TNF-α expression in vitro [93]. In summary, 
these experimental results demonstrate the beneficial consequenc-
es of Treg activation both in vitro and in vivo (Fig. 2).

Finally, yet another line of evidence involves programmed 
death-1 (PD-1), a T cell regulatory molecule with two ligands, 
PD-L1 and PD-L2. PD-L1 is widely expressed on T cells, B cells, 
monocytes, and dendritic cells (DCs); PD-L2 is located on mac-
rophages, certain B cells, and DCs [94]. PD-L1 is expressed on 

Fig. 2. The origin and func-
tion of Treg cells. CD4+CD25+ 

FoxP3+Tregs mainly arise from 
progenitor cells in the bone 
marrow and develop in the thy-
mus through the processes of 
positive and negative selection. 
CD4+CD25+FoxP3+Tregs can 
limit activation of effector T cells. 
Tregs are also able to change the 
polarization of microglia and 
suppress excessive expression of 
neuroinflammatory mediators 
by microglia. 

l 
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Tregs and functions to inhibit the proliferation of T cells. Through 
inhibition of neutrophil MMP-9 expression, Treg-mediated PD-1/
PD-L1 interaction has been demonstrated to reduce brain damage 
after ischemic stroke [95].

NEUROIMMUNOMODULATION 

Communication between the immune and nervous systems 
is essential in host defense against inflammatory diseases. There 
is a growing body of evidence confirming that neuroendocrine 
pathways, such as the hypothalamopituitary-adrenal (HPA) axis 
and the sympathetic division of the autonomic nervous system 
(SNS), act as anti-inflammatory balancing mechanisms to regulate 
the inflammatory response [12, 96, 97]. Neurohormonal negative 
regulation of immune function by the HPA axis has been widely 
studied [98]. HPA axis activation results in the release of glucocor-
ticoids, which exert their manifold effects on many different effec-

tors through their action on transcription-modulating intracel-
lular receptors. In immune cells such as macrophages, neutrophils, 
T cells, and B cells, cortisol is a potent anti-inflammatory molecule 
that acts to downregulate the production of pro-inflammatory 
cytokines through interaction with the NF-κB transcription fac-
tor that controls the production of these cytokines [99]. The SNS 
has been shown to possess both pro- and anti-inflammatory 
potential [100]. All lymphoid organs receive input from postgan-
glionic sympathetic neurons; norepinephrine released through the 
termini of these nerves regulates the activity of the cellular effec-
tors of immune function. Catecholamines released through this 
pathway bind to receptors (primarily the β2 adrenergic receptor) 
on the surface of the cellular effectors of immunity, whereupon 
they act through intracellular signaling cascades to influence gene 
expression relevant to the regulation of immune responses [101]. 
It has been suggested that cocaine- and amphetamine-regulated 
transcript-mediated neuroprotection may occur through SNS 

Table 1. Immunosuppression mechanisms studied in stroke 

References

Innate immune system 
    TAM/Gas6 rGas6 reduced brain injury via inhibition of the TLR/TRAF/NF-ĸB pathway [39]
Anti-inflammatory mediators
    IL-1 receptor antagonist IL-1Ra has been used safely for ischemic stroke in Phase II trials [55]

IL-1Ra promotes neuroprotection [20]
    IL-10 IL-10 promotes neuronal survival and inhibits inflammatory responses [57]

IL-10−/− mice have increased infarct volumes 24 h after stroke [61]
    TGF-β TGF-β knockout aggravates brain damage [68]

TGF-β overexpression decreases the inflammatory response and reduces brain injury 
in mice subjected to MCAO

[69]

Adaptive immune system
    Regulatory T cells (Tregs) CD4+CD25+Tregs may be beneficial to neuronal survival [88]

CD4+CD25+Tregs could facilitate cocaine-and-amphetamine-regulated-transcript-
mediated neuroprotection after stroke

[89]

Increased CD4+CD25+FoxP3+Tregs in the peripheral blood reduced T cell prolifera-
tion in patients with acute ischemic stroke

[90]

Tregs reduced brain damage after ischemic stroke by mediating PD-1/PD-L1 interac-
tion 

[95]

Neuro-immunomodulation
    HPA axis The HPA axis participates in negative neurohormonal regulation [98]
    SNS The SNS regulates the inflammatory response [100]
    Cholinergic anti-inflammatory pathway The cholinergic anti-inflammatory pathway inhibits the release of cytokines and pro-

motes neuroprotection
[105]

    α7 nAChRs Treatment with the selective α7 nAChR agonist PHA 568487 was found to be associ-
ated with a decrease in the number of microglia expressing the M1 phenotype in a 
pMCAO model

[109]

TLR, Toll-like receptor; TAM, Tyro3/Axl/MerTK; DAMP, Damage associated molecular pattern; Gas6, Growth arrest-specific 6; SOCS 1, Suppressor 
of cytokine signaling 1; SAH, Subarachnoid hemorrhage; Hsp70, Heat shock protein 70; IL-10, Interleukin-10; TGF-β, Transforming growth factor β; 
CSF, Cerebrospinal fluid; BBB, Blood brain barrier; SNS, Sympathetic nervous system; HPA, Hypothalamopituitary-adrenal; LRRs, Leucine-rich repeats; 
TIR, Toll/IL-1 receptor; MyD88, Myeloid differentiation protein 88; TRIF, TIR domain-containing adaptor inducing interferon β; NF-ĸB, Nuclear fac-
tor kappa B; LPS, Lipopolysaccharide; MCAO, Middle cerebral artery occlusion; IL-1, Interleukin-1; IL-1Ra, Interleukin-1 receptor antagonist; Tregs, 
Regulatory T cells; PD-1, Programmed death 1; MMP-9, Matrix metalloproteinase 9; DC, Dendritic cell; Th3, T helper 3 cell; Trl, Type 1 regulatory T cell; 
TNF-α, Tumor necrosis factor alpha.
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regulation [89]. Down-regulation of inflammation by the SNS 
proceeds mainly through β-adrenoceptors. One study addressed 
the relevance of this mechanism to stroke pathogenesis by report-
ing that stroke-induced activation of the SNS results in the secre-
tion of catecholamines, causing a β-adrenergic receptor-mediated 
reduction in TNF-α and concomitant promotion of IL-10 produc-
tion [102].

The cholinergic anti-inflammatory pathway is classified as a 
neuro-immunomodulatory pathway [103]. As compared to the 
neuroendocrine mechanisms mentioned above, neuro-immuno-
modulation is distinguished by its rapid action. When pro-inflam-
matory cytokines are released after immune response activation, 
sensory vagal afferents and regulatory vagal efferents form an 
inflammatory reflex arc that continuously monitors the response 
[104]. The cholinergic anti-inflammatory pathway can be activat-
ed in this setting to counteract the release of excessive TNF-α; the 
ability of this pathway to inhibit the release of cytokines has been 
shown to promote neuroprotection [105]. The central function of 
the pathway may be mediated through stimulation of the α7 nACh 
receptors (α7 nAChRs) responsible for microglial activation: intra-
peritoneal injection of PNU-120596, an allosteric modulator of α7 
nAChRs, decreased infarct size and improved neurological tests 
results in a mouse MCAO model [106, 107]. Subsequent work 
confirmed that intranasal administration of PNU-120596 pro-
duced a similar therapeutic effect in a rat model [108]. Likewise, 
treatment with the selective α7 nAChR agonist PHA 568487 was 
found to be associated with a decrease in the number of microglia 
expressing the M1 phenotype and an increase in number of M2 
microglia in a pMCAO model [109]. PHA 568487 administration 
was also found to reduce brain injury after experimental stroke in 
rodents [110].

CONCLUSION

The inflammatory response, by disrupting immunohomeostasis 
and aggravating brain damage, constitutes a major contributory 
factor to the pathobiology of stroke. Previous studies have high-
lighted the neuroprotective effects of immunosuppression, which 
is achievable through both innate and adaptive mechanisms. Vari-
ous regulatory pathways, such as the TAM/Gas6 pathway, have 
been shown to be involved in modulating post-stroke inflamma-
tion, and therefore in the reduction of post-stroke brain injury. 
Furthermore, a growing body of research describes the use of 
anti-inflammatory regulators such as IL-1Ra in clinical trials for 
ischemic stroke. In addition to the traditional immunosuppres-
sive molecules, CD4+CD25+FoxP3+Tregs play a unique protective 
role in stroke pathogenesis. Treg-mediated immunoregulation 

following stroke should be a focus of future research. Finally, the 
cholinergic anti-inflammatory pathway provides an additional 
target for post-stroke pharmacologic intervention. Taken together, 
these findings (Table 1) lead us to conclude that immunoregula-
tion may provide a promising approach both to the study of stroke 
pathophysiology, and to the discovery of treatments that limit the 
destructive effects of cerebrovascular disease.
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