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Solving the Fokker–Planck equation for high-dimensional complex
dynamical systems is an important issue. Recently, the authors
developed efficient statistically accurate algorithms for solving
the Fokker–Planck equations associated with high-dimensional
nonlinear turbulent dynamical systems with conditional Gaus-
sian structures, which contain many strong non-Gaussian features
such as intermittency and fat-tailed probability density functions
(PDFs). The algorithms involve a hybrid strategy with a small
number of samples L, where a conditional Gaussian mixture in
a high-dimensional subspace via an extremely efficient paramet-
ric method is combined with a judicious Gaussian kernel density
estimation in the remaining low-dimensional subspace. In this
article, two effective strategies are developed and incorporated
into these algorithms. The first strategy involves a judicious block
decomposition of the conditional covariance matrix such that the
evolutions of different blocks have no interactions, which allows
an extremely efficient parallel computation due to the small size
of each individual block. The second strategy exploits statistical
symmetry for a further reduction of L. The resulting algorithms
can efficiently solve the Fokker–Planck equation with strongly
non-Gaussian PDFs in much higher dimensions even with orders in
the millions and thus beat the curse of dimension. The algorithms
are applied to a 1,000-dimensional stochastic coupled FitzHugh–
Nagumo model for excitable media. An accurate recovery of both
the transient and equilibrium non-Gaussian PDFs requires only
L = 1 samples! In addition, the block decomposition facilitates the
algorithms to efficiently capture the distinct non-Gaussian fea-
tures at different locations in a 240-dimensional two-layer inho-
mogeneous Lorenz 96 model, using only L = 500 samples.

high-dimensional non-Gaussian PDFs | hybrid strategy | block
decomposition | statistical symmetry | small sample size

The Fokker–Planck equation is a partial differential equation
(PDE) that governs the time evolution of the probability den-

sity function (PDF) of a complex system with noise (1, 2). For a
general nonlinear dynamical system,

du = F(u, t)dt +Σ(u, t)dW, [1]

with state variables u ∈ RN , noise matrix Σ ∈ RN×K , and
white noise W ∈ RK , the associated Fokker–Planck equation is
given by
∂

∂t
p(u, t) = −∇u (F(u, t)p(u, t)) +

1

2
∇u·∇u(Q(u, t)p(u, t)),

pt
∣∣
t=t0

= p0(u), [2]

with Q =ΣΣT . In many complex dynamical systems, such
as geophysical and engineering turbulence, neuroscience, and
excitable media, the solution of the Fokker–Planck equation in
Eq. 2 involves strong non-Gaussian features with intermittency
and extreme events (3–5). In addition, the dimension of u in
these complex systems is typically very large, representing a vari-
ety of variability in different temporal and spatial scales (3, 6).
Therefore, solving the high-dimensional Fokker–Planck equa-
tion for both the steady-state and transient phases with non-

Gaussian features is an important issue. However, traditional
numerical methods such as finite element and finite difference
as well as the direct Monte Carlo simulations of Eq. 1 all suffer
from the curse of dimension (7, 8).

Recently, the authors developed efficient statistically accu-
rate algorithms for solving the Fokker–Planck equation associ-
ated with high-dimensional nonlinear turbulent dynamical sys-
tems with conditional Gaussian structures (9). These conditional
Gaussian nonlinear dynamical systems capture many strong non-
Gaussian features such as intermittency and fat-tailed PDFs (10).
Applications of the conditional Gaussian framework include
modeling and predicting the highly intermittent time series of
the Madden–Julian oscillation and monsoon (11–13), state esti-
mation of the turbulent ocean flows from noisy Lagrangian
tracers (14–16), dynamic stochastic superresolution of sparsely
observed turbulent systems (17), and stochastic superparameter-
ization for geophysical turbulent flows (18), etc. The efficient
statistically accurate algorithms in ref. 9 involve a hybrid strat-
egy that requires only a small number of samples. In these algo-
rithms, a conditional Gaussian mixture in the high-dimensional
subspace of uII via an extremely efficient parametric method is
combined with a judicious Gaussian kernel density estimation
in the remaining low-dimensional subspace of uI. Particularly,
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the parametric method provides closed analytical formulas for
determining the conditional Gaussian distributions in the high-
dimensional subspace of uII and is therefore computationally
efficient and accurate. It has been shown in a stringent set of
numerical tests (9) that with an order of L∼O(100) samples
the mixture distribution has significant skill in capturing both the
statistically steady state and the transient behavior with fat tails
of non-Gaussian PDFs in up to six dimensions. Rigorous anal-
ysis (19) indicates that L does not increase exponentially as the
dimension of the high-dimensional subspace of uII to maintain
a given level of accuracy, which is fundamentally different from
Monte Carlo methods.

In this article, two effective strategies are developed and incor-
porated into the algorithms in ref. 9 (hereafter, basic algorithms)
that enable the expanded algorithms to efficiently solve the
Fokker–Planck equation in much higher dimensions, even with
orders in the millions. In fact, the major computational cost in
the basic algorithms for systems with a large dimension of state
variables uII comes from solving the time evolution of the condi-
tional covariance. To overcome this difficulty, an effective strat-
egy involving a decomposition of the state variables into differ-
ent groups u =∪K

k=1uk with each uk = (uI,k , uII,k )∈ RNI,k+NII,k

is developed. Then the high-dimensional conditional covari-
ance matrix of uII conditioned on uI becomes a block diag-
onal matrix under the conditions that the nonlinear terms
on the right-hand side of uk in Eq. 1 consist of any nonlin-
ear interactions between different components of uI but only
those between uII,k and nonlinear functions of uI,k . Note that
such conditions are not artificial and they are actually salient
features of many complex dynamical systems with multiscale
structures (18), multilevel dynamics (20), or state-dependent
parameterizations (17). One important characteristic of the
resulting covariance matrix is that the evolution of the k th block,
representing the conditional covariance of uII,k conditioned on
uI, has no interactions with that of uII,k′ for all k ′ 6= k . This allows
an extremely efficient parallel computation due to the small size
of each individual block. On the other hand, the conditional
means of different uII,k are all coupled in their evolutions.

The second effective strategy exploits the statistical symme-
try if the dynamical system in Eq. 1 is statistically homogeneous;
namely, the statistics of different uk are identical with each other.
The statistical symmetry is often satisfied when the underlying
dynamics in Eq. 1 represent a discrete approximation of some
PDEs in a periodic domain with nonlinear advection, diffusion,
and homogeneous external forcing. Examples include a rich class
of models in geophysical turbulence and excitable media (4, 21).
In light of statistical symmetry, the number of samples L in the
algorithms can be greatly reduced. In fact, the effective sample
size of each uk becomes L′=LK and therefore a much smaller
L is needed to reach the same level of accuracy as in the situation
without using statistical symmetry.

These effective strategies are incorporated into the basic algo-
rithms and then applied to two highly non-Gaussian dynami-
cal systems. The first model is a 1,000-dimensional stochastic
coupled FitzHugh–Nagumo (FHN) model for excitable media
with extreme events (4, 22). It describes activation and deacti-
vation dynamics of spiking neurons and has scale-invariant fea-
tures. The block decomposition leads to solving the evolution
of 500 individual covariance matrices and the statistical symme-
try allows an accurate estimation of both the transient and the
steady-state PDFs using only L= 1 samples! The second model
is the so-called two-layer Lorenz 96 (L96) model in geophysi-
cal turbulence (20, 23, 24), which is widely used as a testbed
for data assimilation and parameterization in numerical weather
forecasting. Inhomogeneous damping and coupling are adopted
in the model with 240 state variables that mimic the atmosphere
motion along a latitude circle with different dissipation over land
and sea. Despite the absence of statistical symmetry, the block
decomposition facilitates the algorithms to efficiently capture the
distinct non-Gaussian features at different locations, using only
L= 500 samples.

The remainder of this article includes a detailed description
of these effective strategies and their application to the stochas-
tic coupled FHN and two-layer L96 models in solving the highly
non-Gaussian PDFs at both the transient and statistical equilib-
rium phases, using a small number of samples.

Algorithms
Conditional Gaussian Framework. The general framework of con-
ditional Gaussian models is given as (10, 25)

duI = [A0(t , uI) + A1(t , uI)uII]dt + ΣI(t , uI)dWI(t), [3a]

duII = [a0(t , uI) + a1(t , uI)uII]dt + ΣII(t , uI)dWII(t), [3b]

where u = (uI, uII) with both uI ∈ RNI and uII ∈ RNII being mul-
tidimensional state variables. In Eq. 3, A0,A1, a0, a1,ΣI and ΣII
are vectors and matrices that depend only on time t and the state
variables uI, and WI(t) and WII(t) are independent Wiener pro-
cesses. The systems in Eq. 3 are named as conditional Gaussian
systems due to the fact that once uI(s) for s ≤ t is given, uII(t)
conditioned on uI(s) becomes a Gaussian process with mean
ūII(t) and covariance RII(t); i.e.,

p (uII(t)|uI(s ≤ t)) ∼ N (ūII(t),RII(t)). [4]

Despite the conditional Gaussianity, the coupled system in Eq.
3 remains highly nonlinear and is able to capture many non-
Gaussian features as observed in nature (10). One of the desir-
able features of Eq. 3 is that the conditional distribution in Eq. 4
has the following closed analytical form (25):

d ūII(t) = [a0(t , uI) + a1(t , uI)ūII]dt + (RIIA∗1(t , uI))

× (ΣIΣ
∗
I )
−1

(t , uI)[duI− (A0(t , uI) + A1(t , uI)ūII)dt ],

[5a]

dRII(t) = {a1(t , uI)RII + RIIa
∗
1(t , uI) + (ΣIIΣ

∗
II)(t , uI)

−RIIA∗1(t , uI)(ΣIΣ
∗
I )
−1

(t , uI)(RIIA∗1(t , uI))
∗}dt .

[5b]

Basic Algorithms. Here, we summarize the basic efficient statis-
tically accurate algorithms developed in ref. 9. First, we gen-
erate L independent trajectories of the variables uI, namely
u1

I (s ≤ t), . . . , uL
I (s ≤ t). Then, different strategies are used to

deal with uI and uII. The PDF of uII is estimated via a parametric
method that exploits the closed form of the conditional Gaussian
statistics in Eq. 5,

p(uII(t)) = lim
L→∞

1

L

L∑
i=1

p(uII(t)|ui
I(s ≤ t)). [6]

Note that the limit L→∞ in Eq. 6 (as well as Eqs. 7 and 8 below)
is taken to illustrate the statistical intuition, while the estima-
tor is the nonasymptotic version. On the other hand, a Gaussian
kernel density estimation method is used for solving the PDF of
the observed variables uI,

p (uI(t)) = lim
L→∞

1

L

L∑
i=1

KH

(
uI(t)− ui

I(t)
)
, [7]

where KH(·) is a Gaussian kernel centered at each sample point
ui

I(t) with covariance given by the bandwidth matrix H(t). The
kernel density estimation algorithm here involves a “solve-the-
equation plug-in” approach for optimizing the bandwidth (26)
that works for any non-Gaussian PDFs. Finally, combining Eqs.
6 and 7, a hybrid method is applied to solve the joint PDF of uI
and uII through a Gaussian mixture,

p(uI(t), uII(t))

= lim
L→∞

1

L

L∑
i=1

(
KH(uI(t)− ui

I(t)) · p(uII(t)|ui
I(s ≤ t))

)
. [8]
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Fig. 1. Stochastic coupled FHN model. Shown are three dynamical regimes of the stochastic coupled FHN model in Eq. 10. (A) Strongly coherent regime
with δ2 = 0.1 and du = 10. (B) Weakly coherent regime with δ2 = 0.4 and du = 0.5. (C) Strongly mixed regime with δ2 = 0.8 and du = 0.5. Each plot shows the
spatial–temporal evolutions of u and v (A–C, Top) as well as the time series and equilibrium PDFs at i = 1 (A–C, Bottom). Due to the homogeneous property,
the PDFs at different grid points are the same.

Practically, L∼O(100) is sufficient for the hybrid method to
solve the joint PDF with NI≤ 3 and NII ∼ 10. Since L is small,
the trajectories u1

I (s ≤ t), . . . , uL
I (s ≤ t) can be obtained by run-

ning a Monte Carlo simulation for the coupled system [3], which
is computationally affordable. In addition, the closed form of the
L conditional distributions in Eq. 6 can be solved in a parallel way
due to their independence (9), which further reduces the compu-
tational cost.

Beating the Curse of Dimension with Block Decomposition. The
basic algorithms succeed in solving the Fokker–Planck equa-
tion with O(10) state variables. Now we develop an effec-
tive strategy with block decomposition and incorporate it into
the basic algorithms. The expanded algorithms can efficiently
solve the Fokker–Planck equation in much higher dimen-
sions even with orders in the millions and beat the curse of
dimension.

Consider the following decomposition of state variables

uk = (uI,k , uII,k ) with uI,k∈ RNI,k and uII,k∈ RNII,k ,

where 1≤ k ≤K , NI =
∑K

k=1 NI,k , and NII =
∑K

k=1 NII,k . Cor-
respondingly, the full dynamics in Eq. 3 are also decomposed
into K groups, where the variables on the left-hand side of the
k th group are uk . In addition, we assume both ΣI and ΣII are
diagonal for notation simplicity.

To develop efficient statistically accurate algorithms that beat
the curse of dimension, the following two conditions are imposed
on the coupled system:

Condition 1: In the dynamics of each uk in Eq. 3, the terms
A0,k and a0,k can depend on all of the components of uI while
the terms A1,k and a1,k are only functions of uI,k ; namely,

A0,k := A0,k (t , uI), a0,k := a0,k (t , uI),

A1,k := A1,k (t , uI,k ), a1,k := a1,k (t , uI,k ).
[9]

In addition, only uII,k interacts with A1,k and a1,k on the right-
hand side of the dynamics of uk .

Condition 2: The initial values of (uI,k , uII,k ) and (uI,k′ , uII,k′)
with k 6= k ′ are independent from each other.

Conditions 1 and 2 are not artificial and they are actually the
salient features of many complex systems with multiscale struc-
tures (18), multilevel dynamics (20), or state-dependent param-
eterizations (17). Under these two conditions, the conditional
covariance matrix becomes block diagonal, which can be easily

verified according to Eq. 5b. The evolution of the conditional
covariance of uII,k conditioned on uI is given by

dRII,k (t) =
{

a1,kRII,k + RII,ka∗1,k + (ΣII,kΣ
∗
II,k )

− (RII,kA∗1,k )(ΣI,kΣ
∗
I,k )
−1

(RII,kA∗1,k )
∗
}
dt ,

which has no interaction with that of RII,k′ for all k ′ 6= k since A0

and a0 do not enter into the evolution of the conditional covari-
ance. Notably, the evolutions of different RII,k with k = 1, . . . ,K
can be solved in a parallel way and the computation is extremely
efficient due to the small size of each individual block. This facil-
itates the algorithms to efficiently solve the Fokker–Planck equa-
tion in large dimensions.

Next, the structures of A0,k and a0,k in Eq. 9 allow the
coupling among all of the K groups of variables in the con-
ditional mean according to Eq. 5a. The evolution of ūII,k ,
namely the conditional mean of uII,k conditioned on uI, is
given by

d ūII,k (t) = [a0,k + a1,k ūII,k ]dt + RII,kA∗1,k (ΣI,kΣ
∗
I,k )
−1

× [duI,k − (A0,k (t , uI) + A1,k ūII,k )dt ].

Statistical Symmetry. The computational cost in the algorithms
developed above can be further reduced if the coupled system
Eq. 3 has statistical symmetry; namely,
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Fig. 2. Stochastic coupled FHN model. Shown is time evolution of 1D
marginal statistics associated with u1 and v1. Due to the homogeneous prop-
erty, these statistics at different grid points remain the same. The black cir-
cles in A–D mark the time instants that the recovered PDFs from the efficient
statistically accurate algorithms are compared with the truth in Figs. 3 and
4. At the statistical equilibrium phase, the skewness and kurtosis of u1 are
1.5 and 3.7, respectively.
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Fig. 3. Stochastic coupled FHN model. Shown is a comparison of the truth
and recovered PDFs at three transient phases t = 1.6, 1.9, and 2.7 as well as
the statistical equilibrium phase t = 25. A and B show the truth and recov-
ered 2D PDF p(u1, v1). C and D compare the recovered 1D PDFs p(u1) and
p(v1) (blue) with the truth (red). E shows the logarithm plots of D, where the
black dotted curves are the Gaussian fits of the truth. Inset above the sub-
plot of p(u1) at t = 2.7 in C is also in logarithm scale, ranging from 5× 10−3

to 5.

p (uI,k (t), uII,k (t)) = p (uI,k′(t), uII,k′(t)) , for all t , k and k ′,

including the initial conditions. The statistical symmetry is often
satisfied when the underlying dynamical system represents a dis-
crete approximation of some PDEs in a periodic domain with
nonlinear advection, diffusion, and homogeneous external forc-
ing (21, 27).

With the statistical symmetry, collecting the conditional Gaus-
sian ensembles N (ūII,k (t),RII,k (t)) for a specific k in K dif-
ferent simulations is equivalent to collecting that for all k
with 1≤ k ≤K in a single simulation. This also applies to
N (ui

I(t),H(t)) that are associated with uI. Therefore, the statis-
tical symmetry implies that the effective sample size is L′=KL,
where K is the number of the group variables that are statis-
tically symmetric and L is the number of different simulations
of the coupled systems via Monte Carlo. If K is large, then
a much smaller L is needed to reach the same accuracy as in
the situation without using statistical symmetry, which greatly
reduces the computational cost. SI Appendix provides the mathe-
matical details of reconstructing the joint PDFs, using statistical
symmetry.

A Stochastic Coupled FHN Model
The efficient statistically accurate algorithms developed in this
article work for a wide class of models in excitable media (4),
including different versions of the famous FHN model that
describes activation and deactivation dynamics of spiking neu-
rons. Here, the algorithms are applied to a stochastic coupled
FHN model with N elements (4, 22),

ε
dui

dt
= ui −

1

3
u3
i − vi +

√
εδ1Ẇui + du(ui+1 + ui−1− 2ui),

i = 1, . . . ,N , [10a]

dvi
dt

= ui + a + δ2Ẇvi , [10b]

where ui and vi are activator and inhibitor variables and they
belong to uI and uII in the conditional Gaussian framework,
respectively, such that the conditions of the block decomposition
strategy are satisfied. Periodic boundary conditions are imposed
on ui variables. In Eq. 10, the timescale ratio ε= 0.01� 1
leads to a slow–fast structure of the model. The parameter
a = 1.05> 1 such that the system has a global attractor in the
absence of noise and diffusion (28). The random noise is able

to drive the system above the threshold level of global stabil-
ity and triggers limit cycles intermittently. Note that with N = 1,
the model reduces to the classical FHN model with a single
neuron and it contains the model families with both coherence
resonance and self-induced stochastic resonance (29). With dif-
ferent choices of the noise strength δ1, δ2 and the diffusion coef-
ficient du , the system in Eq. 10 exhibits rich dynamical behaviors.
Below, we adopt constant parameters and the initial values are
ui(0) =−2, vi(0) = 0.5 for all i . Therefore, the model satisfies
the statistical symmetry.

Model Behavior in Different Dynamical Regimes. Fig. 1 shows the
model behavior in three different regimes with N = 500. Here,
the noise coefficient δ1 = 0.2 is fixed while different values of
δ2 and du are chosen for the three regimes. In Fig. 1A, the
spatial–temporal patterns are highly coherent due to the choice
of a weak noise δ2 = 0.1 and a strong diffusion du = 10. The
time series of both u1 and v1 have nearly regular oscillations
with large bursts in ui around every 3 units. The associated sta-
tistical equilibrium PDF of u1 is bimodal while that of v1 is
skewed. With an increase of the noise δ2 = 0.4 and a decrease of
the diffusion du = 0.5 (Fig. 1B), the coherent patterns becomes
much weaker and only quasi-regular periods are found in the
time series of u1. The associated PDF of v1 turns into sym-
metric and slightly sub-Gaussian. With a further increase of the
noise to δ2 = 0.8 (Fig. 1C), the spatial–temporal pattern becomes
strongly mixed and the time series is more irregular. Corre-
spondingly, the PDF of v1 becomes nearly Gaussian with a large
variance.

It is shown in SI Appendix that the FHN model Eq. 10 is
scale invariant in all three regimes. The scale-invariant structure
means that the spatial–temporal structures in any given scale
change little as the number of spatial grid points N increases.
Mutual information (30) is used to quantify the dependence
of different variables with strongly non-Gaussian features, the
advantage of which over pattern correlation is also clearly illus-
trated in SI Appendix.

Recovering the PDFs at Both Transient and Equilibrium Phases
Exploiting Statistical Symmetry. Now we apply the efficient sta-
tistically accurate algorithms to solve the PDFs associated with
the stochastic coupled FHN system in Eq. 10. Here we focus on
the weakly coherent regime (Fig. 1B). Due to the statistical sym-
metry, the effective sample size is L′=NL= 500L, where L is the
number of repeated simulations of the systems. Below, we simply
take L= 1 in the efficient statistically accurate algorithms, which
is extremely cheap. For comparison, we take LC = 300 in Monte
Carlo simulations and again use statistical symmetry to generate
the true PDFs and therefore the effective sample size in Monte
Carlo simulation is L′C =NLC = 150,000.

The time evolutions of the first four moments associated with
u1 and v1 are shown in Fig. 2, where the black circles mark
three transient phases and the statistical equilibrium phase with
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Fig. 4. Stochastic coupled FHN model. Shown is a comparison of the 2D
PDFs with components from two different grid points at t = 1.6. Rows
A and B show the truth and the recovered p(u1, u2), p(v1, v2) (A) and
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different non-Gaussian features. Fig. 3 shows the skill of solving
the one-point statistics at these phases. First, the PDFs of u1 at
t = 1.6, 1.9 and 25 with different bimodal features are all accu-
rately recovered. Next, p(u1) at t = 2.7 has a tiny second peak
around u1 = 1 since only about 1.5% of the events at this time
instant have large bursts and these rare events contribute to a sig-
nificant kurtosis of u1 at t = 2.7. Nevertheless, the efficient statis-
tically accurate algorithm succeeds in capturing the appearance
of this weak peak and the recovered PDF almost overlaps with
the truth. On the other hand, the skewed p(v1) at t = 1.6 and the
sub-Gaussian p(v1) at t = 1.9, 2.7, and 25 are all recovered with
high accuracy by the algorithm. In addition, the recovered joint
PDFs p(u1, v1) at different phases all resemble the truth.

Fig. 5. Spatial–temporal evolution of the observed variables ui , i = 1, . . .
40 in the two-layer L-96 model Eq. 11 with F = 8. The profiles of damp-
ing d̄i and coupling coefficients γi as a function of i are shown below the
spatial–temporal evolution of ui in solid blue curves and the black dashed
lines represent the spatial averaged values. Here, d̄i = 1 + 0.7 cos(2πi/J) and
γi, j = γi = 0.1 + 0.025 cos(2πi/J).
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Fig. 6. Two-layer inhomogeneous L-96 model. (A–D) Comparison of the
truth and the recovered mean, variance, skewness, and kurtosis of ui for j =
1,...,5 as a function of i. (E–H) The same but for vi,j .

Fig. 4 illustrates the recovered two-point statistics at t = 1.6.
Fig. 4 A and B shows the PDFs p(u1, u2) and p(u1, u20) and those
for v , respectively. The variables u1 and u2 have a strong corre-
lation while u1 and u20 are nearly uncorrelated. These features
as well as the highly non-Gaussian PDFs with multiple peaks are
both captured by the recovered PDFs from the efficient statisti-
cally accurate algorithms with only L= 1. Likewise, the skewed
and nearly Gaussian joint PDFs p(v1, v2) and p(v1, v20) are also
recovered with high accuracy.

Two-Layer Inhomogeneous L96 Model
The two-layer L96 model is a conceptual model in geophysi-
cal turbulence that is widely used as a testbed for data assim-
ilation and parameterization in numerical weather forecasting
(20, 23, 24). The model can be regarded as a coarse discretiza-
tion of atmospheric flow on a latitude circle with complicated
wave-like and chaotic behavior. It schematically describes the
interaction between small-scale fluctuations with larger-scale
motions. In the model presented here, large-scale motions are
denoted by variables ui , which are coupled to small-scale vari-
ables vi,j ,

dui

dt
= ui−1(ui+1− ui−2) +

J∑
j=1

γi,juivi,j − d̄iui

+F +σuẆui , i = 1, . . . , I , [11a]

dvi,j
dt

=−dvi,j vi,j − γju
2
i +σi,jẆvi,j , j = 1, . . . , J , [11b]

with periodic boundary conditions in ui . One important feature
of Eq. 11 is that the nonlinear interaction between ui and vi,j
conserves energy, as observed in nature (3). The two-layer L96
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model belongs to the conditional Gaussian framework in Eq. 3
with uI = {ui} and uII = {vi,j}. Below, we take I = 40 as in the
standard L96 model. Associated with each ui , there are J = 5
variables vi,j representing different scales of fluctuations. Thus,
the total number of state variables is 240. A constant forcing
F = 8 is adopted in Eq. 11a while both the damping d̄i and the
coupling γi,j are functions in space. Therefore, the model is inho-
mogeneous. These mimic the situation that the damping and
coupling above the ocean are weaker than those above the land
since the latter usually have stronger friction or dissipation. As a
result, the large-scale wave patterns over the ocean are more sig-
nificant (Fig. 5). The model in Eq. 11 has many desirable proper-
ties as in more complicated turbulent systems. Particularly, the
smaller scales are more intermittent with stronger fat tails in
PDFs. See SI Appendix for more details.

Although the two-layer inhomogeneous L96 model in Eq. 11
has no statistical symmetry, the model structure nevertheless
allows the effective block decomposition. Below, L= 500 trajec-
tories of each variable ui are simulated from Eq. 11 to implement
the efficient statistically accurate algorithms. As a comparison, a
direct Monte Carlo method requires LC = 150,000 samples for
each of the 240 variables for an accurate estimation of at least
the one-point statistics. This means the total number of samples
is around 4 × 107! For an efficient calculation of the truth, we
focus only on the statistical equilibrium state here but the algo-
rithms are not restricted to the equilibrium statistics. The true
PDFs are calculated using the Monte Carlo samples over a long
time series in light of the ergodicity while the recovered PDFs
from the efficient statistically accurate algorithms are computed
at t = 25.

Fig. 6 shows the one-point statistics as a function of i regarding
the first four moments of ui and each vi,j . The mean and variance
resulting from the efficient statistically accurate algorithms of all
variables are highly consistent with the truth. For the skewness
and kurtosis, despite small fluctuations in the recovered statis-
tics, the pattern correlations between the curves associated with
the truth and the recovered statistics are significant unless both
are nearly flat (SI Appendix). These results indicate the success
of the efficient statistically accurate algorithms in capturing the

inhomogeneous behavior of the model. Fig. 7 demonstrates the
skill of recovering different 2D joint PDFs. Fig. 7 A and B shows
the PDFs p(ui , vi,5) at i = 11 and 21. These highly non-Gaussian
PDFs with distinct features are recovered accurately by the algo-
rithms. On the other hand, Fig. 7C shows the joint PDFs of the
two smallest-scale fluctuation variables v11,5 and v13,5, which are
highly correlated and have strong non-Gaussian features. Fig. 7D
shows the joint PDFs p(u11, u13), where the two components also
have a strong correlation. The efficient statistically accurate algo-
rithms succeed in solving all these joint PDFs with only L= 500
samples.

Concluding Discussion
Effective strategies involving block decomposition of the con-
ditional covariance matrix and statistical symmetry are devel-
oped and incorporated into the efficient statistically accurate
algorithms in ref. 9. The resulting expanded algorithms are able
to efficiently solve the Fokker–Planck equation in much higher
dimensions even with orders in the millions and thus beat the
curse of dimension. Applications of these effective strategies to
both the stochastic coupled FHN and the two-layer inhomoge-
neous L96 models illustrate the efficiency and accuracy.

It is worthwhile pointing out that although only the recov-
ered one-point and two-point statistics are shown in this arti-
cle for illustration purposes, the algorithms can actually pro-
vide an accurate estimation of the full joint PDF of uII, using
a small number of samples. This is because the sample size in
these algorithms does not grow exponentially as the dimension
of uII, which is fundamentally different from Monte Carlo meth-
ods. See ref. 19 for a theoretical justification. The algorithms
developed here are extremely useful in understanding the causal-
ity as well as improving the parameterizations and predictions
of high-dimensional complex turbulent dynamical systems with
non-Gaussian features.
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