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Rapid urbinization, climate change and increasing global 
trade enhance the widespread incidence of mosquito-borne 
diseases worldwide [1,2]. Insecticide usage and environmental 
sanitation are the most common methods used to control 
mosquitoes due to their effectiveness, feasibility and economic 
viability [3]. Mosquitoes have been relatively well controlled 
by insecticides; however, concerns that indiscreet and long-
term usage of insecticides induces the development or emer-
gence of insecticide resistance, which eventually reduces the ef-
fectiveness of currently used insecticides and threatens global 
mosquito control programs, have been increasing [4,5]. Until 
now, 4 different mechanisms of insecticide resistance have 
been recognized: (1) increased production of metabolic de-
toxification enzymes, such as cytochrome P450 monooxygen-

ase, esterases, and glutathione S-transferases, (2) mutations in 
target genes such as voltage-gated sodium channel (VGSC), 
gamma-amino butyric acid receptor (GABA), and acetylcho-
line esterases, (3) decreased insecticide penetration due to cu-
ticle thickening, and (4) altered mosquito behaviors [6,7]. Py-
rethroid insecticides are regarded as one of the most promis-
ing measures for mosquito control due to their fast-acting and 
effective insecticidal activities and low toxicity to mammals, 
including humans [8,9]. They interfere with the normal nerve 
function of insects by disrupting the VGSC function and by 
depolarizing neurons that leads to paralysis and death [10,11].  
However, repeated and indiscreet application of insecticides 
induces knockdown resistance (kdr) in the VGSC that confers 
insecticide resistance. Structural changes of the VGSC by these 
mutations reduces the binding affinity of pyrethroid insecti-
cides to its target site and results in poor sensitivity to the in-
secticides [4,5,12,13]. More than 50 kdr mutations associated 
with resistance to pyrethroids have been identified in various 
arthropod pests and vectors, including mosquitoes [9,14]. Ae-
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Abstract: Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer re-
sistance to insecticides. Although insecticide resistance has been suspected to be widespread in the natural population 
of Aedes aegypti in Myanmar, only limited information is currently available. The overall prevalence and distribution of kdr 
mutations was analyzed in Ae. aegypti from Mandalay areas, Myanmar. Sequence analysis of the VGSC in Ae. aegypti 
from Myanmar revealed amino acid mutations at 13 and 11 positions in domains II and III of VGSC, respectively. High fre-
quencies of S989P (68.6%), V1016G (73.5%), and F1534C (40.1%) were found in domains II and III. T1520I was also 
found, but the frequency was low (8.1%). The frequency of S989P/V1016G was high (55.0%), and the frequencies of 
V1016G/F1534C and S989P/V1016G/F1534C were also high at 30.1% and 23.5%, respectively. Novel mutations in do-
main II (L963Q, M976I, V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D, and F1020S) and domain III (K1514R, 
Y1523H, V1529A, F1534L, F1537S, V1546A, F1551S, G1581D, and K1584R) were also identified. These results collec-
tively suggest that high frequencies of kdr mutations were identified in Myanmar Ae. aegypti, indicating a high level of in-
secticide resistance.
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fever, yellow fever, chikungunya fever, and Zika viruses in 
many geographical locations [15-18]. Aedes aegypti is a primary 
vector of dengue fever in Myanmar. Warm and humid climate 
and unsanitary environmental condition that are favorable for 
the proliferation of Ae. aegypti mosquitoes contributes to the 
spread of Ae. aegypti in the country [19,20]. An estimated pop-
ulation of 3.9 billion is at risk of dengue fever worldwide [21] 
and more than 20,000 annual cases have been reported in the 
last decade in Myanmar [22-25]. Pyrethroid insecticides repre-
sent the primary control measure for Ae. aegypti in Myanmar; 
however, the massive use of insecticides to control mosquitoes 
has increased concerns of insecticide resistance. Therefore, an 
understanding of the status of insecticide resistance is impor-
tant to develop guidelines and alternative methods for mos-
quito control in Myanmar. In this study, the overall prevalence 
and distribution of kdr mutations in the VGSC of the Ae. ae-

gypti in the Mandalay region, Myanmar, were investigated.
Aedes aegypti mosquitoes were collected in 4 townships, 

Aung Myae Thar San (21°59'32.9"N 96°06'51.9"E), Chanmya 
Thar Se (21°56'55.5"N 96°06'33.6"E), Amarapura (21°54'56.1"N 
96°03'39.3"E), and Pyaw Bwe (20°35'27.2"N 96°02'53.1"E), of 
Mandalay region, Myanmar from December 2016 to March 
2017 (Fig. 1). Mosquito larvae and pupae were collected from 
different habitants in and around human dwellings. Different 
types of mosquito breeding sites, such as metal drums, tradi-
tional clay pots for water storage, concrete water storage tanks, 
discarded tires, plastic cups and artificial water containners, 

were the main source of collections. The collected larvae and 
pupae were reared to adult in the laboratory insectary at 
25±2˚C and humidity of 80±10%. Adult mosquitoes were 
identified using standard mosquito identification keys under 
microscopy [26]. 

A total of 1,040 Ae. aegypti adult mosquitoes were obtained 
and placed in 103 pools of up to 10 mosquitoes based on col-
lection sites and regions. The mosquitoes were transferred to 
1.5 ml sterile tubes and stored at −80˚C until use. Genomic 
DNA was extracted from the pooled mosquitoes using the Tis-
sue DNA extraction kit (Bioneer, Daejon, Korea) according to 
the manufacturer’s protocols. Segment 6 region flanking do-
mains II and III of the VGSC in Ae. aegypti were amplified via 
polymerase chain reaction (PCR) using specific primers de-
scribed previously [14]. The thermal cycling conditions were; 
initial denaturation at 95˚C for 10 min followed by 35 cycles 
of denaturation at 95˚C for 30 sec, annealing at 56˚C for 30 sec 
and extension at 72˚C for 30 sec, and a final extension at 72˚C 
for 5 min. PCR products were analyzed on 2% agarose gel, pu-
rified from gel, and ligated into the T&A vector (Real Biotech 
Corporation, Banqiao City, Taiwan). Each ligation mixture was 
transformed into Escherichia coli DH5α competent cells (Real 
Biotech Corporation) and positive clones with appropriate in-
sert were selected via colony PCR. The nucleotide sequences of 
the cloned inserts were analyzed by automatic DNA sequenc-
ing (Genotech, Daejeon, Korea). Plasmids from at least 2 or 3 
independent clones from each mosquito sample were se-

Fig. 1. Map of mosquito collection sites. Mosquito larvae and pupae were collected from 4 different areas of Mandalay region, Myanmar. 
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quenced bi-directionally to verify sequence accuracy.
A total of 13 mutations resulting in amino acid changes were 

dectected at 12 positions in domain II (Fig. 2A). S989P and 
V1016G were highly prevalent with frequencies of 68.6% and 
73.5%, respectively. The other 11 mutations (L963Q, M976I, 
V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D 
and F1020S) were also detected, but with low frequencies rang-
ing from 1.0% to 2.0%. These 11 mutations were novel in that 
they have not been reported previously in Ae. aegypti mosqui-
toes globally. A total of 11 amino acid mutations were detected 
at 10 positions in domain III (Fig. 2B). F1534C showed the 
highest frequency of 40.1%, followed by T1520I (8.1%). Nine 
novel mutations (K1514R, Y1523H, V1529A, F1534L, F1537S, 
V1546A, F1551S, G1581D and K1584R) were detected with 
low frequencies (1.0-2.0%).

The mutations identified in domains II and III of the VSGC 
were distributed unevenly in Myanmar Ae. aegypti mosquitoes, 
and their frequencies varied with the geographical location. 
High frequencies of S989P/V1016G double mutation in do-
main II were detected in mosquitoes collected from all 4 col-
lection sites ranging from 43.6% to 66.7% (Fig. 3A). Frequen-
cies of V1016G were also relatively high in mosquitoes collect-
ed from the 4 collection sites ranging from 11.1% to 25.0%. 
Meanwhile, S989P was detected in only mosquitoes collected 
in Aung Myae Thar San and Chanmya Thar Se. Other minor 
mutations found in domain II were mostly combined with ei-
ther S989P or V1016G, except D998N, V999A, and N1013D. 
The overall frequencies of mutations found in domain III were 
lower than those in domain II in mosquitoes from all 4 collec-

tion sites (Fig. 3B). F1534C was detected in mosquitoes col-
lected from Aung Myae Thar San, Pyaw Bwe, and Chanmya 
Thar Se. However, this mutation was not detected in mosqui-
toes from Amarapura. T1520I was detected in mosquitoes col-
lected only at Aung Myae Thar San. The T1520I/F1534C dou-
ble mutation was observed in mosquitoes collected at Aung 
Myae Thar San and Pyaw Bwe with a frequency of 5.6% and 
40.0%, respectively.

It has been reported that the 11 common kdr mutations in 
the VGSC are associated with insecticide resistance in Ae. ae-
gypti: V410L in domain I, G923V, L982W, S989P, I1011M/V, 
and V1016G/I in domain II, T1520I and F1534C in domain 
III, and D1763Y in domain IV [13,27]. High frequencies of 
S989P (68.6%), V1016G (73.5%), F1534C (40.1%), and 
T1520I (8.1%) were observed in Ae. aegypti that indicate a rela-
tively high level of insecticide resistance. Meanwhile, other 
mutations that are known to be associated with insecticide re-
sistance were not detected in domains II and III of Myanmar 
Ae. aegypti mosquitoes. The S989P/V1016G double mutation, 
which confers higher pyrethroid resistance [28], was detected 
in mosquitoes collected in all 4 collecting areas ranging from 
43.6% to 66.7%. Similar or higher levels of S989P (78.8%), 
V1016G (84.4%), and S989P/V1016G (65.7%) were previous-
ly reported in Ae. aegypti populations of Yangon, Myanmar 
[29]. The values in Myanmar Ae. aegypti were significantly 
higher than those of neighboring countries including India, 
Thailand, Vietnam, and Malaysia [30-33]. F1534C in domain 
III is also known to be closely associated with type I pyrethroid 
resistance [34]. The frequency of this mutation in Ae. aegypti 

Fig. 2. Distribution and frequency of amino acid mutations identified in the VGSC of Ae. aegypti from Myanmar. (A) Domain II region. A 
total of 13 mutations were identified. The frequencies of S989P and V1016G were 68.6% and 73.5%, respectively. The other mutations 
were detected with low frequencies ranging from 1.0% to 2.0%. (B) Domain III region. A total of 11 mutations were identified. The fre-
quency of F1534C was 40.1%. T1520I was also found with a frequency of 8.1%. The other mutations were detected with low frequen-
cies ranging from 1.0% to 2.0%.
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analyzed in this study was also high (40.1%), which was high-
er than that observed in Ae. aegypti (20.2%) from Yangon, 
Myanmar [29]. Meanwhile, the rate of F1534C mutation dif-
fered from that of Ae. aegypti populations in other neighboring 
countries, including Thailand (62.0%) [31], India (79.0%)  

[35], Vietnam (7.4%) [32], and Malaysia (13.3%) [34]. The 
frequencies of V1016G/F1534C and S989P/V1016G/F1534C 
were 30.1% and 23.5%, respectively, in Ae. aegypti analyzed, 
while the frequency of T1520I was 8.1%. This mutation was 
previously identified in Ae. aegypti from India and China 

A

B

Fig. 3. Comparason on distribution and frequency of VGSC mutations in Myanmar Ae. aegypti collected from 4 study areas. (A) Domain 
II. The S989P, V1016G, and S989P/V1016G were identified with high frequencies in Ae. aegypti collected from all study areas. Minor 
mutations were identified as single or combined forms with S989P and/or V1016G. (B) Domain III. High frequency of F1534C was iden-
tified in Aung Myae Thar San, Pyaw Bwe and Chanmya Thar Se, but not in Amarapura. Minor mutations were identified as single or 
combined forms with F1543C.
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[35,36], and now has been identified in the Myanmar Ae. ae-
gypti. It has been proposed that T1520I does not confer pyre-
throid or DDT resistance by itself, nor does it increase F1534C-
mediated resistance to DDT [36]. However, considering that 
T1520I is usually tightly combined with F1534C, further stud-
ies are needed to determine the role of this mutation in insec-
ticide resistance. Besides these well-known kdr mutations in 
domains II and III, diverse mutations, alone or combined with 
other kdr mutations, were identified in Ae. aegypti from Man-
dalay region, Myanmar. Most of them were novel, even though 
their frequencies were generally low. Additional studies are 
needed to elucidate the role of these mutations in insecticide 
resistance.

In conclusion, high frequencies of kdr mutations were ob-
served in the VGSC of Ae. aegypti in the Mandalay region, 
Myanmar, suggesting a high level of insecticide resistance. 
Therefore, the current insecticide application program in Man-
dalay region, Myanmar, should be carefully reconsidered to 
develop alternative methods for Ae. aegypti control. A limita-
tion to this study was using pooled mosquito samples, rather 
than individual mosquitoes. A further study including larger 
sample sizes and individual Ae. aegypti mosquitoes is needed 
to determine the relative insecticide resistance of mosquitoes 
in the areas more clearly.
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