
micromachines

Article

Influence of Characteristics of Thermoplastic Polyurethane on
Graphene-Thermoplastic Polyurethane Composite Film

Zhi-Min Zhou 1,2, Ke Wang 1, Kai-wen Lin 1, Yue-Hui Wang 1,* and Jing-Ze Li 2

����������
�������

Citation: Zhou, Z.-M.; Wang, K.; Lin,

K.-w.; Wang, Y.-H.; Li, J.-Z. Influence

of Characteristics of Thermoplastic

Polyurethane on Graphene-

Thermoplastic Polyurethane

Composite Film. Micromachines 2021,

12, 129. https://doi.org/10.3390/

mi12020129

Received: 20 December 2020

Accepted: 24 January 2021

Published: 26 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Materials and Food, Zhongshan Institute, University of Electronic Science and Technology of
China, Zhongshan 528402, China; zzmzsedu@126.com (Z.-M.Z.); wkzsedu@126.com (K.W.);
kevinlin1990@163.com (K.-w.L.)

2 Department of Material and Energy, University of Electronic Science and Technology of China,
Chengdu 610054, China; lijingze@uestc.edu.cn

* Correspondence: wangzsedu@126.com; Tel.: +86-15-900-020-061

Abstract: Graphene-thermoplastic polyurethane (G-TPU) composite films were fabricated by tra-
ditional blending method and tape casting process with commercial graphene sheets as functional
fillers and TPU masterbatches of four different melting points as matrix, respectively. The effects of
matrix on the distribution of graphene, the electrical conductivity, and infrared (IR) light thermal
properties of the G-TPU composite films were investigated. The experimental results reveal that the
characteristics of TPU has little influence on the electrical conductivity of the G-TPU composite films,
although the four TPU solutions have different viscosities. However, under the same graphene mass
content, the thermal conductivity of four G-TPU composite films with different melting points is
significantly different. The four kinds of G-TPU composite films have obvious infrared (IR) thermal
effect. There is little difference in the temperatures between the composite films prepared by TPU
with melting a point of 100 ◦C, 120 ◦C, and 140 ◦C, respectively; however, when the content of
graphene is less than 5 wt%, the temperature of the composite film prepared by TPU with a melting
point of 163 ◦C is obviously lower than that of the other three composite films. The possible reason
for this phenomenon is related to the structure of TPU.

Keywords: graphene; thermoplastic polyurethane; near-infrared photothermal response; film

1. Introduction

In recent years, with the development of electronics, communication, and artificial
intelligence industry, flexible conductive composites have attracted extensive attention in
academia and industry due to its portability, good biological compatibility, and stretchabil-
ity and are widely used in sensors, flexible displays, energy devices, medical electronics
and integrated circuit, and so on [1–5]. At present, flexible conductive composite materials
are usually composed of polymer materials and conductive nanomaterials [4–8]. Polymer
materials, such as epoxy, polyimide, and polyurethane, as flexible substrates are mostly
insulators and do not have electrical conductivity. Conductive nanomaterials generally
include graphene and its derivatives [6–9], carbon nanotubes [10], metal nanowires [11]
and their derivatives [12]. Adding conductive nanomaterials into the matrix or surface
of polymer materials can not only solve the shortcomings of the polymer itself, such as
brittleness, poor electrical conductivity and thermal conductivity, but also use the special
properties of nanomaterials to broaden the application fields of polymer materials [7,13–16].

Polyurethane is a kind of block polymer composed of hard and soft segments, which
has high industrial value and research value due to its excellent oil resistance, abrasion
resistance, stretchability and so on [17]. Thermoplastic polyurethane (TPU), as an im-
portant branch of polyurethane, shows potential for use in the preparation of perforated
membrane because of its excellent tensility, good elastic resilience, and excellent biocompat-

Micromachines 2021, 12, 129. https://doi.org/10.3390/mi12020129 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-6141-3907
https://doi.org/10.3390/mi12020129
https://doi.org/10.3390/mi12020129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12020129
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/12/2/129?type=check_update&version=1


Micromachines 2021, 12, 129 2 of 11

ibility [18–21]. However, due to its poor electrical conductivity and thermal conductivity, it
is difficult to further expand its application fields [19,22].

Graphene (G), a novel two-dimensional honeycomb carbon nanomaterial, has large
specific surface area and excellent mechanical, optical, thermal and electrical properties,
and also has excellent energy conversion capabilities, such as photothermal conversion,
electrothermal conversion, and magnetothermal conversion, is a kind of promising nano-
material [15,21,23,24]. Therefore, graphene as functional fillers were widely used in to
prepare functional materials. Li et al. reported a novel self-healing electronic material
with a three-dimensional graphene structure based on Diels-Alders chemistry [1]. Oh
et al. reported that they used graphene nanoplates as reinforcing agents and crosslinking
platform to react with the furfuryl functional groups in the polyurethane chain via in
situ Diels-Alders reaction and synthesized thermally self-healable graphene-nanoplates-
polyurethane (GNP-PU) composites [6]. Wang et al. reported that they prepared thermally
and mechanically reinforced graphene-thermoplastic polyurethane composites by solution
mixing [9]. Luan et al. reported that they filled graphene and carbon nanotubes into TPU
to synthesize composites that can be repaired under microwave radiation [20]. Huang
et al. reported that they added few-layers graphene into TPU to prepare functional ma-
terials that can be healed by microwave, near-infrared light, and electricity [21]. Chen
et al. reported that they prepared stretchable and conductive G-TPU nanocomposite foam
materials via water vapor induced phase separation technology [18]. Strankowski et al.
reported that they used graphene nanoplates and reduced graphene oxide as fillers to
prepare two kind of thermally reinforced and mechanically reinforced TPU composites [25].
Cataldi et al. reported that they prepared self-healing flexible conductive cotton textiles
by impregnating cotton fabrics in graphene and thermoplastic polyurethane-based disper-
sions [26]. Roy et al. reported that they prepared mechanically and thermally enhanced
composites by incorporating multi-walled carbon nanotubes and graphene hybrid systems
into thermoplastic polyurethane [27].

However, most of the previous studies only focused on the mechanical, thermal,
and electrical properties of G-TPU composites, while ignoring the electro-thermal and
photothermal conversion capabilities of G-TPU composites [1,6,8,9,24–26,28,29]. We have
reported that the electrical and thermal and self-healing properties of G-TPU conductive
film were closely related to the mass content of graphene in the G-TPU film, while the
infrared light thermal response performance of G-TPU film has nothing to do with the
mass content of graphene in the G-TPU film [25]. In this paper, we fabricated the G-
TPU composite films via traditional blending method and tape casting process, then we
systematically investigated the effects of the characteristics of TPU on the near-infrared
photo-thermal response of G-TPU composite film.

2. Materials and Methods
2.1. Materials

Graphenesheets (G > 98 wt%) with less than 3 layers and an average particle size less
than 10 µm were purchased from Chengdu Jiacai Technology Co., Ltd., Chengdu, China.
N,N-Dimethylformamide (DMF) was purchased from Guangzhou Chemical Reagent Co.,
Ltd., Guangzhou, China; thermoplastic polyurethane (TPU) masterbatches model number:
HF-3H85A-3 (TPU-A), HM85A (TPU-B), and E685C4 (TPU-C), respectively, were purchased
from BASF (China) Company Ltd. Guangzhou Branch, Guangzhou, China; ALR CL87A
(TPU-D) masterbatches were purchased from Lubrizol Estane Chemical Co. Ltd., Estane
Lubrizol, Cleveland, OH, USA.
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2.2. Methods
2.2.1. Preparation of G-TPU Composite Film

Typical preparation processes are described as follows: 16 g TPU masterbatches were
added into 80 mL DMF, followed by ultrasound and stirring with a stirring rod until
completely dissolved. The 0.6 g graphene sheets were added into a flask containing DMF
solution under vigorous stirring and ultrasound for 30 min. Then, the TPU solution was
added into the above graphene DMF under vigorous agitation and the G-TPU solution
was dispersed at 3500 rpm/min for 60 min by a high-speed shear disperser. Finally, the
G-TPU solution was poured into the Teflon mold and dried at 70 ◦C until the weight did
not change any more, then the G-TPU composite film were obtained. The G-TPU composite
film was peeled off for further testing. G-TPU compound films with different properties
were obtained by changing the type of TPU and the mass content of GP. Figure 1 shows a
schematic diagram of the fabrication process of G-TPU composite film.

Figure 1. Schematic diagram of the fabrication process of G-TPU composite film.

2.2.2. Characterization

Differential scanning calorimetry (DSC) analysis was conducted via simultaneous
differential thermal analysis (TA Q2000 V24.1 Build 124, NETZSCH-Gertebau GmbH, Selb,
Germany). The weight of sample was 13–15 mg, Gas1: Nitrogen 50.0 mL·min−1, the
heating rate was 20 ◦C/min, and the sample test was heated from −80 ◦C to 200 ◦C, then
naturally cooled to −80 ◦C, and then heated to 200 ◦C. The curves in the figure showed
the temperature rise from −80 ◦C to 200 ◦C after removing the thermal stress. Scanning
electron microscope (SEM, Zeiss sigma 500, Carl Zeiss, Germany), and optical microscope
(Nikon LV100, Nikon Co., Ltd., Tokyo, Japan) with a digital camera were used to investigate
the microstructure of G-TPU flexible conductive film. The resistance was measured by a
four-point probe system (ST2253, Suzhou Jingge Electronics Co., Ltd. Suzhou, China). The
resistances of each sample were each measured at twenty different sites and calculated
from the average value of those measurements. An infrared thermal imager (UTI384M,
range: −20–150 ◦C, accuracy: ±2 ◦C, UNI-T China Co., Ltd., Shenzhen, Guangdong, China)
was used. The thermal conductivity of sample was measured by a DRL-III heat flow meter
instrument (Xiangtan Xiangyi Instrument Co. Ltd., Xiangtan, China) according to the
standard ASTM D5470.
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3. Results and Discussion
3.1. Electrical Property of G-TPU Flexible Conductive Film

TPU is a copolymer consisting of both hard and soft segments. Its properties are
mainly determined by the monomers, such as the type and crystallinity and copolymer
morphologies of hard and soft segments [19–21]. The hard section has a direct effect on the
mechanical properties of TPU, such as tensile strength, hardness, and modulus; the soft
segment determines the elasticity and low temperature resistance of the TPU. Previous
studies have shown that graphene can not only strengthen and toughen TPU, but also
improve the properties of TPU, such as wear resistance, scratch resistance, heat resistance,
aging resistance, electromagnetic shielding property, etc. [6,9,20–27]. The distribution of
graphene sheets in TPU and their binding state affect the curing behavior of TPU, which
affects electrical and thermal properties and microstructures of the composite films [20–23].
According to our previous research, the electrical and thermal and infrared light properties
of G-TPU composite films are related not only to the mass content of graphene, but also to
the initial TPU concentration [25,26]. The initial TPU concentration of 20 wt% is beneficial
to obtain the G-TPU composite film with good electrical and thermal properties [25,26].
Here, TPU with the initial concentration of 20 wt% is used to combine graphene with
different mass contents. TPU with four different melting points (110 ◦C, 120 ◦C, 140 ◦C,
and 163 ◦C, respectively) were used to study the influence of the characteristics of TPU on
the electrical and thermal and infrared light properties of G-TPU composite films.

Figure 2 shows the relationship between the resistivity of the conductive films com-
posed of four different melting points of TPU and the graphene mass content, respectively.
The inset in Figure 2 is photo of light emitting diode device on the G-TPU conductive film.
The G-TPU composite films composed of four different melting points of TPU, respec-
tively, were not conductive when the graphene mass content is less than 3 wt%. When the
graphene mass content reached 3 wt%, the composite films began to be conductive, but it
is clear that the conductivities of composite films have little to do with the characteristics of
TPU. We believe that the slight difference in resistivity between different samples is related
to the measurement error. When the graphene mass contents reached 3 wt%, 4 wt%, 5 wt%,
and 7 wt%, the resistivity of G-TPU flexible conductive films was about 90.0 Ω·m, 3.0 Ω·m,
1.1 Ω·m, and 0.02 Ω·m, respectively. During heat treatment process of samples, the TPU
molecular chains began crosslinking as the DMF volatilized and the mixed slurry gradually
became a thin film. With the extension of heat treatment time, the film gradually shrank,
making the graphene sheets overlap and stack to form conductive networks. When the
mass content of graphene was low (less than 3 wt%), the effective conducting networks
could not be formed, so the composite film was non-conductive. When the mass content
of graphene reached 3 wt%, a part of the effective conductive pathways were formed,
and the flexible conductive film exhibited electrical conductivity, but the resistivity was
still high. This indicates that the conductive mechanism of G-TPU composite conductive
film conforms to the percolation threshold theory. When the number of graphene sheets
overlapping is up to threshold, a considerable ensemble of electrons is finally transported
in the entire graphene sheets networks. As the graphene mass content further increases,
the number of conductive pathways increases and form more conductive networks, so that
the resistivity of G-TPU films gradually decreases until it is stable. The experimental results
in Figure 2 show that the distribution of graphene in TPU with different characteristics
are not affected by the characteristics of TPU matrix, or it can be said that graphene sheets
have similar effects on curing behaviors of TPU. A photo of a light-emitting diode device
on the G-TPU film proves good electrical conductivity.
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Figure 2. Relationship between the resistivity of the conductive films composed of four different
melting points of TPU and the graphene mass content, respectively. The insert is photo of light
emitting diode device on the G-TPU conductive film.

Figure 3 shows photos of samples of the pure TPU film (melt point of 163 ◦C, Figure 3a)
and G-TPU composite films with graphene mass content of 0.1 wt% (Figure 3b), 0.3 wt%
(Figure 3c), 0.6 wt% (Figure 3d), 1.0 wt% (Figure 3e), 2.0 wt% (Figure 3f), 3.0 wt% (Figure 3g),
4.0 wt% (Figure 3h), 5.0 wt% (Figure 3i), and 7.0 wt% (Figure 3j), respectively. When the
graphene mass content is less than 0.6 wt%, the composite film is translucent, after that the
composite films become opaque black.

Figure 3. Photos of samples of pure TPU film (melt point of 163 oC, (a)), and G-TPU composite films
with graphene mass content of 0.1 wt% (b), 0.3 wt% (c), 0.6 wt% (d), 1.0 wt% (e), 2.0 wt% (f), 3.0 wt%
(g), 4.0 wt% (h), 5.0 wt% (i), and 7.0 wt% (j), respectively.

In order to understand the distribution of graphene in TPU, the samples were con-
ducted by SEM. Figure 4 shows SEM images of surface morphology of the composite
films prepared with TPU (melt point of 163 ◦C) and the graphene mass content of of
0.3 wt% (Figure 4a), 0.6 wt% (Figure 4b), 2.0 wt% (Figure 4c), 3.0 wt% (Figure 4d), 4.0
wt% (Figure 4e), 5.0 wt% (Figure 4f), and 7.0 wt% (Figure 4g), respectively. It can be seen
from Figure 4 that when the graphene mass content is less than 3 wt%, the TPU strips and
individual graphene blocks (red dotted area) are found on the surface of the G-TPU film.
When the graphene mass contents reach 3 wt% and 4 wt%, the surfaces of the G-TPU films
are obviously roughened and have many particle-like agglomerates, while the surfaces
look dense. When the graphene mass contents reach 5 wt% and 7 wt%, more particle-like
aggregates are observed and there are many holes between the aggregates, indicating that,
due to the insufficient amount of TPU, the gaps between the aggregates are not filled well.
Obviously, as the graphene mass content increases, the more graphene sheets overlap with
each other, and the more conductive pathways and networks are formed. However, the



Micromachines 2021, 12, 129 6 of 11

excessive graphene mass content leads to severe agglomeration of graphene sheets, which
leads to the existence of many holes in the composite film.

Figure 4. SEM images of surface morphology of the composite films prepared with the initial TPU concentration of 20 wt%
and the graphene mass content of 0.3 wt% (a), 0.6 wt% (b), 2.0 wt% (c), 3.0 wt% (d), 4.0 wt% (e), 5.0 wt% (f), and 7.0 wt% (g),
respectively.

Figure 5 shows SEM images of the top section (above) and cross-section (below)
morphologies of the G-TPU films prepared from TPU with melting points of 100 ◦C
(Figure 5a,b), 120 ◦C (Figure 5c,d), 140 ◦C (Figure 5e,f), 163 ◦C (Figure 5g,h), respectively,
and the graphene mass content of 4 wt%. The graphene sheets overlapped in the TPU
matrix can been observed and there is no significant difference in the distribution of
graphene sheets among the four kinds of TPU.

Figure 5. SEM images of top section (above) and cross-section (below) morphologies of the G-TPU films prepared from
TPU with melting points of 100 ◦C (a,b), 120 ◦C (c,d), 140 ◦C (e,f), 163 ◦C (g,h), respectively, and the graphene mass content
of 4 wt%.
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3.2. Thermal Property of G-TPU Composite Film

Figure 6 shows the DSC measurements of G-TPU composite films prepared from TPU
with melting points of 163 ◦C and the graphene with different mass contents (Figure 6a)
and G-TPU composite films prepared from TPU with the melting point of 100 ◦C (Figure 6b,
curve a, a’), 120 ◦C (Figure 6b, curve b, b’), and 140 ◦C (Figure 6b, curve c, c’), respectively,
and the graphene mass content of 4 wt% (Figure 6b). Seen from curve a in Figure 6a, two
melting peaks of about −35 ◦C and 163 ◦C were observed in the curve a, which are related
to glass-transition temperature (Tg) and the melt (Tm) that occurs in the soft segment and
hard segment micro-crystalline area, respectively. With the increase of the graphene in
the G-TPU, both the glass-transition temperature and the melting point of TPU are almost
constant, but the ∆Hm increases, indicating that the graphene affects the curing behavior
of TPU and facilitates the molecular chain movement. However, the degree of influence on
the molecular chain movement is small, not enough to make the yield point temperature
change when the polyurethane material is heated. As seen from Figure 6b, comparing to
the pure TPU films with different melting points, the glass-transition temperature and the
melting point of the G-TPU composite films composed of the TPU with different melting
points do not have an obvious difference. The above experimental results indicate that the
graphene has a certain effect on the curing behavior of polyurethane, i.e., the motion of
soft and hard segments, but does not affect the properties of soft and hard segments.

Figure 6. DSC measurements of G-TPU composite films prepared from TPU with melting points
of 163 ◦C and the graphene with different mass contents (Figure 6a) and G-TPU composite films
prepared from TPU with the melting point of 100 ◦C (Figure 6b, curve a, a’), 120 ◦C (Figure 6b, curve
b, b’), 140 ◦C (Figure 6b, curve c, c’), respectively, and the graphene mass content of 4 wt% (Figure 6b).

Figure 7 shows the relationship between the mass content of graphene in the G-TPU
film and the thermal conductivities of the pure TPU and the G-TPU composite films with
the melting point TPU of being 100 ◦C, 120 ◦C, 140 ◦C, and 163 ◦C, respectively. The thermal
conductivities of the pure TPU with the melting point of TPU at 100 ◦C, 120 ◦C, 140 ◦C,
and 163 ◦C, respectively, are 0.2137 W·m−1·K−1, 0.231 W·m−1·K−1, 0.2123 W·m−1·K−1,
and 0.2158 W·m−1·K−1, respectively. The thermal conductivities of the G-TPU composite
films with the melting point of TPU at 100 ◦C, 120 ◦C, 140 ◦C, and 163 ◦C, respectively,
first increase and then decrease with the increases of the mass content of graphene in
G-TPU film and when the graphene mass content in G-TPU film is 4 wt%, and the thermal
conductivity of the G-TPU film reaches the maximum, which are 0.4365 W·m−1·K−1,
0.4706 W·m−1·K−1, 0.5434 W·m−1·K−1, and 0.3657 W·m−1·K−1, increasing by a factor of
2.04, 2.04, 2.56, 1.69, respectively. As mentioned above, when the graphene content in
the composite film is lower than 4 wt%, the graphene sheets overlap and stack to form
thermal conductive pathways. As the graphene mass content in the G-TPU film increases to
4 wt%, the graphene sheets show an obvious agglomeration phenomenon, and then a large
number of thermal conductive pathways are destroyed [26], and the thermal conductivity
of the G-TPU film decreases.
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It is worth noting that the thermal conductivity of the G-TPU films prepared from the
TPU with different melting points was significantly different from the variation of their
conductivity (as shown in Figure 2). The thermal conductivities of the G-TPU films are as
follows: KG-TPU (120 ◦C) > KG-TPU (100 ◦C) > K G-TPU (140 ◦C) > KG-TPU (163 ◦C).

Figure 7. Relationship between the mass content of graphene in the G-TPU film and the thermal
conductivities of the pure TPU and the G-TPU composite films with the melting points of TPU of
100 ◦C, 120 ◦C, 140 ◦C, and 163 ◦C, respectively.

3.3. Infrared Light Thermal Response Performances of G-TPU Films

Further, we studied the infrared (IR) light thermal response performances of G-TPU
films prepared from TPU with different melting points. For the IR light thermal response
experiment, we irradiated the samples with an IR lamp (light intensity of 5 × 10−4 W·cm−2).
Figure 8a shows the relationship of the temperature of the G-TPU composite films prepared
by melting point of TPU of 140 ◦C and with different mass contents of graphene under the
operation of IR lamp. The IR lamp was turned on for 60 s and turned off. We also measured
the G-TPU composite films prepared from the melting point of TPU of 100 ◦C, 140 ◦C, and
163 ◦C with the different mass contents of graphene, respectively (Figures S1–S3). Figure 8b
shows the relationship of maximum temperature of the G-TPU composite film prepared
by TPU with different melting points and the mass contents of graphene. The insets in
Figure 8b show photos of the tested sample and samples at maximum temperature.

Figure 8. (a) Relationship of the temperature of the G-TPU composite films prepared from melting
point TPU of 140 ◦C and with different mass contents of graphene under the operation of IR lamp,
and (b) the maximum temperature of the G-TPU composite films prepared from TPU with different
melting points and the mass content of graphene. The insets are photos of the tested sample and
samples at maximum temperature.

As seen from Figure 8, same as our previous research results, when graphene sheets
were added into TPU, the temperature of the G-TPU composite films increase significantly
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under IR irradiation, indicating that the composite films have obvious IR irradiation
response characteristics. With the increase of graphene mass content, the temperatures
of the composite film first increase and then decrease, except that the temperature of the
composite film prepared from TPU with a melting point of 163 ◦C increases with the
increase of graphene mass content. The temperature of the pure TPU film heated for 60 s
reached 89.6 ◦C, while, the temperature of G-TPU composite films with the mass content of
graphene of 0.1 wt% and 2 wt% reached 161.8 ◦C and 175.6 ◦C, increasing by 1.80 times and
1.96 times, respectively. Although the temperatures of the composite films were far beyond
the melting point of pure TPU, no melting of the samples is observed (see the photos of
samples at maximum temperature in Figure 8b). The above experimental results show
that graphene not only promotes the IR irradiation thermal effect of the composite film,
but also significantly improves the heat resistance of TPU. There is little difference in the
temperatures between the composite films prepared by TPU with melting a point of 100 ◦C,
120 ◦C, and 140 ◦C, respectively. However, when the mass content of graphene is less than
5 wt%, the temperature of the composite film prepared from TPU with a melting point of
163 ◦C is obviously lower than that of the other three composite films. The possible reason
for this phenomenon is related to the structure characteristics of TPU. The morphologies
of TPU include hard and soft segments. TPU with a melting point of 163 ◦C has a higher
hard segment content, which affects the heat transfer of graphene. Figure 9 displays the
IR images of the G-TPU films heated for 60 s by IR irradiation. The IR images show
that the distribution of heat conduction channels formed by graphene sheets is uniform
compared with the microstructures of G-TPU films in Figures 4 and 5. It can be seen that a
certain amount of graphene sheets agglomeration has little effect on the distribution of the
electrical conductivity and heat conduction channels formed by graphene sheets.

Figure 9. Infrared images of the pure TPU and G-TPU films with different mass contents of graphene
sheets.

4. Conclusions

Graphene-thermoplastic polyurethane (G-TPU) composite films were fabricated by
traditional blending method and tape casting process with commercial graphene sheets
as functional fillers and TPU masterbatches of four different melting points as matrix,
respectively. The experimental results show that the characteristics of TPU has little
influence on the electrical conductivity of the G-TPU composite films prepared with
TPU masterbatches of four different melting points, respectively. However, the thermal
conductivity of four G-TPU composite films with different melting points is significantly
different in the condition of the same mass content of graphene. When the graphene mass
content in G-TPU film is 4 wt%, the thermal conductivities of the four G-TPU films reach
the maximum, which are 0.4365 W·m−1·K−1, 0.4706 W·m−1·K−1, 0.5434 W·m−1·K−1, and
0.3657 W·m−1·K−1, increasing by a factor of 2.04, 2.04, 2.56, 1.69, respectively. The four
G-TPU composite films have obvious infrared (IR) thermal effect. The temperature of
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G-TPU composite films with the mass content of graphene of 0.1 wt% and 2 wt% reach
161.8 ◦C and 175.6 ◦C, increasing by 1.80 times and 1.96 times, respectively. There is little
difference in the temperatures between the composite films prepared by TPU with melting
a point of 100 ◦C, 120 ◦C, and 140 ◦C, respectively; however, when the content of graphene
is less than 5 wt%, the temperature of the composite film prepared by TPU with a melting
point of 163 ◦C is obviously lower than that of the other three composite films. The possible
reason for this phenomenon is related to the structure of TPU.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-666
X/12/2/129/s1, Figure S1: Relationship of the temperature of the G-TPU composite films prepared
by melting point TPU of 100 ◦C and different mass contents of graphene under the operation of IR
lamp; Figure S2: Relationship of the temperature of the G-TPU composite films prepared by melting
point TPU of 100 ◦C and different mass contents of graphene under the operation of IR lamp; Figure
S3: Relationship of the temperature of the G-TPU composite films prepared by melting point TPU of
163 ◦C and different mass contents of graphene under the operation of IR lamp.
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