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ABSTRACT The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically
involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A
multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces
cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs,
data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants.
These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall
organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions,
and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, compre-
hensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge.
We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory
mechanisms.
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INITIAL investigations into the coordinated regulation of
genes and operons in bacteria established the concepts

of regulons and regulatory networks, where regulons in-
clude one or more operons controlled by a common regu-
latory protein and regulatory networks encompass multiple
operons, multiple metabolic pathways, and multiple regula-
tory proteins (Maas and Clark 1964; Gottesman 1984). By
the time the sequence of the yeast genome was described
in 1996 (Goffeau et al. 1996), it was clear that control of
eukaryotic gene expression followed a related scheme, in
which sequence-specific transcription factors (TFs) typically
bind and regulate groups of functionally related genes. In
fact, most well-studied yeast TFs have names such as “Gal4”,
“Leu3”, and “Pho4”, reflecting their role in regulation of
specific biochemical pathways (e.g., metabolism or control
of galactose, leucine, and phosphate) (Svetlov and Cooper
1995; Chua et al. 2004). Post-transcriptional regulatory
mechanisms also control functionally related groups of
genes (Grigull et al. 2004; Keene 2007; Hogan et al. 2008),
and these also qualify as regulatory networks; however, here
we focus on DNA-binding proteins and the regulation of
transcription.

The study of regulatory networks has become central
to analysis of the function and evolution of the yeast
genome, and there are now a variety of techniques and
approaches to characterizing transcriptional regulatory
networks. Moreover, the term regulatory network (or
often transcriptional regulatory network or transcrip-
tional network) is now used more generally than origi-
nally proposed. There are hundreds of articles exploring
yeast transcriptional regulatory networks and their
structure, function, and evolution. Indeed, the term net-
work is now used liberally in biology, and its meaning

can be confusing. In the context of gene regulation alone
it can describe the following (and more), which, albeit
related, are distinct: a suite of genes bound and/
or controlled by a specific regulatory factor [e.g., TF,
RNA-binding protein (RBP), or chromatin protein] (e.g., Lee
et al. 2002; Proft et al. 2005); the overall structures and
relationships of multiple regulons (e.g., regulatory cascades,
oscillatory circuits, etc.), often using terminology adapted
from graph theory (e.g., Balaji et al. 2006; Yu and Gerstein
2006; Michoel et al. 2011); the relationships among TF bind-
ing sites, TF binding events, gene expression patterns, and
gene functions (e.g., Gao et al. 2004; Hu et al. 2007); and
inferred (or “reconstructed”) regulatory structures and mech-
anisms derived from gene expression data and other data
sources (e.g., Segal et al. 2003; Ernst et al. 2007; Kundaje
et al. 2008; Yeo et al. 2009).

Here, we focus mainly on the nuts and bolts of the
networks themselves, rather than on higher-level analyses
of network structures, evolution of transcriptional regu-
latory systems, or computational methodologies—we take
“mapping yeast transcriptional networks” to mean the en-
terprise of understanding how the DNA sequence is read
and interpreted to execute coordinated gene expression
patterns, in as direct a manner as possible, and driven entirely
by data, where it is possible. We begin with an enumeration
of parts and the major types of data now available. We then
consider some key observations, including how well the data
all fit together. We also discuss what we should be trying to
accomplish presently to understand transcriptional networks
and how we might accomplish it. We apologize to the many
investigators in this expansive field whose work is not cited here.
We refer readers to excellent reviews written previously on this
topic, including Bussemaker et al. (2007) and Kim et al. (2009).
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Components of Transcriptional Networks and
How They Work

Yeast transcription factor inventory

A list of TFs is essential to concretely and systematically
map transcriptional networks. Several such lists have been
compiled, using varying criteria (Svetlov and Cooper 1995;
Lee et al. 2002; Chua et al. 2004; Badis et al. 2008; de Boer
and Hughes 2011). These lists contain 141–251 proteins. A
major source of discrepancy is the definition of TF itself.
Here we consider as TFs proteins that (a) bind DNA directly
and in a sequence-specific manner and (b) function to reg-
ulate transcription nearby sequences they bind (Fulton et al.
2009). Proteins that encode well-characterized DNA-binding
domains (DBDs) are considered putative TFs until proved
otherwise, while other proteins do not receive such benefit:
although new classes of TFs continue to be identified (e.g.,
Hall et al. 2004; Weider et al. 2006; Liko et al. 2007), an
extensive literature review of mouse and human TFs found
that only 8 of 545 human proteins that bind specific DNA
sequences and regulate transcription also lack a known DBD
(Fulton et al. 2009).

By our current estimate there are �209 known and pu-
tative yeast TFs, the vast majority of which contain a canonical
DNA-binding domain. The Yeast TF Specificity Compendium
(YeTFaSCo) (de Boer and Hughes 2011) listed 301 TF-
encoding genes associated with either motifs or DBDs. How-
ever, if we remove “dubious” entries such as known chromatin
proteins that contain MYB/SANT, ARID, and HMG domains,
which are often not sequence specific (Boyer et al. 2002;
Patsialou et al. 2005; Stros et al. 2007), and also those
for which there is no evidence that they directly bind
DNA in a sequence-specific manner in yeast, only 209 re-
main. Categorized by DNA-binding domain, most yeast TFs
fall into only a handful of classes. Most abundant are the
GAL4/zinc cluster domain (57 proteins), which is largely
specific to fungi, and the zinc finger C2H2 domain (41
proteins), which is the most common among all eukary-
otes (Weirauch and Hughes 2011). Other classes that are
represented by numerous proteins include bZIP (15),
Homeodomain (12), GATA (10), and basic helix-loop-helix
(bHLH) (8).

Very few yeast TFs are essential for viability in rich
or complete medium, but many appear to be required for
specific growth conditions, such as stresses and nutrient-
deprived conditions (Chua et al. 2004), which is consistent
with the notion that the majority of TFs regulate transcrip-
tion only in specific conditions. An alternative explanation is
that there is genetic redundancy among TFs; i.e., deletion of
one TF is “buffered” by a second TF that can substitute for
the first, e.g., by regulating an overlapping set of genes. A
systematic examination of pairwise genetic interactions
among sequence-specific TFs (Zheng et al. 2010a) did find
an enrichment of “negative synthetic interactions” (i.e.,
cases where the double mutant grows slower than would

be expected from the combination of single mutants) among
TFs that have a significant overlap in target genes previously
identified by ChIP-chip (Harbison et al. 2004; Macisaac et al.
2006). The same study, however, found a relative lack of
genetic interactions among sequence-specific TFs overall,
in comparison to components of the general transcription
machinery, perhaps because the assays were done in only
one condition (Zheng et al. 2010a).

Additional support for the notion that many yeast TFs are
condition-specific regulators is that binding sites for most
TFs confer little effect on reporter expression in typical
laboratory growth conditions. A study using a pool of 6500
synthetic promoters, each upstream of an identical YFP
reporter, compared the relative expression conferred by
different combinations and positions of yeast TF binding
sites and other sequence features (Sharon et al. 2012).
When yeast were grown in SC medium with galactose as
a carbon source, and lacking most amino acids, most of
the TF binding sites tested (40/75 or 53%) conferred an
expression change no different from that of the null pro-
moter. The sequences conferring the highest expression by
far were the binding sites for Gal4 and Gcn4, which the
growth conditions were specifically intended to activate.
While it is conceivable that these TFs are especially potent,
it is also possible that growth under other specific conditions
would activate other TFs to similar levels. Indeed, as dis-
cussed below, other studies have used such specific growth
conditions to obtain large and meaningful genomic binding
patterns or perturbation of genome-wide expression profiles
upon TF deletion.

Yeast transcription factor sequence specificities

The sequence specificity of the TFs is a key ingredient in the
analysis of transcriptional regulatory mechanisms and net-
works. There are a variety of methods for obtaining the
sequence specificity of TFs. Characterization of intrinsic
sequence preferences (i.e., those due only to the TF interact-
ing with the DNA) ideally involves either in vitro or heterol-
ogous systems [e.g., bacterial 1-hybrid (Meng et al. 2005)], to
avoid confounding effects of other factors present in the cell.
Recent reviews describe the different methods in detail
(Stormo and Zhao 2010; Jolma and Taipale 2011). Universal
protein-binding microarrays (PBMs) (Berger et al. 2006) are
currently the in vitro method by which the largest number of
yeast TFs have been analyzed successfully [150 TFs (Badis
et al. 2008; Zhu et al. 2009; Gordan et al. 2011)]. In a typical
PBM, the protein of interest is exposed to a microarray with
�40,000 double-stranded DNA probes, each containing a 25-
base priming site and 35 bases of sequence that differs from
one probe to the next. The probe set is carefully designed so
that each 10-base sequence occurs once and only once; how-
ever, motifs of at least 14 bases can be generated using PBMs
(Berger et al. 2006; Badis et al. 2009). Twenty yeast TFs have
also been examined using a related method, MITOMI, which
uses microfluidics to measure off-rates to individual sequen-
ces (Maerkl and Quake 2007; Fordyce et al. 2010). Another
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related method employing a high-throughput sequencing
instrument to both generate random sequences and measure
off-rates has also been described (Nutiu et al. 2011). Only
a single protein (Gcn4) was analyzed, but the much larger
number of sequences queried and the quantitative nature of
the data appear to have resulted in a more accurate motif
than was obtained by the PBM. The classical in vitro ap-
proach of selecting binding sequences from random pools
(“SELEX”) has also been adapted to high-throughput se-
quencing (Zykovich et al. 2009; Jolma et al. 2010), but
has not been applied systematically in yeast.

Sequence specificity of TFs can also be inferred system-
atically from in vivo data, including motif analysis of ChIP-
chip and ChIP-seq data (see next section) (e.g., MacIsaac
et al. 2006) and microarray analysis of TF overexpression
and deletion strains (e.g., Chua et al. 2006; Hu et al. 2007).
It should be cautioned, however, that motifs identified from
in vivo studies may include cofactor and context informa-
tion, and in fact the derived motifs in some cases are those of
other DNA-binding proteins. Rap1 is particularly prevalent
in this regard: presumably due to its function as a general
regulatory factor (GRF) (see below), Rap1 binding sequen-
ces are often found near in vivo binding sites for other TFs,
and consequently its motif has been derived from ChIP-chip
data from Fhl1, Sfp1, Ace2, Cha4, Yap5, and Pdr1 (Gordan
et al. 2009; de Boer and Hughes 2011). In addition, ChIP-
chip analysis of non-DNA-binding proteins can identify motifs
of the factors that recruit them, as in the case of Dig1, a pro-
tein with no known intrinsic DNA-binding activity, but that
binds and inhibits Ste12 (Cook et al. 1996; Tedford et al.
1997). Presumably as a result of this interaction, ChIP-chip
analysis of Dig1 yields the Ste12 motif (Harbison et al. 2004).
The fact that indirect interactions are readily detected by
ChIP complicates its use in motif definition, as it cannot be
determined whether the identified motif is that of the protein
being affinity purified, an associated protein, or a composite
of factors. The use of in vivo derived motifs also complicates
the use of the same in vivo data to validate motifs, since it
potentially invokes circularity.

There are several online resources that compile yeast TF
sequence preferences. The MacIsaac motif set (MacIsaac
et al. 2006), which is based on reanalysis of the Harbison
ChIP-chip data (Harbison et al. 2004) (see below), has been
used in many studies of yeast gene expression, but it is in-
complete (only 98 motifs) and subsequent analyses suggest
that not all of the motifs are accurate. In this article we
primarily utilize our own database, YeTFaSCo, in which
we integrated all other motif sets available as of its publica-
tion in 2011 (from the literature, large-scale data analyses,
and computational analyses). Table 1 presents the motifs for
189 TFs currently annotated in YeTFaSCo. We refer readers
to the YeTFaSCo article for more information (de Boer and
Hughes 2011). Two other related collections were published
almost simultaneously (Gordan et al. 2011; Spivak and
Stormo 2012) and have now been incorporated into the latest
version of YeTFaSCo (1.02). There are almost 2000 reported

yeast TF motifs, for 259 proteins, mostly from reanalysis of
the Lee/Harbison ChIP-chip data sets (Lee et al. 2002; Harbison
et al. 2004; MacIsaac et al. 2006; Qi et al. 2006; Morozov
and Siggia 2007; Pachkov et al. 2007; Reddy et al. 2007;
Chen et al. 2008; Foat et al. 2008), and in many cases
(roughly half of all TFs) there are clear discrepancies among
motifs reported for the same TF. We evaluated each of the
motifs on independent data sets (e.g., asking whether a motif
derived from in vivo binding data is consistent with in vitro
binding data or with the effects of TF perturbation on gene
expression) and manually examined the results, as well as
the literature on the protein of interest. We identified 143
high-confidence motifs, 69 medium-confidence motifs, and
37 low-confidence motifs; in some cases the same protein
was associated with multiple motifs to represent different
binding modes (e.g., monomeric vs. dimeric). These labels
are subjective, but strongly support the idea that the se-
quence specificity of yeast TFs is still incompletely known.
Additionally, representation, derivation, evaluation, and
comparison of motifs is itself an active field (e.g., Zhao
and Stormo 2011). Many of the details are technical, and
although they are important, they are beyond the scope of
this review. As a specific example, the well-studied TF Hsf1,
a member of the multimeric heat-shock family of TFs, has
several high-scoring motifs that appear to represent mono-
meric, dimeric, and trimeric binding forms (Table 1); stan-
dard motif representations do not intrinsically account for
different multimeric configurations.

Yeast transcription factor activities

In theory, knowledge of the specific biochemical functions of
TFs (beyond binding specific DNA sequences) may not be
essential for mapping transcriptional regulatory networks. If
one assumes that a TF always activates or represses the
same way under the same conditions at every site where it is
bound, then it is not critical to know why it has this effect to
map from TF binding to gene expression: the TF can simply
be considered as assigning a directed weight to the sequence.
However, this outcome appears not to be the case as a general
rule. It has long been known that not all TF–DNA binding
events are created equal; for example, different mutants in
Hap1 that do not affect DNA binding can selectively affect the
expression of different genes, presumably due to differing
interactions with cofactors (Turcotte and Guarente 1992).
As described below, genome-wide analyses also indicate that
there is a relatively weak relationship between individual TF
binding events and the genes affected by mutation of the TF,
which cannot be completely explained by noise in the data,
transcriptional cascades, or condition-specific activation. Such
phenomena are not restricted to yeast, and numerous explan-
ations for the large fraction of inactive or “neutral” TF binding
events have been put forward, both mechanistic and evolu-
tionary (MacQuarrie et al. 2011). One possible explanation
for the apparent high frequency of context specificity of the
effects of TF binding may be that each TF is typically a plat-
form for recruiting one or more activities, and it is the
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combination of activities at a promoter that determines the
level of gene activation—i.e., one that remodels nucleosomes,
one that recruits RNA polymerase, one that facilitates elon-
gation, etc.

Regardless of whether such a model is correct, a complete
index of TF activities and interacting partners would be
extremely valuable to relate TF binding events to gene
expression outcomes and to dissect the regulatory mecha-
nisms. To our knowledge no such index exists, and indeed
the knowledge itself appears to exist only for a minority of
TFs (Frietze and Farnham 2011; Hahn and Young 2011;
Rando and Winston 2012). A common theme is that TF
cofactors are often chromatin-modifying proteins and that
TFs can recruit multiple cofactors. These activities re-
present a potentially complex (and currently largely hid-
den) layer between the DNA sequence and transcriptional
output.

Mapping the Physical Locations of TFs and Other
Molecules on Chromosomes

Another foundation of mapping transcriptional networks is
the association of TFs with the promoters (or other gene
components) to which they bind in vivo. Methods that assess
the genome-wide physical association of proteins with
DNA in the cell have become prevalent over the last de-
cade. There are several technologies that can make re-
lated measurements.

ChIP-chip and related methods

The most abundant in vivo protein–DNA data type as of
2013 is ChIP-chip, in which proteins are cross-linked to
DNA, cells or extracts are sonicated to release fragmented
chromatin (typically a few hundred base pairs associated
with proteins), the protein of interest is affinity purified,
and the associated DNA is quantified using microarrays.
ChIP-chip was first described just over a decade ago by sev-
eral groups almost simultaneously (Ren et al. 2000; Iyer
et al. 2001; Lieb et al. 2001) and has been the subject of
numerous reviews (e.g., Odom 2011). Many of the pub-
lished yeast ChIP-chip experiments have involved “spotted”
microarrays, in which each spot on the array represents
a different promoter, so do not inherently reveal the precise
location that is bound. Tiling oligonucleotide microarrays,
which became available several years after spotted arrays
became common, enable more accurate determination of
the binding-site position.

Technologically, ChIP-chip has now been largely sup-
planted by ChIP-seq [introduced in 2007 (Barski et al. 2007;
Robertson et al. 2007)]. ChIP-seq is generally believed to be
more accurate than tiling arrays. Although it has been
reported that sequencing may be subject to artifacts related
to bias in the size and base composition of amplified frag-
ments (Dohm et al. 2008; Auerbach et al. 2009), the benefits
appear to outweigh any such disadvantages. In ChIP-seq, the

exact ends of the DNA fragments can be mapped, and a large
number of reads (typically hundreds to thousands) forming
a “peak” when aligned to the genome can help to delineate
the exact binding location (Valouev et al. 2008). Moreover,
the recently described ChIP-exo method can provide nucle-
otide-level resolution (Rhee and Pugh 2011).

ChIP can also be used to measure the kinetics of TF–DNA
binding in vivo. Lickwar et al. (2012) used competition be-
tween two different tagged versions of Rap1, one of which
can be rapidly induced, to measure turnover rates at bound
loci, in addition to occupancy. This experimental procedure
allowed the rate of replacement of Rap1 at a given locus to
be quantified provided the residence time is .500 sec.
Among 439 such peaks obtained, the correlation between
occupancy and residence time was low (R2 = 0.14). Strik-
ingly, the residence time showed higher correlation than
occupancy measurements to many indicators of TF func-
tion, including Pol II association, transcription rate, mes-
senger (m)RNA levels, intrinsic and in vivo nucleosome
occupancy, Rap1 sequence preferences, and selected his-
tone modifications and histone modifier associations with the
same loci. Although only one TF was examined, the conclusions
of Lickwar et al. are similar to those of a previous study em-
ploying the mammalian glucocorticoid receptor (Stavreva
et al. 2004).

The idea that residence time is a more relevant parameter
than occupancy could have far-reaching impact; if it is
generally true, it could resolve several major challenges and
discrepancies in the field of transcriptional regulatory net-
works. As discussed below, there is relatively poor corre-
spondence between TF–promoter occupancy measured by
ChIP-chip or ChIP-seq and either transcriptional output or
the sequence features of the same promoters—while com-
paring promoter sequence features directly to transcrip-
tional output often has a better correspondence. Perhaps
the sequence features function more to control TF residence
time or some other aspect of TF function, rather than TF
occupancy.

Other methods to identify TF binding sites in vivo on
a genomic scale have been described and applied in yeast.
The “Calling Cards” method (Wang et al. 2007), recently
extended to “Calling Card–seq” (Wang et al. 2011), involves
fusing a TF to a piece of the Sir4 protein that physically
interacts with and thus recruits the Ty5 integrase (Zhu
et al. 2003), resulting in preferential integration of a Ty5
transposon near the site where the TF is bound. The Ty5
sites are recovered by PCR amplification and sequencing of
the junction fragments. On the basis of comparison to pre-
viously mapped binding sites, the method has high specific-
ity and sensitivity, and most of the integration sites are
within 100 bp of actual binding events. This level of resolu-
tion is comparable to that of conventional ChIP-seq, although
not ChIP-exo, and is sufficient to enable identification of
known and novel motifs by de novo motif searches. There
is a potential disadvantage in that integration sites may be
selected against if they influence the growth of the yeast.

Mapping Yeast Transcriptional Networks 15

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005160
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002635


A particular advantage of the approach, however, is that, by
barcoding the transposons in vivo, multiple samples can be
analyzed simultaneously in the same DNA preparation and
sequencing sample. It is likely that, with advances in sequenc-
ing throughput, analysis of all �200 yeast TFs would be pos-
sible in a single sequencing lane, enabling experiments in
which global TF occupancy is simultaneously queried over
multiple growth conditions.

Digital genomic footprinting (Hesselberth et al. 2009)
applies high-throughput DNA sequencing to classical DNaseI
footprinting. This approach takes advantage of the fact that
proteins bound to DNA confer resistance to nuclease diges-
tion, such that TF binding sites can appear as regions of
unusually low cleavage in DNaseI hypersensitive sites. In
a single sample, Hesselberth et al. identified several thou-
sand such footprints, with roughly half of all yeast genes
having at least one footprint in its promoter. The identity
of the TF bound to each site is not inherently revealed by
digital genomic footprinting, but can be inferred by motif
searching. Hesselberth et al. found that many yeast TF
motifs are enriched in the footprints, in aggregate, and that
the motifs for a handful of yeast TFs [including all of the
GRFs (see below)] could be identified by de novo motif
searches. A caveat of this finding is that intergenic sequence
was used as background in the analysis, and motif matches
for many if not most TFs (and particularly GRFs) are enriched
in nucleosome-free regions (NFRs) relative to other intergenic
regions (Lee et al. 2007). Thus, randomly chosen segments of
DNaseI-hypersensive regions would also be expected to score
highly for TF motif matches, especially those of GRFs. For at
least some of the motifs, however, strong and characteristic
patterns of preferential cleavage were observed within regions
matching the motif (Hesselberth et al. 2009), providing ad-
ditional support for the protein-binding events and poten-
tially revealing structural characteristics of the DNA–protein
interactions. A related approach using micrococcal nuclease
(MNase), which is commonly used for nucleosome mapping

because nucleosomes are resistant to MNase digestion, also
appears to be able to map individual TF binding events,
allowing a description of the global patterns of nucleosomes
flanking TF binding sites (Henikoff et al. 2011).

Observations from major data sets

The number of whole-promoter ChIP-chip experiments that
have been published and the fact that many of them were
collected in a uniform fashion for the majority of yeast TFs
(some in multiple conditions) still make ChIP-chip with
whole promoter probes the most abundant data type, and
the available data form the basis of our current overview of
yeast transcriptional networks. Table 2 summarizes five of
the largest yeast ChIP-chip and ChIP-seq studies (Lee et al.
2002; Harbison et al. 2004; Workman et al. 2006; Venters
and Pugh 2009; Venters et al. 2011) and the number of
experiments and number of sequence-specific TFs encom-
passed by each. Note that the Venters study (Venters et al.
2011) is dominated by chromatin factors and that the
Harbison et al. data largely encompass the Lee et al. data.

Among just these five studies, 159 (76%) of all TFs,
according to our assessment (de Boer and Hughes 2011),
have at least one ChIP-chip experiment, and many have
more than one. The Harbison data, which contain data from
multiple growth conditions for many of the TFs, have been
extensively analyzed. Despite having been collected using
what would be considered a noisy and low-resolution plat-
form today (full-promoter spotted arrays), several general
observations are apparent and have been largely verified by
analysis of this and other related data sets:

There is a tendency for some promoters to be bound in vivo
by a much greater number of TFs than other promoters.
Harbison et al. described a high-confidence map of 11,000
interactions between TFs and promoters, at a high stringency
(P , 0.001) (Harbison et al. 2004). The data processing
and normalization scheme used by Harbison et al. included

Table 2 Major yeast ChIP-chip data sets

Citation Description of study
No. TFs (nondubious +

putative) Array type Conditions

Lee et al. (2002) 106 Myc-tagged proteins 94 Spotted yeast promoter arrays using
“Yeast Intergenic Region Primers”

YPD

Harbison
et al. (2004)

295 ChIP-chip experiments
involving 203 Myc-tagged
proteins; 84 of the proteins
were examined under
multiple growth conditions

158 Spotted yeast promoter arrays using
Yeast Intergenic Region Primers

YPD, various others

Workman
et al. (2006)

30 DNA damage-related proteins 26 Spotted yeast promoter arrays using
Yeast Intergenic Region Primers

YPD + MMS

Venters
and Pugh (2009)

One native and 27 TAP-tagged
proteins involved in different
stages of transcription

8 Affymetrix S. cerevisiae Tiling 1.0R
Array and other arrays [same as
(Venters et al. (2011)]

YPD at 25�, YPR + Gal at 37�,
YPD at 37�

Venters
et al. (2011)

.800 ChIP-chip and 20 ChIP-seq
experiments for 202 TAP-tagged
proteins involved in different
stages of transcription

39 60-bp probes to 2320:2260 and
290:230 and other regions
(Operon Biotechnologies)

YPD at 25�, 37�
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subtraction of the mean log ratio across experiments for
each microarray spot, which should have prevented pro-
moters that are consistently immunoprecipitated from
appearing consistently bound in the data. Despite this,
the TF–promoter interactions are highly skewed toward
a few promoters that have a very large number of binding
events. Figures 1 and 2 illustrate these points. The pro-
moters that are generally occupied by a larger number of
TFs tend to correspond to genes located near autono-
mously replicating sequences, Ty1 transposons, centro-
meres, and subtelomeric regions. Indeed, two recent
reanalyses of these data found that .10% of TFs bind
in subtelomeric regions (Mak et al. 2009; Smith et al.
2011); the latter study also observed a similar trend for
other TFs (Smith et al. 2011). A similar phenomenon was
reported for Caenorhabditis elegans and Drosophila, with
certain regions being highly bound by many different
transcription factors [so-called highly occupied target
(“HOT”) regions] (Moorman et al. 2006; Gerstein et al.
2010; Roy et al. 2010). To our knowledge, the explana-
tion for and biological significance of the HOT regions re-
main incompletely resolved; however, the HOT regions often
correspond to regions of open chromatin (Gerstein et al.
2010; Roy et al. 2010; Li et al. 2011), and some of the
repetitive DNA sequences in yeast, like autonomously repli-
cating sequences (ARS) and telomere X elements, are
known to have an open chromatin structure in Saccharomy-
ces cerevisiae (Kaplan et al. 2009; Berbenetz et al. 2010;
Wellinger and Zakian 2012), suggesting that chromatin ac-
cessibility likely plays a role in delineation of these elements.

Most TFs tend to bind relatively few targets (Figure 1A), with
57/155 unique proteins binding five or fewer promoters
in at least one condition and 17 not significantly binding
any promoters under any condition tested. This is likely
due to some of the TFs being inactive under the condi-
tions tested. In contrast, several TFs have hundreds of
promoter targets. These TFs include the GRFs, which play
a global role in transcription under diverse conditions.

There are groups of TFs that all recognize the same set
of promoters (which results in red boxes in Figure 2).
These cases do not always correspond to TFs that have
related DNA sequence specificity; for example, Rap1 and
Fhl1, which coregulate ribosomal protein genes, bind
overlapping sets of promoters despite having very differ-
ent sequence specificities.

While some TF binding sites (TFBSs) tend to occur in tan-
dem arrays—a requirement for stable binding by Dal80
(Cunningham and Cooper 1993)—most yeast TFs appear
to bind to isolated motifs (Harbison et al. 2004). Whether
or not TFs act cooperatively, in general, is still an unre-
solved issue, to our knowledge, as discussed below.

The global landscape of the binding of a TF can change upon
perturbation or changes in growth conditions, in some cases
dramatically (e.g., Harbison et al. 2004; Workman et al.
2006) (Figure 2). This observation reinforces the notion that
many TFs are condition-specific regulators, and underscores
that the transcriptional regulatory network is not a single
static entity. Presumably, the arrangement of molecules on
chromosomes and their resulting transcriptional output rep-
resent the combined action of all of the factors that are
present and active: both TFs and chromatin factors can be
regulated post-transcriptionally (D’Alessio et al. 2009).

There appear to be no fixed rules regarding the relationship
between in vivo binding and activation (or repression),
a topic that is also discussed below and by Hahn and
Young (2011). Harbison et al. (2004) described four gen-
eral scenarios, however: (i) “condition-invariant” regula-
tors, such as Leu3, which bind DNA constitutively and are
activated only under specific conditions; (ii) “condition-
enabled” regulators, such as Msn2, which bind only when
activated; (iii) “condition-expanded” regulators, such as
Gcn4, which bind some sites constitutively but bind many
more when activated; and (iv) “condition-altered” regu-
lators, such as Ste12, which bind different sets of pro-
moters depending on growth conditions, presumably
due to the activation and/or deactivation of cofactors.

Figure 1 Distribution of TF bind-
ing events. (A) Histogram show-
ing the number of TFs that bind
to specific numbers of targets
(ChIP probes). If a TF was assayed
in multiple conditions, each con-
dition is counted separately. (B)
Histogram showing the number
of targets (ChIP probes) that are
bound by specific numbers of
TFs, counting each condition un-
der which a TF was tested sepa-
rately. Data were derived from
Harbison et al. (2004), using
a 0.001 P-value cutoff (Harbison
et al. 2004).
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These observations are generally consistent with those
from detailed studies of individual TFs: there are many
mechanisms by which TFs themselves can be regulated
(Hahn and Young 2011).

It is possible to identify sequence motifs for roughly half of all
TFs, using whole-promoter-resolution ChIP-chip data (MacIsaac
et al. 2006), and it appears that an even larger proportion
of ChIP-seq experiments yield motifs (Valouev et al. 2008).

Figure 2 Two-dimensional hierarchical clustering analysis of ChIP-chip data (Harbison et al. 2004), encompassing 288 TF-condition combinations, 14
distinct conditions, and 155 distinct proteins. There are 5824 chip probes. Three examples of clusters are magnified on top, showing the bound genes
(i.e., promoters) as well as the target TF and conditions of the ChIP experiment. Asterisks indicate the gene is part of the indicated pathway and gene
labels in parentheses represent alternate probes for a promoter already listed. Also shown are expression data showing the changes resulting from
deletion of the corresponding TFs (Hu et al. 2007). Missing data are represented by gray and black in the expression data and ChIP data, respectively.
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Thus, while TF sequence preferences are not the only de-
terminant of binding in vivo, they are a major factor.

A variety of network structures and network “motifs” (e.g.,
feedback loops, feedforward loops, and regulatory changes)
are over- or underrepresented in ChIP-chip networks (e.g.
Lee et al. 2002 and many subsequent analyses including
Luscombe et al. 2004). Autoregulation, in which TF genes
harbor a binding site for their encoded protein in the
promoter, is an example of a network motif that is over-
represented relative to expectation, but is not the general
case (Figure 3). Autoregulation has the potential to form
a positive feedback loop, enforcing cell states until the TF
is deactivated. One such example is Ste12, which regulates
both the mating response and pseudohyphal growth; the
Ste12 protein binds to the STE12 gene promoter, which is
induced as part of the mating response (Dolan and Fields
1990; Ren et al. 2000; Roberts et al. 2000; Borneman et al.
2006). However, such cases appear to be a minority; scoring
TF gene promoters with the TF motif (de Boer and Hughes
2011) or scoring by ChIP-chip P-value (Harbison et al. 2004)
results in a distribution of scores suggesting that no more
than 20% of yeast TFs autoregulate, roughly consistent with
early estimates of �10% (Lee et al. 2002) (Figure 3).

Gene Expression Patterns and the Genome’s
Transcriptional Output

A major goal of mapping transcriptional networks is to
provide a mechanistic basis for the genome’s transcript out-
puts. For this endeavor to be realistic it is necessary to have
measurements of gene expression. These measurements

would preferably encompass a wide variety of cellular states
and stresses, including perturbation of trans-acting factors
such as TFs. In this way, the specific impact of differential
regulation of as many individual components as possible can
be discriminated within the aggregate data. Since TFs are con-
ventionally thought to affect the generation of transcripts, it
would be ideal to measure transcription itself, rather than tran-
script levels, which also reflect RNA stability [and potentially
also polyadenylation state, if poly(A) selection is employed].
Transcription can be measured in a bulk culture by examination
of the location of RNA polymerase using ChIP, the strand-
specific NET-seq (Churchman and Weissman 2011), or an
equivalent method, but these methods have the drawback that
polymerase density reflects both the transcript initiation rate
and the rate of polymerase elongation. It is also worth consid-
ering that RNA stability is now known to be controlled in at
least some cases by promoter elements, possibly by influencing
proteins that are associated with mRNAs (Bregman et al. 2011;
Trcek et al. 2011). The linkage between transcriptional regula-
tion and transcript stability will undoubtedly be a hotly pursued
topic in the near future; the recent development of new meth-
odology for measuring absolute rates of mRNA synthesis and
decay led to the finding that there is a global coupling between
mRNA synthesis and degradation (Sun et al. 2012).

Microarray data

Currently, microarray gene expression measurements under
diverse conditions—including directed perturbation of TFs—
represent the most abundant transcription-related data type
in yeast. Hibbs et al. (2007) compiled 2394 yeast micro-
array experiments, collected from 81 different publications,
and TransfactomeDB (Foat et al. 2008) similarly cataloged
�4000 yeast microarray experiments from the Gene Expres-
sion Omnibus (GEO) database (Barrett et al. 2011). In most
of these experiments, there are one or a few probes per
gene, and the goal is to determine what has changed in an
experiment vs. the control setup; thus, the data consist of
a spreadsheet of (conditions · genes), filled in with values
that represent up- or downregulation of transcript levels.
Affymetrix arrays, however, provide intensity measurements
that can be used to gauge the absolute transcript abundance
(Wodicka et al. 1997); Marbach et al. (2012) have assem-
bled and normalized a data set of 537 Affymetrix arrays
collected from the GEO.

Many, if not most, of the individual studies these data sets
were compiled from were designed to answer specific questions
and accordingly examine gene expression under specific con-
ditions, so there is no assurance that the data are unbiased or
comprehensive with regard to capturing individual expression
programs. The “environmental stress response”, for example
(Gasch et al. 2000), is seen very frequently. It is also possible
that there are many condition-specific transcriptional pro-
grams that are not activated among these thousands of
microarray data points; it has been argued that a complete
functional characterization of the yeast genome will require

Figure 3 TF autoregulation analysis. Shown is the observed percentage
of autoregulatory interactions (of all TFs) minus the percentage expected
by chance, when varying cutoff for the number of predicted targets (x-
axis), for all TFs. Rank sum P-values are 0.003 and 5 · 1027 for ChIP-chip
and motif instances, respectively, comparing the ranks of autoregulatory
binding vs. other promoter binding.
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a broader exploration of phenotypes under conditions and
stresses that yeast would experience in the wild (Peña-Castillo
and Hughes 2007; Hillenmeyer et al. 2008). Moreover, there
is no guarantee that different laboratory protocols and dif-
ferent array types will yield compatible data. Nonetheless,
much knowledge of the global regulation of yeast gene ex-
pression has been obtained by looking at these data sets,
either individually or in aggregate. Here we describe several
findings that are particularly relevant to mapping yeast tran-
scriptional networks.

Many discrete “clusters” represent groups of
coexpressed genes

A variety of approaches have been described for grouping
genes on the basis of their expression patterns across multiple
experiments (e.g., Eisen et al. 1998; Sherlock 2000; Segal
et al. 2003). Two-dimensional (2-D) hierarchical agglomer-
ative clustering (experiments · genes) remains a standard
approach for gaining an overview of any given data struc-
ture. A characteristic appearance of 2-D clustering diagrams
from yeast, provided one uses a sufficiently large number
and variety of microarray experiments, is the appearance of
boxes that correspond to genes that are coordinately induced or
repressed over many experiments; randomly generated data do
not display this type of pattern (Eisen et al. 1998). As a demon-
stration of this phenomenon, Figure 4 shows a clustering analysis
of the entire Hibbs et al. data set. Major groups of coexpressed
genes are apparent, and the insets show specific groups that are
often observed and clearly correspond to specific functional clas-
ses of genes. It is typically assumed that coexpressed genes will
also be coregulated, and indeed it is often possible to identify TF
motifs that are enriched in the promoters of genes within these
clusters (discussed below).

Changes in transcript levels as a result of TF perturbation

An obvious approach to identify targets of a TF is to use
genetic perturbations to increase or decrease the activity of
the TF, most typically by examining gene deletion and
overexpression mutants. Hu et al. (2007) generated a uni-
form data set of expression profiles in yeast deletion mutants
or other mutations (in YPD medium) for 269 known and
putative TFs (including 159 that overlap with bona fide
TFs in de Boer and Hughes 2011). Other studies have fea-
tured overexpression and other activating manipulations of
TFs (e.g., Devaux et al. 2001; Hikkel et al. 2003; Chua et al.
2006). A more recent study focused on perturbation of other
components of the yeast transcriptional apparatus, in partic-
ular the chromatin machinery (Lenstra et al. 2011).

The meaning of gene expression changes observed in
these experiments is, to our knowledge, still a matter of
discussion. Chua et al. (2006) focused on microarray analy-
sis of overexpressed TFs after noting that, when yeast are
grown in rich medium, there are generally few prominent
expression changes in deletion mutants, relative to wild
type. Even when overexpressed, many TFs appeared to yield
few expression changes, and a relationship was observed in

which the number of expression changes correlated with
slowed growth (Chua et al. 2006). In contrast, Hu et al.
(2007) reported significant gene expression changes from
the vast majority of deletion mutants, using a previously
described statistical measure that relates log-ratios to both
biological “noise” (i.e., expression variations observed be-
tween pairs of wild-type cultures) and measurement error
(Hughes et al. 2000b). A reprocessing of the Hu et al. data
even reported a 10-fold increase in the number of expression
changes (Reimand et al. 2010). It is important to note that,
using the statistical test used by Hu et al., significant gene
expression changes (both statistically and biologically) can
be observed that have very low-magnitude expression
changes (i.e., much less than twofold) (Hughes et al.
2000b), so low magnitude does not mean unimportant.
However, it is also possible that at least some of the statis-
tically significant changes observed by Hu et al. could relate
to growth rate, strain construction, or secondary effects,
rather than direct action of the TF. These possibilities be-
come relevant when considering the low overlap between
genes affected in the TF knockout and genes bound by the
TF in ChIP experiments (see below). The Holstege labora-
tory has also assayed many yeast knockout strains and found
fewer expression changes and a higher correspondence with
ChIP-chip data, when there are changes (F. C. P. Holstege,
personal communication). When it is published, a compari-
son of this data set to the Hu et al. data set may shed light on
the biological significance of the observed gene expression
changes in both studies.

One explanation for the relatively modest impact of most
TF deletions on the yeast transcriptome is that the assays
were not performed under conditions that activate the
TF. There have been numerous studies demonstrating the
requirement of known environmental response TFs for com-
ponents of transcriptional programs to the same perturbations
(e.g., Msn2/Msn4, Yap1, Gcn4, Ste12, Gal4, Crz1, and Zap1)
(Gasch et al. 2000; Lyons et al. 2000; Roberts et al. 2000;
Causton et al. 2001; Ideker et al. 2001; Natarajan et al.
2001; Yoshimoto et al. 2002). However, we are not aware
of any systematic analysis demonstrating that deletion of
a TF (or multiple TFs) has no impact on genome-wide ex-
pression in standard growth conditions, but does in alterna-
tive conditions. In the case of Gcn4, for example, the contrary
was found; many genes are affected by deletion of Gcn4 even
under standard laboratory growth (Natarajan et al. 2001).
Some additional comparisons can be made by comparing dif-
ferent studies in the literature; differences in data processing
between the studies can be controlled for to some degree by
asking how well the mRNA abundance changes relate to
motifs in the promoters of corresponding genes (de Boer
and Hughes 2011). For example, in the aforementioned
Crz1 experiment, which was performed under salt stress
conditions, the Crz1 motif is enriched in the promoters of
affected genes (Yoshimoto et al. 2002); in contrast, the Crz1
experiment from Hu et al. (2007) displays no significant
relationship between gene expression levels and Crz1 sites
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in promoters (de Boer and Hughes 2011). This outcome
suggests that condition-specific expression profiling of de-
letion mutants could represent a systematic approach to
identifying bona fide target genes for uncharacterized TFs.

An obvious hurdle is to identify the appropriate con-
ditions: to our knowledge, this approach has been applied
almost exclusively to known metabolic or stress regulators,
for which the appropriate conditions are known. One excep-
tion is the analysis of several TF deletions (Hap4, Usv1, Gis1,
and Xbp1) under quiescent growth conditions (Aragon et al.
2008); these TFs were chosen only because the mRNAs

encoding these TFs displayed differential abundance between
quiescent and nonquiescent growth. The global gene expres-
sion changes in Hap4 and Xbp1 deletions under quiescent
growth show a much more significant correspondence to pro-
moter motifs for these TFs than do the expression changes for
the same deletion mutants in standard growth (Hu et al.
2007). Thus, the choice of growth conditions need not be
tailored specifically to the TF in question; perhaps educated
guesses from large-scale studies regarding conditions in which
the TF would be active are generally sufficient to obtain mean-
ingful expression patterns from TF deletion mutants. Potential

Figure 4 Clustering of the entire SPELL data set, containing gene expression microarray data from diverse sources (4803 genes by 7186 experiments).
Selected prominent clusters are labeled with a GO process enriched among the genes within the cluster and/or the experimental conditions (italics)
enriched within the cluster. Gray represents missing data.
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approaches could include mining phenotypic data for con-
ditions in which growth is compromised by deletion of a TF
(Hillenmeyer et al. 2008) or identifying conditions under
which TF motif matches in promoters relate to expression
patterns (Boorsma et al. 2008).

Expression of TFs correlates weakly with expression of
their targets

Although TF activity is often regulated by post-translational
mechanisms, the fact that overexpression of a TF often results
in induction or repression of relevant targets (Chua et al.
2006) suggests that many TFs can be regulated simply by
the abundance of the TF and thus, presumably, by the expres-
sion level of the TF. Is this a predominant mechanism outside
of overexpression studies? Boorsma et al. (2008) found that,
across �1000 microarray expression experiments, the corre-
lation between a TF’s expression and that of its ChIP-based
targets is typically between 0 and 0.25. Considering that at
least some of this correlation can be accounted for by the fact
that a subset of TFs autoregulate (see above), this finding
supports the notion that TF expression accounts for only
a minority of the regulation of TF activity in yeast.

Mapping the genetic determinants of gene expression
(expression quantitative trait loci)

Another approach to connect trans-acting factors to gene
expression is to use quantitative genetics. The association
of genetic variants with expression levels is commonly known
as expression quantitative trait locus mapping (“eQTL map-
ping”). A series of studies have conducted both genotyping
and microarray expression analyses of dozens of haploid
progeny from crosses between two different yeast strains
that display differences in global gene expression (Brem
et al. 2002; Yvert et al. 2003; Brem and Kruglyak 2005;
Smith and Kruglyak 2008) and asked whether and how
gene expression is related (“linked”) to genetic variation
(Figure 5). Other studies have examined TF binding (by
ChIP-seq) or the open chromatin state (using FAIRE) in
haploid progeny (Zheng et al. 2010b; Lee et al. 2013) and
allele-specific gene expression and nucleosome occupancy in
diploid cells resulting from a cross between S. cerevisiae and
S. paradoxus (Tirosh et al. 2009, 2010b; Emerson et al. 2010).
These studies have the potential to identify the mechanisms
controlling transcript levels because the genotype can be con-
sidered to be causative, although it may affect gene expres-
sion indirectly. Linkage analysis does not immediately identify
the causative allele or the mechanism for the observed ex-
pression variation, but incorporation of other high-through-
put data—such as protein–protein interactions, knowledge of
TF binding sites, and knowledge of the effects that known
regulators have on genome-wide expression—can facilitate
the challenging process of mechanistic dissection (Lee et al.
2006; Choi and Kim 2008; Zhu et al. 2008).

Highlights among the many findings of these studies (and
subsequent reanalyses of the same data) include the
following:

A large category of linkages corresponds to cis-effects on single
genes. Many of these can be traced to variation in the
binding sites of TFs (Chen et al. 2010; Zheng et al. 2010b).

Among trans-mapping effects, only a minority map to loci
containing TFs. Whether this proportion is smaller or
larger than expected varies among studies and may de-
pend on the method of data analyses, i.e., whether in-
dividual gene expression traits are considered or whether
all targets of a given TF are taken in aggregate (Yvert
et al. 2003; Lee and Bussemaker 2010).

In crosses between strains of S. cerevisiae, only a minority of
the variance in gene expression is explained, even for genes
with high heritability, and there is evidence for frequent
genetic interaction among multiple loci in the control of
transcript levels (Brem and Kruglyak 2005), which could
represent cooperative interactions among TFs and/or
their effector proteins.

Computational analyses integrating the quantitative expression
data with other information in a search for transfactors in-
dicate that chromatin regulators appear to play a major part
in the variation of gene expression (Lee et al. 2006; Choi
and Kim 2008). At the same time, chromatin regulation
appears to buffer interspecies variation in gene expression
(Tirosh et al. 2010a).

Unconventional transcripts involved in gene regulation

Single-measurement per-gene analyses are dominant in ex-
pression data collections and integrated analyses of transcrip-
tional networks described to date. However, oligonucleotide
tiling microarrays (Shoemaker et al. 2001) and RNA-seq

Figure 5 Pipeline for QTL mapping. Two strains of yeast are mated and
recombinant haploid progeny are isolated. Expression traits are typically
quantified for each recombinant strain in isolation. Strains are genotyped
and variable loci are tested to see how well the quantified trait correlates
with each parental genotype.
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(Mortazavi et al. 2008; Nagalakshmi et al. 2008)—both now
also commonly used in gene expression analysis—also have
the capability to discover new transcripts and to infer pro-
cessing of RNAs, such as identification of novel splice junc-
tions. Both techniques have been used to characterize the
yeast transcriptome de novo both in wild-type cells and in
nuclease mutants, to accentuate detection of the transcripts
they degrade (David et al. 2006; Nagalakshmi et al. 2008;
Neil et al. 2009; Xu et al. 2009; van Dijk et al. 2011), iden-
tifying hundreds to thousands of novel nongenic transcripts,
many if not most of which initiate from bidirectional pro-
moters. The functional significance of the great majority of
these transcripts is unknown, and it has been argued that
they may primarily represent “transcriptional noise” (Struhl
2007). These studies are nonetheless important to the char-
acterization of transcriptional networks. First, the produc-
tion of these transcripts should ultimately be accounted for
by models of transcriptional regulation. For example, re-
cently published findings show that some bidirectionally
transcribed noncoding (nc)RNAs in yeast are a consequence
of the loss of looping interactions between a promoter and
the terminator of a gene and that this looping confers di-
rectionality for transcription (Tan-Wong et al. 2012), sug-
gesting that models should incorporate genome topology
and physical interactions between loci. Second, some of these
novel RNAs—and/or the action of transcribing them—function
in regulation of transcription itself, by either direct transcrip-
tional interference or modulation of chromatin (Martens
et al. 2004; Camblong et al. 2007), and should therefore
be accounted for in models of transcriptional regulation.
Some examples of how noncoding transcripts can regulate
gene expression in cis are shown in Figure 6. These mecha-
nisms could explain some of the lack of correlation between
TF binding and apparent function: an activating TF could
drive mRNAs in some cases, but repressive ncRNAs in other
cases; the action of an activating TF could also be compro-
mised by local repressive ncRNAs.

Global Examination and Modeling of Transcriptional
Networks

We now consider analysis of the overall organization of
the yeast transcriptional regulatory machinery and how it
produces observed expression patterns. We focus on analyses
that are aimed at relating the data types described above,
namely (a) the biochemical activities of individual pro-
teins, mainly the sequence specificity of TFs, but also the
influence of nucleosomes, chromatin proteins, RNA poly-
merase, etc; (b) the observed physical arrangement of
these molecules on chromosomes in the cell; and (c) gene
expression patterns, either at steady state or resulting from
perturbation of the system. Derivation of a quantitative and
testable model (or set of models) that relates and explains
all of the observations represents a fundamental goal of
mapping transcriptional regulatory networks (Figure 7). To
our knowledge, such a model does not exist. Here, we focus

on the three possible pairwise relations (a-b, b-c, a-c), although
a realistic and comprehensive model would encompass and
account for all three types of observations simultaneously.
There is an extensive literature in this area and many possible
ways to combine data sets, learning algorithms, and success
criteria. A previous review provides an excellent summary
and comparison of different approaches (Bussemaker et al.
2007).

Relating the sequence specificities of TFs to their observed
physical arrangement on chromosomes:
How do TFs find their targets?

A perennial question is, How are the binding sites of TFs
specified in vivo (Kodadek 1993)? Figure 8 illustrates sev-
eral mechanisms. The sequence preferences intrinsic to the
TF are clearly utilized, since it is possible to derive motifs
from ChIP-chip and ChIP-seq data. However, only a minority
of motif matches in the genome are typically observed as
being strongly occupied by the TF in vivo, even in cases
when the TF is known to be active. Precise proportions will
vary depending on the protein in question and the thresh-
olds chosen. As an example, in a recent study of the TF
Pho4, only 115 of the 843 consensus CACGTG sequences
in the genome were bound by ChIP-seq analysis (Zhou
and O’Shea 2011). What accounts for the lack of occupancy
at perfectly good binding sites?

Nucleosomes and GRFs: In yeast, the sequence preferences
of nucleosomes provide a major part of the explanation.
Nucleosomes are the most abundant DNA-binding molecule
in the eukaryotic nucleus and have long been known to

Figure 6 Examples of cis-regulation by ncRNAs. Blue arrows represent
ORFs, green arrows represent actively transcribed transcripts, red arrows
represent repressed transcripts, and dashed red arrows represent tran-
scripts repressed by interference from transcription of the nearby RNA.
Example genes are from (Martens et al. 2004; Bird et al. 2006; Hongay
et al. 2006; Camblong et al. 2007; Houseley et al. 2008; Nishizawa et al.
2008; Bumgarner et al. 2009; Xu et al. 2011; van Werven et al. 2012).
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participate in transcriptional regulation in numerous ways,
one of which is to present a barrier to TF binding (e.g.,
Almer et al. 1986). Yeast promoters have also long been
known to harbor poly(A) tracts, which are refractory to nu-
cleosome assembly and can strengthen the activity of adja-
cent motifs (Struhl 1985; Iyer and Struhl 1995). As a
consequence, many yeast promoters have relatively low in-
trinsic nucleosome occupancy (Kaplan et al. 2009; Zhang
et al. 2009) and also low observed nucleosome occupancy
in vivo (Ercan and Simpson 2004; Lee et al. 2004; Yuan et al.
2005; Lee et al. 2007; Kaplan et al. 2009). The region up-
stream of the transcription start site is often referred to as
the nucleosome-depleted region (NDR) or the nucleosome-
free region (NFR). Globally, there is a strong tendency in vivo
for yeast TFs to occupy motif matches that have low intrinsic
preference for binding nucleosomes (Kaplan et al. 2009) and
low nucleosome occupancy in vivo (Liu et al. 2006; Zhou
and O’Shea 2011). In fact, in aggregate, these analyses
strongly suggest that there are only a handful of yeast TFs
that compete effectively with nucleosomes; most TFs may
instead select binding sites from among sequences that are
already depleted of nucleosomes.

The TFs that appear to be able to compete strongly and
constitutively with nucleosomes on the basis of genomic
data are all members of a class previously described as GRFs,
which are characterized by their ability to define chromatin
domains and potentiate the activity of nearby binding sites
for other TFs, as well as the property that their binding sites
are widespread among yeast promoters (Diffley 1992; Planta
et al. 1995; Fourel et al. 2002). The binding sites for these
factors are generally depleted of nucleosomes in vivo (Bernstein
et al. 2004; Lee et al. 2007), and these nucleosome-free
regions typically disappear upon mutation or depletion of
the corresponding GRF (Badis et al. 2008; Hartley and
Madhani 2009; Ganapathi et al. 2011), implying that these
factors are themselves responsible for the formation of the
nucleosome-depleted region in which they bind.

Rap1, Abf1, and Reb1 are the canonical GRFs, but Mcm1,
Tbf1, Cbf1, and Rsc3 also display GRF-like properties (Diff-
ley 1992; Fourel et al. 2002; Badis et al. 2008), with Tbf1
and Cbf1 appearing to play a more prominent role in some
related yeast species (Tsankov et al. 2011). GRFs are multi-
functional and essential for viability, consistent with their

role in enabling the function of numerous other TFs and/
or in chromatin opening at numerous promoters (Badis et al.
2008), presumably including those of other essential genes.
The mechanisms by which they control chromatin and po-
tentiate transcription are still a subject of active study, but,
as with many other TFs, a unifying theme is interactions not
only with the transcriptional apparatus but also with nucleo-
somes, chromatin, and chromatin modifiers. One clear
example is Rsc3, which is a fungal-specific subunit of the
chromatin-remodeling RSC complex (Cairns et al. 1996).
Rsc3 positions a partially unwound nucleosome in the GAL1/
GAL10 promoter (and evidently at other locations in the ge-
nome), facilitating Gal4 binding to its sites (Floer et al. 2010).
The prevalence and functionality of this mechanism will re-
quire further examination. Rap1, which is named because it
has activities as both a repressor and an activator protein,
appears to have multiple effector functions. It can recruit
(or help recruit) not only other TFs (Yu and Morse 1999),
but also Sir-family histone deacetylase proteins (Kanoh
and Ishikawa 2003) and the general transcription factor
TFIID (Mencia et al. 2002; Garbett et al. 2007), and there
is evidence that it recruits the histone acetylase Esa1 (Reid
et al. 2000). The selection among these mechanisms
appears to be at least partly dependent on the sequence
and configuration of Rap1 binding sites (Piña et al. 2003).

GRFs are abundant proteins, a property that may confer
ability to outcompete nucleosomes. The estimated numbers
of proteins per cell for Reb1, Abf1, Rap1, Mcm1, and Rsc3
are 7510, 4820, 4390, 8970, and 1750; by comparison, the
same numbers for metabolic regulators Gal4, Leu3, and
Lys14 are 166, 125, and 450, and Gcn4 and Pho4 numbers
were too low to estimate under standard growth conditions
(Ghaemmaghami et al. 2003; Huh et al. 2003). Other TFs
can display GRF-like properties, especially under activating
conditions: numerous activators recruit nucleosome remod-
eling complexes such as Swi/Snf, and nucleosome displace-
ment is a hallmark of gene activation (Workman 2006;
Rando and Winston 2012). Presumably, most TFs are not
GRFs because they are regulated and/or lack the high affinity
for DNA or abundance needed to outcompete nucleosomes.

The positions of TF binding sites relative to or within
nucleosomes can also play a role in target selection. Rap1,
for example, binds nucleosomal DNA in vitro with a prefer-
ence for sites near the nucleosome border in which the ma-
jor groove is facing outward (i.e., exposed) (Rossetti et al.
2001); very similar behavior is observed in vivo, where Rap1
associates preferentially with the 21 nucleosome (i.e., the
nucleosome just upstream of the NFR/NDR) (Koerber et al.
2009).

Cooperative vs. combinatorial TF–TF interactions: Co-
operative interactions among TFs also play a role in target
determination. The strict biochemical definition of cooper-
ativity requires that the binding of one TF aids in binding of
another or that the function of one TF is aided or changed by
the other. We note that the term cooperative has been used

Figure 7 Illustration of three major interrelated maps of transcriptional
regulation: motifs and other sequence features, physical binding or other
measurements of in vivo activity at a promoter, and expression output.
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in the literature to describe cases that do not represent true
cooperativity in the typical biochemical sense. For example,
cooperative has been used to describe co-occurrence of
motifs and/or binding events in promoters; these phenom-
ena appear to be widespread (e.g., Wagner 1999; Harbison
et al. 2004; Yang et al. 2010) (Figure 1B). Even GRFs are
known to act in concert in some cases; for instance, the
large NDR in the CLN2 promoter is created jointly by Reb1,
Mcm1, and Rsc3 (Bai et al. 2011), but this does necessarily
represent true cooperativity. We suggest that unless true bio-
chemical cooperativity is demonstrated, it may be more ap-
propriate to use terms such as co-occurring or coregulatory to
avoid confusion.

When the sites are shown to be functional, and the
regulators functionally related, the term combinatorial inter-
action also applies. Combinatorial control is a general term
that describes cases in which multiple TFs regulate a pro-
moter, using either the same or multiple binding sites, and
can also encompass protein–protein interactions in which
the same cofactors are recruited by multiple TFs. Combina-
torial control need not encompass true biochemical cooper-
ativity among TF binding sites, although it may be involved.
Transcriptional control of sulfur metabolism in yeast has
been a model of combinatorial control: the coactivator
Met4 is recruited by any of three TFs (Met31, Met32, or
Cbf1) and DNA-bound Met4-containing complexes are sta-
bilized by another cofactor, Met28. Although Met4 and
Met28 contain bZIP domains, until recently (see below) they
were thought to be non-DNA binding. Analysis of the func-
tions of these regulators, their interactions, and their target
genes has been a challenge, due to the fact that the proteins
regulate each other; however, it is clear that the different
DNA-binding factors regulate partially overlapping subsets
of genes corresponding to distinct sulfur metabolic path-

ways, as demonstrated in a recent series of articles contain-
ing extensive microarray analyses of perturbations of the
sulfur regulatory system (Lee et al. 2010; Siggers et al.
2011; Carrillo et al. 2012; McIsaac et al. 2012; Petti et al.
2012). These articles also provide an excellent summary of
the decades of research on the transcriptional regulation of
sulfur metabolism in yeast and further examples of combi-
natorial control.

True TF cooperation in target specification can occur by
several mechanisms (Courey 2001). Cooperative binding is
perhaps most typically thought of as mediated by protein–
protein interactions among TFs. The human IFNb enhan-
ceosome is a particularly well-studied example in which
protein–protein interactions (including those among non-
DNA-binding components) stabilize a multiprotein–DNA
complex (Maniatis et al. 1998). Such interactions constrain
the spacing and orientation of the binding sites of the in-
dividual subunits. In yeast, a well-characterized example is
the 31-bp a-specific operator DNA, which contains an Mcm1
site flanked on either side by a2-binding sites (Smith and
Johnson 1992; Tan and Richmond 1998). Very similar instan-
ces of this sequence are found in the promoters of STE6,
BAR1, STE2, MFa1, and MFa2 (Johnson and Herskowitz
1985). There are also numerous examples of homodimeric
binding sites; bZIP, bHLH, and SRF class TFs, for example,
typically bind DNA as obligate homodimers, as do many of
the GAL4 class proteins, typically with fixed spacing and ori-
entation. These are typically considered to represent a single
binding site; nonetheless, they are, formally, examples of co-
operative binding.

Cooperation mediated by protein–protein interactions
may also affect the sequence preferences of the proteins in
the complex, as occurs with Drosophila Exd-Hox dimers
(Slattery et al. 2011 and references therein). A parallel to

Figure 8 Some of the factors that contribute to TF activity
or nonactivity in a given promoter. To result in gene ex-
pression differences, a motif instance must be present, the
TF must compete with nucleosomes and other TFs to bind
the motif, and the binding of nearby cofactors is poten-
tially required.
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Exd-Hox has also been described in yeast: the Cbf1-dependent
sulfur metabolism genes are specified by an RYAAT DNA motif
found adjacent to the Cbf1 sites, recognition of which requires
the Met4 and Met28 subunit cofactors of the Met4-Met28-Cbf1
complex (Siggers et al. 2011). The Met4 and Met28 proteins
contain bZIP domains, but they do not have any inherent
sequence specificity either alone or in combination with each
other; instead, they appear to require Cbf1 binding to an
adjacent site to exhibit sequence-specific DNA-binding activity
(Siggers et al. 2011).

TFs can also inherently cooperate with each other to
compete with nucleosomes (Adams and Workman 1995;
Polach and Widom 1996). This mechanism does not require
any protein–protein interactions and would not be expected
to constrain the spacing and orientation of the binding sites
of the cooperating TFs. The cooperative interactions can be
among multiple copies of the same protein or combinations
of proteins. Due to the large number of possible combina-
tions, such interactions may be difficult to detect de novo
(see below).

The function of GRFs in enabling the activity of sites for
other TFs (e.g., Brandl and Struhl 1990) also represents
a cooperative interaction, since the impact of the two sites
(that of the GRF and that of the activating TF) on transcrip-
tion is different from that of the sum of either site alone. The
same would be true of any pair of TFs in which one depends
on the other for binding or activity (Struhl 1999); Swi5
and SBF (Swi4/Swi6) are one example, in which Swi5
transiently nucleates a chromatin environment that is per-
missive for SBF binding at the HO promoter (Cosma et al.
1999). As with the collaborative nucleosome competition
mechanism mentioned previously, these types of interactions
would not be expected to have rigid spacing and orientation
constraints.

Cooperative interactions between two factors—even two
copies of the same factor—can also lead to different tran-
scriptional outputs. In the case of Pho4 regulating the PHO5
promoter, a nonnucleosomal binding site determines the
threshold for activation, while adjacent sites within nucle-
osomal regions (which are remodeled by activated Pho4
binding to the primary nonnucleosomal site) determine the
expression levels upon activation (Lam et al. 2008). The in-
duction threshold and maximum expression levels of seven
different phosphate-inducible genes vary in a way that is
consistent with variation in the locations of Pho4 sites in
the promoter, suggesting that the two parameters are tuned
to optimize the dynamics of the response of individual pro-
moters to the same TF.

There are also many instances in which structurally
related TFs potentially compete to bind the same site. For
example, Pho4 and Cbf1, two bHLH TFs that both bind
classic E-box sequences (“CACGTG”), compete for binding
to dozens of sites in the genome (Zhou and O’Shea 2011).
Slightly different sequence specificities of these TFs (Cbf1
prefers a “T” base immediately 59 to CACGTG) result in a bi-
as in Pho4 binding to sites without a flanking T base.

To our knowledge, there has been no systematic and
global study asking how precisely in vivo TF binding events
can be explained by a combination of the intrinsic sequence
preferences of the TF in question, other TFs, and nucleo-
somes, despite the fact that data exist for such a study and
that it is well suited to statistical and machine-learning
approaches. Wang et al. (2006) examined the improvement
in predicting ChIP-chip data for a given TF, using its motif
and either one or two additional motifs, using regression,
and reported improvement of the prediction of in vivo bind-
ing sites for roughly a third of all TFs, particularly those for
which the TF’s own motif is least informative for in vivo
binding. This suggests that specific pairs or triplets of TFs
might bind cooperatively, in the biochemical sense. How-
ever, no individual results were reported; it is possible that
the second and third motifs were generally those of GRFs. In
addition, nucleosomes were not considered in this study.

Relating TF binding events to gene expression patterns

Comparing the effects of targeted perturbation of each TF
to binding data for the corresponding TF: It is now well
established that in organisms ranging from yeast to human
there is often little apparent correspondence between the
genes bound by a given TF in the promoter and the genes
whose expression is affected by deletion or knockdown of
the gene that encodes the TF (reviewed in MacQuarrie et al.
2011). Indeed, in yeast, the aforementioned Hu et al. (2007)
study provides a striking example, comparing the effects on
global gene expression of 276 TF deletion mutants to pre-
viously generated binding data for 188 of the same proteins
(Harbison et al. 2004). Hu et al. concluded that only �3% of
genes bound by the TFs were affected by the knockout.
Likewise, only �3% of the genes with expression changes
in the TF mutant were bound by the TF. A similar analysis of
ChIP-chip data for 70 chromatin proteins (Venters et al.
2011) and expression data for deletion mutants in the same
chromatin proteins (Lenstra et al. 2011) reached a similar
conclusion (Lenstra and Holstege 2012). On average, only
2.5% of genes bound by the chromatin protein were affected
by the deletion of that same protein, and of the genes whose
expression was affected by deletion of a chromatin protein,
only 24% were bound by that same protein (Lenstra and
Holstege 2012). The higher proportion of expression
changes associated with binding (relative to TFs) is partly
explained by the much larger number of binding events than
are typically found with TFs, often exceeding 1000 occupied
promoters/genes for a typical chromatin protein (Venters
et al. 2011). Nonetheless, the conclusion remains that only
a small minority of bound promoters are affected by deletion
of the gene encoding the bound protein.

How do we account for such observations? Gitter et al.
(2009) reanalyzed the Hu et al. data after “cleaning steps”.
Removing genes affected by many TFs (presumably stress
responders that typically represent secondary effects) and
retention only of genes with conserved promoter motifs
(presumably to enrich for functional binding sites) increased
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the overlap only to 6.7%/4.5% (binding sites with expres-
sion changes/altered genes with binding sites). These steps
should have reduced much of the noise in the data and seem
to exclude false positives as a predominant explanation. Re-
moving TFs with related protein sequences and/or shared
protein–protein interactions—which could contribute to re-
dundancy among TFs—further increased the overlap in the
“cleaned” data to 13% (of ChIP targets with altered expres-
sion). Thus, there is some degree of functional redundancy,
although it is also not the major source of discrepancy be-
tween TF binding and effect of the TF deletion. Consider-
ation of multiple types of secondary effects, including
transcriptional cascades, increased the proportion of ChIP
targets with altered expression only to 22% (some of which
is increase due to a larger number of tests), consistent with
conclusions of Hu et al. that accounting for indirect effects
(i.e., one TF regulating other TFs) resulted in little increase
in overlap; moreover, Hu et al. (2007, p. 686) concluded
that “during normal growth, regulation by a transcription
factor is not propagated appreciably via extended cascades”,
suggesting that examples such as the cell cycle, with its pro-
gressive waves of gene expression, may be the exception
rather than the rule. We note that secondary effects could
also include altering the expression of chromatin regulators,
perturbing cell cycle dynamics, or other mechanisms, which
were not considered in these studies.

An additional possibility for the low correspondence
between TF binding and the effects of TF deletion is false
negatives. There are often inconsistencies between different
published ChIP-chip data sets for the same factor, and
Hu et al. noted that substantially higher overlap may be
obtained with data from studies that carefully examined
the binding of a single TF. An additional type of “false neg-
ative” would be condition-specific regulation, as discussed
above; Hu et al. tested the TFs in YPD (and a subset under
heat-shock conditions). In fact, Figure 2 shows that the pro-
moters bound by Thi2 and Gal4 are greatly affected by the
appropriate environmental stimulus and correspond largely
to genes that are known targets of these TFs (Engel et al.
2010). Hu et al. argued that that this possibility does not
completely account for the discrepancy between binding
and regulation; however, regression approaches described
next, which would be able to capture context-dependent
regulation, appear to suggest a much larger degree of cor-
respondence between TF binding and gene regulation.

Learning the relationships between TF binding and gene
regulation: An independent approach to associate TF bind-
ing events with gene expression outputs is to map mathe-
matically between the binding events and gene expression
patterns collected over many conditions. This approach has
the advantage that it can account for combinatorial regula-
tion, as well as condition specificity. To our knowledge, this
overall approach was first described by Gao at al., following
upon work that had previously been reported for single TFs
and/or using promoter motifs (Gao et al. 2004 and references

therein). The essence of this approach is depicted in Figure 9;
for each gene, there is a vector of expression changes mea-
sured under diverse conditions, and there is a vector repre-
senting promoter–TF occupancy data for each TF (under
a single condition). The assumption is made that, in each
expression experiment, there is a corresponding vector of TF
activity levels and that the expression data for each gene are
the sum of the products of each TF activity level multiplied
by its promoter occupancy. These activity levels can be
inferred by linear regression.

One aspect of the resulting data structure is that one can
score, for each TF, whether or not genes bound by a given
TF have expression levels that track with the inferred
activity level of that TF—a phenomenon that Gao et al.
(2004) referred to as “coupling”, which can be thought of
as a measure of whether that specific site is functional. Gao
et al. found that binding data from 37 of the 113 TFs (33%)
from Lee et al. (2002) had a significant relationship to gene
expression patterns in a set of �750 microarray experiments
available at the time. The “coupled” genes for any TF, rela-
tive to uncoupled genes, were much more likely to be
enriched for specific Gene Ontology categories. Moreover,
among these 37 TFs, on average 58% of significantly bound
genes were classified as significantly coupled genes. Given
the many caveats of the data at the time—the Lee et al.
ChIP-chip data were collected only in YPD and the microarray

Figure 9 Using regression to predict gene expression. (A) A trivial exam-
ple where the relationship between expression level (Egx) and TF binding
to promoters (Bgf) is found for a single experiment (x) and a single TF (f).
Here, the model learns two parameters: the background expression level
for all genes in the experiment (F0x) and the activity of the transcription
factor in the given experiment (Ffx). (B) The generalized equation for
multiple factors and multiple experiments. (C) Matrix representations of
the generalized equation. Baseline expression is the same for all genes
and so is represented as a single vector multiplied by a row vector of
constants where c = 1/(no. genes).
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experiments did not contain all possible environmental per-
turbations—this finding paints a relatively optimistic picture
regarding the functionality of individual TF binding sites.

A caveat to the approach of Gao et al., and a challenge
overall in mapping transcriptional regulatory networks, is
that promoter activity may not be a simple linear sum of
the activity of bound TFs. TFs can cooperate to activate
genes, just as they cooperate in DNA binding; similar argu-
ments presented above with regard to poor correlation be-
tween motif occurrence and in vivo binding, and with the
challenge of computational learning of patterns, can be also
be made with regard to gene activation or repression, even
after a TF is bound. The aforementioned study analyzing
Pho4 (Zhou and O’Shea 2011) provides an example in
which multiple factors combine to generate specificity in
regulation of transcription. Beyond the factors that influence
the binding locations of Pho4, activation of transcription
appears to involve a cooperative component between Pho4
and Pho2 (in the stringent sense described above) in almost
all cases. A preferred spacing is also observed between the
Pho4 and Pho2 binding sites. It is also possible that TFs can
antagonize each other; for instance, Fkh1 and Fkh2 can act
as “antiactivators” that specifically prevent activation by
Swi5 via recruitment of the Rpd3(Large) histone deacety-
lase complex (Voth et al. 2007). As with DNA binding, TF
activities can be influenced by proper positioning of their
binding site relative to other factors, such as other TFs,
nucleosomes, polymerase, and chromatin proteins (Iyer
and Struhl 1995; Lieb et al. 2001; Zhou and O’Shea
2011; Sharon et al. 2012). In addition, in yeast, activation
sites appear to be restricted by chromatin-mediated mech-
anisms to act within a few hundred bases of their binding
site (Dobi and Winston 2007).

Relating DNA sequence directly to gene
expression patterns

Despite the relative difficulty of predicting measured in vivo
protein binding sites from DNA sequence, and relating
in vivo TF binding sites to the effects of perturbing the same
TFs, relating sequence elements directly to expression pat-
terns (and vice versa) has been remarkably productive in
yeast. One possible explanation for this fact is that the phys-
ical network of TF–DNA associations is sufficiently malleable
that ChIP data collected under one growth condition can
have little overlap with the occupancy under other condi-
tions (Harbison et al. 2004). The DNA sequence, in contrast,
is invariant. Another possible explanation is that the relative
occupancy measurements made by techniques such as ChIP
are not the most relevant parameter by which TFs translate
sequence into expression output. The aforementioned Lickwar
et al. (2012) study suggests that residence time may be the
more relevant parameter, at least for some TFs.

Much of the initial work in mapping yeast transcriptional
networks involved searching for motifs that are enriched in
the promoters of coexpressed genes. There is an extensive
literature on motif discovery, which has been reviewed and

evaluated previously (Tompa et al. 2005). Almost certainly,
the success of motif finding in yeast benefits from the fact
that there are several large groups of tightly coregulated
genes that recur in many gene expression studies (e.g., see
Figure 4) and conform to the regulon model in that they are
controlled by one or a few TFs. These groups include the
ribosomal protein genes [controlled by Rap1, Fhl1, and Sfp1
(Shore and Nasmyth 1987; Lee et al. 2002; Marion et al.
2004)], the proteasome genes [controlled by Rpn4 (Mannhaupt
et al. 1999)], amino acid biosynthesis genes [controlled by
Gcn4 (Arndt and Fink 1986)], the ribosome biogenesis reg-
ulon described below, and several regulators of the cell cycle
(Spellman et al. 1998) (see Chua et al. 2004 for a more com-
plete listing). Thus, a relatively large degree of variance in
expression data can be explained by a few motifs. It is also
more straightforward to identify motifs when there are a large
number of example promoters.

The Polymerase A and C (PAC) and RRPE motifs are
a particularly striking example of both the success and the
frustration that can be associated with motif discovery. The
PAC motif was first found in 1991 by manual inspection of
10 promoters of genes encoding subunits of RNA Poly-
merases I and III (A and C) (Dequard-Chablat et al. 1991).
Both the PAC element and the RRPE element, which occurs
in many of the 100+ genes in this regulon, have subse-
quently been identified repeatedly in studies using diverse
methods to identify motifs in the promoters of coregulated
or functionally related genes (e.g., Tavazoie et al. 1999;
Hughes et al. 2000a; Pilpel et al. 2001). An obvious next
step in characterizing the motifs and the upstream regulatory
pathway would be to identify the PAC- and RRPE-binding
proteins. However, it was not until 2007 that an RRPE-binding
protein—Stb3, a protein lacking a canonical DNA-binding
domain—was identified (by brute-force screening of GST
fusions of each yeast protein) and shown to regulate genes
containing RRPE sites (Liko et al. 2007). Similarly, it was not
until 2008 that two proteins that bind the PAC element were
identified: the paralogs Ybl054w [Tod6/Pbf1 (Pbf1, “PAC-
binding factor 1”)] and Yer088c (Dot6/Pbf2) were found to
bind PAC sequences in the previously described PBM surveys
(Badis et al. 2008; Zhu et al. 2009). To our knowledge, the
signaling pathway that controls the PAC- and RRPE-binding
proteins remains opaque; several signaling pathways are likely
to be involved (see Chen and Powers 2006 and references
therein). One conclusion from this enterprise might be that,
while motif searching certainly provides a rapid and compel-
ling entry point into mapping transcriptional networks, it can
be surprisingly difficult to characterize the regulatory mecha-
nisms that act through the motifs.

Mapping between regulatory sequence and gene expres-
sion output is a major contemporary problem in computational
biology. For those outside the field, the overall challenge is
described in some depth, and in an accessible manner, in Beer
and Tavazoie (2004), who described the derivation of logical
rules to predict membership of genes in expression clusters on
the basis of motif matches. Other approaches that have been
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applied include decision trees, regression, and hidden Markov
models, as well as incorporation of additional factors such as
the expression levels of TFs (Pavlidis et al. 2001; Middendorf
et al. 2004). The Bussemaker review (Bussemaker et al.
2007) provides an overview of the myriad approaches that
have been described. Our impression is that most methods
can effectively capture large trends in the data, but—nearly
a decade after the Gao et al. (2004) study—it is still an open
challenge for computational models to explain precisely the
regulation of most genes and to account for the activities of
the majority of TFs.

Modeling challenges and theoretical considerations

We are often asked what is the best way to model yeast
transcriptional regulatory networks and what are the relative
advantages of different approaches, and we are unable to
answer the question except in vague terms. To our knowl-
edge, the relative ability of different algorithms to accurately
explain gene expression patterns has not been examined
using the same data and the same evaluation criteria, except
in specific cases where previous analyses have been revisited;
for example, Yuan et al. (2007) reported that the relative
positioning, spacing, and orientation of motif matches reported
by Beer and Tavazoie were less important than originally
claimed (although some combinations are obvious by eye,
making it hard to believe that they are not functionally rel-
evant; see Weirauch and Hughes 2010). A uniform frame-
work for the evaluation of models would be extremely
helpful. And, while there are theoretical grounds to expect
complexity in gene regulation, it should also be considered
that more parameters will generally result in a better fit to
the data. Cross-validation—or, even better, validation on
independent data sets—is essential to discriminate model
improvement from overfitting. Overall, perhaps an even
greater issue than what method to use is whether the data
available contain enough information to comprehensively
decipher regulatory mechanisms. If so, what features need
to be incorporated? And if not, what data are still needed?

An important consideration is cooperativity is among TFs
and whether it can be captured using current modeling
approaches, using any amount of in vivo data. To our knowl-
edge, analysis of large-scale studies has provided relatively
little evidence supporting a major role for true cooperativity
among TFs in gene regulation—i.e., that transcript levels are
controlled by logical combinations of TF binding events,
rather than a simpler aggregative or combinatorial effect.
In fact, the Yuan et al. (2007) study mentioned above
showed that microarray expression clusters can be predicted
as effectively by motif matches for individual TFs, relative to
multiple TFs. This is despite the fact that combinatorial con-
trol appears to be common, on the basis that binding sites
for multiple TFs consistently appear together in the pro-
moters of genes with related functions or coordinate expres-
sion (e.g., Pilpel et al. 2001; Beer and Tavazoie 2004).
Intriguingly, the conclusions of Yuan et al. (2007) are similar
to those of Gertz et al. (2009), who found that a thermody-

namic model that is controlled only by equilibrium binding
of proteins to DNA and to each other (and not effects me-
diated by nucleosomes) explained most, albeit not all, of the
variation in expression of libraries of synthetic regulatory
modules (i.e., random assemblies of three or four TFBSs
upstream of a basal promoter and a reporter gene). Some
type of cooperativity among TFs, however, was an important
component of the Gertz models and could explain the func-
tionality of weaker binding sites, which have been argued to
be prevalent in the yeast genome (Tanay 2006).

One complicating issue in this type of endeavor is that
most of the computational approaches (e.g., regression)
work best by identifying recurring patterns that have statis-
tical discriminatory power. As a rule of thumb in statistical
inference, the number of examples (e.g., promoters) should
be at least 10 times greater than the number of features
(e.g., TF binding motifs or combinations of motifs) to learn
rules (e.g., sites for TF-A and TF-B together allow coopera-
tive binding). Otherwise, algorithms tend to “overfit”, i.e.,
identify noise patterns rather than genuine signals. If we
assume that TFs are typically able to act cooperatively in
many different configurations, then there might not be a suf-
ficient number of promoters to learn all the functional com-
binations. Among 209 TFs, there would be 21,736 possible
nonredundant pairs and much larger numbers of three- and
four-way combinations. If there are multiple configurations
that can specify the same regulatory output, and if they arise
with equal frequency, then it is possible that each promoter
could have a unique combination of TFs, making the nature
of the interactions impossible to learn from �6000 native
promoter sequences.

It therefore becomes important to consider how compli-
cated we can expect eukaryotic gene regulation to be. An
interesting observation made recently is that, in simulated
thermodynamics-based evolutionary sampling for configu-
rations of TF binding sites that yield a specific strength of
regulation, more complicated arrangements of weak binding
sites arise more frequently than a single strong site, even
when a single strong site will suffice, simply because there
are a larger number of possible configurations (He et al.
2011). This finding is reminiscent of earlier analyses indi-
cating that low-affinity TF binding sites are often bound and
may have widespread, albeit low-magnitude, impact on
gene regulation (Tanay 2006). The fact that any two TFs
may cooperate to exclude nucleosomes, as described above,
also suggests that there may indeed be a very large number
of possible functional combinations. Similarly, if there are
multiple factors that can influence each of the different steps
in transcription, then the number of possible functional con-
figurations of TF binding sites that achieve the same regu-
latory output could be large.

These findings are consistent with the notion that eukaryotic
TFs may generally have small binding sites to allow more rapid
generation of new regulatory modules from randommutations;
similar arguments can be made regarding the high frequency
of turnover and shuffling of regulatory sequences in organisms
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ranging from yeast to vertebrates (Weirauch and Hughes 2010
and references therein). Since promoters presumably evolve
independently of each other, it is conceivable that they are
all functionally distinct, representing unique instances of dis-
tinct TF motif configurations (and nucleosome occupancy and
positioning signals).

Altogether, several credible arguments can be raised that
it may not be possible to learn all of the “rules” dictating
gene expression outputs, using standard types of statistical
analysis and existing data. Expansion of recent develop-
ments in the construction and analysis of synthetic regula-
tory element libraries may enable collection of training data
needed to learn by example. An alternative approach, how-
ever, which can circumvent the need for recurring examples
is to build biophysical/thermodynamic models that account
for all of the relevant molecular events taking place on a seg-
ment of DNA, including nucleosome formation (Raveh-Sadka
et al. 2009; Segal and Widom 2009; Wasson and Hartemink
2009). To our knowledge, this approach has been applied
only to specific examples (e.g., individual promoters and their
known regulatory factors), but related models have shown
promise in predicting functional targets of TFs in human and
Drosophila (He et al. 2009), and such approaches may repre-
sent the future of modeling regulatory networks, as they have
the potential to address both the theoretical and the practical
concerns described here.

Conclusion and Prospects

Mapping transcriptional networks is a pursuit that encom-
passes numerous objectives, but has the common goal of
understanding the mechanisms by which genes are regu-
lated as an ensemble. As described here, there are many
effective ways to approach this problem in vivo, in vitro, and
in silico. We now have high-confidence motifs for the ma-
jority of yeast TFs, high-confidence in vivo binding data for
many of them, and a vast array of gene expression profiles.
Moreover, computational frameworks to address major ques-
tions in the architecture and operation of transcriptional net-
works have been described. Analyses to date indicate that
genome-scale data are, to a first approximation, consistent
with our basic understanding of how gene regulation works,
which was established largely from the analysis of single
promoters and single TFs.

Despite the many advances—and the occasional percep-
tion among researchers outside the field (and, in our expe-
rience, funding agencies) that mapping yeast transcriptional
regulatory networks is a task that has been completed—the
functions of roughly half of all yeast TFs remain opaque, and
it is difficult to explain what exactly is happening at most
individual promoters. Where do we go now, to get a clearer
and more comprehensive picture?

We see two major areas that could be advanced by
extension of existing techniques and approaches. First, on
the basis of the analyses highlighted here, it appears that the
entire yeast transcriptional network has not really been

physically mapped with completeness, depth, and accuracy.
This may be due in large part to the fact that most of the
data have been collected under standard laboratory growth
conditions, under which most TFs are probably inactive. In
fact, complete liquid medium and steady temperature are
likely an unnatural growth condition for yeast. It would
be invaluable to have ChIP-seq data (or some alternative)
for all TFs for yeast grown in a variety of “stressful” con-
ditions (which, for yeast, is more likely normal life) to-
gether with matched expression data from mutants in the
same factors.

The second major area is understanding the determinants
of TF targeting and gene expression—the mechanisms that
dictate which potential TF binding sites are occupied in vivo,
as well as the mechanisms that govern which in vivo binding
sites affect transcription, and when, and how. This endeavor
relies heavily on computational modeling, and while many
approaches have been described, most were field tested
prior to systematic analysis of TF sequence specificities by
PBMs and MITOMI, before the importance of the intrinsic
sequence preferences of nucleosomes was widely appreci-
ated and before the use of tiling arrays and ChIP-seq became
prevalent. Simply revisiting existing models with newer data
may be illuminating, as might extending biophysical models
of individual promoters to a whole-genome level.

Needless to say, we can also anticipate that new develop-
ments, techniques, and tools will change the landscape of
this enterprise or at least introduce new information that
should be incorporated. Given the numerous challenges out-
lined here, transcriptional networks will undoubtedly con-
tinue to be a subject of intense interest for decades to come.

Acknowledgments

We thank the University of Toronto, Canadian Institutes For
Advanced Research, Canadian Institutes of Health Research,
the Ontario Graduate Scholarship Program and the National
Science and Engineering Research Council of Canada Post-
graduate Scholarship Program for support.

Literature Cited

Adams, C. C., and J. L. Workman, 1995 Binding of disparate tran-
scriptional activators to nucleosomal DNA is inherently cooper-
ative. Mol. Cell. Biol. 15: 1405–1421.

Almer, A., H. Rudolph, A. Hinnen, and W. Horz, 1986 Removal of
positioned nucleosomes from the yeast PHO5 promoter upon
PHO5 induction releases additional upstream activating DNA
elements. EMBO J. 5: 2689–2696.

Aragon, A. D., A. L. Rodriguez, O. Meirelles, S. Roy, G. S. Davidson
et al., 2008 Characterization of differentiated quiescent and
nonquiescent cells in yeast stationary-phase cultures. Mol. Biol.
Cell 19: 1271–1280.

Arndt, K., and G. R. Fink, 1986 GCN4 protein, a positive transcrip-
tion factor in yeast, binds general control promoters at all 59
TGACTC 39 sequences. Proc. Natl. Acad. Sci. USA 83: 8516–
8520.

30 T. R. Hughes and C. G. de Boer



Auerbach, R. K., G. Euskirchen, J. Rozowsky, N. Lamarre-Vincent, Z.
Moqtaderi et al., 2009 Mapping accessible chromatin regions
using Sono-Seq. Proc. Natl. Acad. Sci. USA 106: 14926–14931.

Badis, G., E. T. Chan, H. van Bakel, L. Peña-Castillo, D. Tillo et al.,
2008 A library of yeast transcription factor motifs reveals
a widespread function for Rsc3 in targeting nucleosome exclu-
sion at promoters. Mol. Cell 32: 878–887.

Badis, G., M. F. Berger, A. A. Philippakis, S. Talukder, A. R. Gehrke
et al., 2009 Diversity and complexity in DNA recognition by
transcription factors. Science 324: 1720–1723.

Bai, L., A. Ondracka, and F. R. Cross, 2011 Multiple sequence-
specific factors generate the nucleosome-depleted region on
CLN2 promoter. Mol. Cell 42: 465–476.

Balaji, S., L. M. Iyer, L. Aravind, and M. M. Babu, 2006 Uncovering
a hidden distributed architecture behind scale-free transcriptional
regulatory networks. J. Mol. Biol. 360: 204–212.

Barrett, T., D. B. Troup, S. E. Wilhite, P. Ledoux, C. Evangelista
et al., 2011 NCBI GEO: archive for functional genomics data
sets–10 years on. Nucleic Acids Res. 39: D1005–D1010.

Barski, A., S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones et al.,
2007 High-resolution profiling of histone methylations in the
human genome. Cell 129: 823–837.

Beer, M. A., and S. Tavazoie, 2004 Predicting gene expression
from sequence. Cell 117: 185–198.

Berbenetz, N. M., C. Nislow, and G. W. Brown, 2010 Diversity of
eukaryotic DNA replication origins revealed by genome-wide
analysis of chromatin structure. PLoS Genet. 6: e1001092.

Berger, M. F., A. A. Philippakis, A. M. Qureshi, F. S. He, P. W. Estep
3rd. et al., 2006 Compact, universal DNA microarrays to com-
prehensively determine transcription-factor binding site specif-
icities. Nat. Biotechnol. 24: 1429–1435.

Bernstein, B. E., C. L. Liu, E. L. Humphrey, E. O. Perlstein, and S. L.
Schreiber, 2004 Global nucleosome occupancy in yeast. Ge-
nome Biol. 5: R62.

Bird, A. J., M. Gordon, D. J. Eide, and D. R. Winge, 2006 Repression
of ADH1 and ADH3 during zinc deficiency by Zap1-induced inter-
genic RNA transcripts. EMBO J. 25: 5726–5734.

Boorsma, A., X. J. Lu, A. Zakrzewska, F. M. Klis, and H. J. Bussemaker,
2008 Inferring condition-specific modulation of transcription
factor activity in yeast through regulon-based analysis of genome-
wide expression. PLoS ONE 3: e3112.

Borneman, A. R., J. A. Leigh-Bell, H. Yu, P. Bertone, M. Gerstein
et al., 2006 Target hub proteins serve as master regulators of
development in yeast. Genes Dev. 20: 435–448.

Boyer, L. A., M. R. Langer, K. A. Crowley, S. Tan, J. M. Denu et al.,
2002 Essential role for the SANT domain in the functioning of
multiple chromatin remodeling enzymes. Mol. Cell 10: 935–
942.

Brandl, C. J., and K. Struhl, 1990 A nucleosome-positioning se-
quence is required for GCN4 to activate transcription in the
absence of a TATA element. Mol. Cell. Biol. 10: 4256–4265.

Bregman, A., M. Avraham-Kelbert, O. Barkai, L. Duek, A. Guterman
et al., 2011 Promoter elements regulate cytoplasmic mRNA
decay. Cell 147: 1473–1483.

Brem, R. B., and L. Kruglyak, 2005 The landscape of genetic com-
plexity across 5,700 gene expression traits in yeast. Proc. Natl.
Acad. Sci. USA 102: 1572–1577.

Brem, R. B., G. Yvert, R. Clinton, and L. Kruglyak, 2002 Genetic
dissection of transcriptional regulation in budding yeast. Sci-
ence 296: 752–755.

Bumgarner, S. L., R. D. Dowell, P. Grisafi, D. K. Gifford, and G. R.
Fink, 2009 Toggle involving cis-interfering noncoding RNAs
controls variegated gene expression in yeast. Proc. Natl. Acad.
Sci. USA 106: 18321–18326.

Bussemaker, H. J., B. C. Foat, and L. D. Ward, 2007 Predictive
modeling of genome-wide mRNA expression: from modules to
molecules. Annu. Rev. Biophys. Biomol. Struct. 36: 329–347.

Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis et al.,
1996 RSC, an essential, abundant chromatin-remodeling com-
plex. Cell 87: 1249–1260.

Camblong, J., N. Iglesias, C. Fickentscher, G. Dieppois, and F. Stutz,
2007 Antisense RNA stabilization induces transcriptional gene
silencing via histone deacetylation in S. cerevisiae. Cell 131:
706–717.

Carrillo, E., G. Ben-Ari, J. Wildenhain, M. Tyers, D. Grammentz
et al., 2012 Characterizing the roles of Met31 and Met32 in
coordinating Met4-activated transcription in the absence of
Met30. Mol. Biol. Cell 23: 1928–1942.

Causton, H. C., B. Ren, S. S. Koh, C. T. Harbison, E. Kanin et al.,
2001 Remodeling of yeast genome expression in response to
environmental changes. Mol. Biol. Cell 12: 323–337.

Chen, J. C., and T. Powers, 2006 Coordinate regulation of multi-
ple and distinct biosynthetic pathways by TOR and PKA kinases
in S. cerevisiae. Curr. Genet. 49: 281–293.

Chen, X., L. Guo, Z. Fan, and T. Jiang, 2008 W-AlignACE: an
improved Gibbs sampling algorithm based on more accurate
position weight matrices learned from sequence and gene ex-
pression/ChIP-chip data. Bioinformatics 24: 1121–1128.

Chen, K., E. van Nimwegen, N. Rajewsky, and M. L. Siegal,
2010 Correlating gene expression variation with cis-regulatory
polymorphism in Saccharomyces cerevisiae. Genome Biol. Evol.
2: 697–707.

Choi, J. K., and Y. J. Kim, 2008 Epigenetic regulation and the
variability of gene expression. Nat. Genet. 40: 141–147.

Chua, G., M. D. Robinson, Q. Morris, and T. R. Hughes,
2004 Transcriptional networks: reverse-engineering gene regu-
lation on a global scale. Curr. Opin. Microbiol. 7: 638–646.

Chua, G., Q. D. Morris, R. Sopko, M. D. Robinson, O. Ryan et al.,
2006 Identifying transcription factor functions and targets by
phenotypic activation. Proc. Natl. Acad. Sci. USA 103: 12045–
12050.

Churchman, L. S., and J. S. Weissman, 2011 Nascent transcript
sequencing visualizes transcription at nucleotide resolution. Na-
ture 469: 368–373.

Cook, J. G., L. Bardwell, S. J. Kron, and J. Thorner, 1996 Two
novel targets of the MAP kinase Kss1 are negative regulators of
invasive growth in the yeast Saccharomyces cerevisiae. Genes
Dev. 10: 2831–2848.

Cosma, M. P., T. Tanaka, and K. Nasmyth, 1999 Ordered recruit-
ment of transcription and chromatin remodeling factors to a cell
cycle- and developmentally regulated promoter. Cell 97: 299–311.

Courey, A. J., 2001 Cooperativity in transcriptional control. Curr.
Biol. 11: R250–R252.

Cunningham, T. S., and T. G. Cooper, 1993 The Saccharomyces
cerevisiae DAL80 repressor protein binds to multiple copies of
GATAA-containing sequences (URSGATA). J. Bacteriol. 175:
5851–5861.

D’Alessio, J. A., K. J. Wright, and R. Tjian, 2009 Shifting players and
paradigms in cell-specific transcription. Mol. Cell 36: 924–931.

David, L., W. Huber, M. Granovskaia, J. Toedling, C. J. Palm et al.,
2006 A high-resolution map of transcription in the yeast ge-
nome. Proc. Natl. Acad. Sci. USA 103: 5320–5325.

de Boer, C. G., and T. R. Hughes, 2011 YeTFaSCo: a database of
evaluated yeast transcription factor sequence specificities. Nu-
cleic Acids Res. 40: D169–D179.

Dequard-Chablat, M., M. Riva, C. Carles, and A. Sentenac,
1991 RPC19, the gene for a subunit common to yeast RNA
polymerases A (I) and C (III). J. Biol. Chem. 266: 15300–15307.

Devaux, F., P. Marc, C. Bouchoux, T. Delaveau, I. Hikkel et al.,
2001 An artificial transcription activator mimics the genome-
wide properties of the yeast Pdr1 transcription factor. EMBO
Rep. 2: 493–498.

Diffley, J. F., 1992 Global regulators of chromosome function in
yeast. Antonie van Leeuwenhoek 62: 25–33.

Mapping Yeast Transcriptional Networks 31



Dobi, K. C., and F. Winston, 2007 Analysis of transcriptional ac-
tivation at a distance in Saccharomyces cerevisiae. Mol. Cell.
Biol. 27: 5575–5586.

Dohm, J. C., C. Lottaz, T. Borodina, and H. Himmelbauer,
2008 Substantial biases in ultra-short read data sets from
high-throughput DNA sequencing. Nucleic Acids Res. 36: e105.

Dolan, J. W., and S. Fields, 1990 Overproduction of the yeast
STE12 protein leads to constitutive transcriptional induction.
Genes Dev. 4: 492–502.

Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein,
1998 Cluster analysis and display of genome-wide expression
patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.

Emerson, J. J., L. C. Hsieh, H. M. Sung, T. Y. Wang, C. J. Huang
et al., 2010 Natural selection on cis and trans regulation in
yeasts. Genome Res. 20: 826–836.

Engel, S. R., R. Balakrishnan, G. Binkley, K. R. Christie, M. C. Costanzo
et al., 2010 Saccharomyces Genome Database provides mutant
phenotype data. Nucleic Acids Res. 38: D433–D436.

Ercan, S., and R. T. Simpson, 2004 Global chromatin structure of
45,000 base pairs of chromosome III in a- and alpha-cell yeast
and during mating-type switching. Mol. Cell. Biol. 24: 10026–
10035.

Ernst, J., O. Vainas, C. T. Harbison, I. Simon, and Z. Bar-Joseph,
2007 Reconstructing dynamic regulatory maps. Mol. Syst.
Biol. 3: 74.

Floer, M., X. Wang, V. Prabhu, G. Berrozpe, S. Narayan et al.,
2010 A RSC/nucleosome complex determines chromatin ar-
chitecture and facilitates activator binding. Cell 141: 407–418.

Foat, B. C., R. G. Tepper, and H. J. Bussemaker, 2008 TransfactomeDB:
a resource for exploring the nucleotide sequence specificity and
condition-specific regulatory activity of trans-acting factors. Nu-
cleic Acids Res. 36: D125–D131.

Fordyce, P. M., D. Gerber, D. Tran, J. Zheng, H. Li et al., 2010 De
novo identification and biophysical characterization of transcrip-
tion-factor binding sites with microfluidic affinity analysis. Nat.
Biotechnol. 28: 970–975.

Fourel, G., T. Miyake, P. A. Defossez, R. Li, and E. Gilson,
2002 General regulatory factors (GRFs) as genome parti-
tioners. J. Biol. Chem. 277: 41736–41743.

Frietze, S., and P. J. Farnham, 2011 Transcription factor effector
domains. Subcell. Biochem. 52: 261–277.

Fulton, D. L., S. Sundararajan, G. Badis, T. R. Hughes, W. W.
Wasserman et al., 2009 TFCat: the curated catalog of mouse
and human transcription factors. Genome Biol. 10: R29.

Ganapathi, M., M. J. Palumbo, S. A. Ansari, Q. He, K. Tsui et al.,
2011 Extensive role of the general regulatory factors, Abf1
and Rap1, in determining genome-wide chromatin structure in
budding yeast. Nucleic Acids Res. 39: 2032–2044.

Gao, F., B. C. Foat, and H. J. Bussemaker, 2004 Defining transcrip-
tional networks through integrative modeling of mRNA expres-
sion and transcription factor binding data. BMC Bioinformatics
5: 31.

Garbett, K. A., M. K. Tripathi, B. Cencki, J. H. Layer, and P. A. Weil,
2007 Yeast TFIID serves as a coactivator for Rap1p by direct
protein-protein interaction. Mol. Cell. Biol. 27: 297–311.

Gasch, A. P., P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B.
Eisen et al., 2000 Genomic expression programs in the re-
sponse of yeast cells to environmental changes. Mol. Biol. Cell
11: 4241–4257.

Gerstein, M. B., Z. J. Lu, E. L. Van Nostrand, C. Cheng, B. I. Arshinoff
et al., 2010 Integrative analysis of the Caenorhabditis elegans
genome by the modENCODE project. Science 330: 1775–1787.

Gertz, J., E. D. Siggia, and B. A. Cohen, 2009 Analysis of combi-
natorial cis-regulation in synthetic and genomic promoters. Na-
ture 457: 215–218.

Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle
et al., 2003 Global analysis of protein expression in yeast. Na-
ture 425: 737–741.

Gitter, A., Z. Siegfried, M. Klutstein, O. Fornes, B. Oliva et al.,
2009 Backup in gene regulatory networks explains differences
between binding and knockout results. Mol. Syst. Biol. 5: 276.

Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon et al.,
1996 Life with 6000 genes. Science 274: 546, 563–567.

Gordan, R., A. J. Hartemink, and M. L. Bulyk, 2009 Distinguishing
direct vs. indirect transcription factor-DNA interactions. Genome
Res. 19: 2090–2100.

Gordan, R., K. F. Murphy, R. P. McCord, C. Zhu, A. Vedenko et al.,
2011 Curated collection of yeast transcription factor DNA
binding specificity data reveals novel structural and gene regu-
latory insights. Genome Biol. 12: R125.

Gottesman, S., 1984 Bacterial regulation: global regulatory net-
works. Annu. Rev. Genet. 18: 415–441.

Grigull, J., S. Mnaimneh, J. Pootoolal, M. D. Robinson, and T. R.
Hughes, 2004 Genome-wide analysis of mRNA stability using
transcription inhibitors and microarrays reveals posttranscrip-
tional control of ribosome biogenesis factors. Mol. Cell. Biol.
24: 5534–5547.

Hahn, S., and E. T. Young, 2011 Transcriptional regulation in
Saccharomyces cerevisiae: transcription factor regulation and
function, mechanisms of initiation, and roles of activators and
coactivators. Genetics 189: 705–736.

Hall, D. A., H. Zhu, X. Zhu, T. Royce, M. Gerstein et al.,
2004 Regulation of gene expression by a metabolic enzyme.
Science 306: 482–484.

Harbison, C. T., D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac
et al., 2004 Transcriptional regulatory code of a eukaryotic
genome. Nature 431: 99–104.

Hartley, P. D., and H. D. Madhani, 2009 Mechanisms that specify
promoter nucleosome location and identity. Cell 137: 445–458.

He, X., C. C. Chen, F. Hong, F. Fang, S. Sinha et al., 2009 A bio-
physical model for analysis of transcription factor interaction
and binding site arrangement from genome-wide binding data.
PLoS ONE 4: e8155.

He, X., T. S. Duque, and S. Sinha, 2012 Evolutionary origins of
transcription factor binding site clusters. Mol. Biol. Evol. 29:
1059–1070.

Henikoff, J. G., J. A. Belsky, K. Krassovsky, D. M. MacAlpine, and S.
Henikoff, 2011 Epigenome characterization at single base-pair
resolution. Proc. Natl. Acad. Sci. USA 108: 18318–18323.

Hesselberth, J. R., X. Chen, Z. Zhang, P. J. Sabo, R. Sandstrom et al.,
2009 Global mapping of protein-DNA interactions in vivo by
digital genomic footprinting. Nat. Methods 6: 283–289.

Hibbs, M. A., D. C. Hess, C. L. Myers, C. Huttenhower, K. Li et al.,
2007 Exploring the functional landscape of gene expression:
directed search of large microarray compendia. Bioinformatics
23: 2692–2699.

Hikkel, I., A. Lucau-Danila, T. Delaveau, P. Marc, F. Devaux et al.,
2003 A general strategy to uncover transcription factor prop-
erties identifies a new regulator of drug resistance in yeast. J.
Biol. Chem. 278: 11427–11432.

Hillenmeyer, M. E., E. Fung, J. Wildenhain, S. E. Pierce, S. Hoon
et al., 2008 The chemical genomic portrait of yeast: uncover-
ing a phenotype for all genes. Science 320: 362–365.

Hogan, D. J., D. P. Riordan, A. P. Gerber, D. Herschlag, and P. O.
Brown, 2008 Diverse RNA-binding proteins interact with func-
tionally related sets of RNAs, suggesting an extensive regulatory
system. PLoS Biol. 6: e255.

Hongay, C. F., P. L. Grisafi, T. Galitski, and G. R. Fink,
2006 Antisense transcription controls cell fate in Saccharomy-
ces cerevisiae. Cell 127: 735–745.

32 T. R. Hughes and C. G. de Boer



Houseley, J., L. Rubbi, M. Grunstein, D. Tollervey, and M. Vogelauer,
2008 A ncRNA modulates histone modification and mRNA in-
duction in the yeast GAL gene cluster. Mol. Cell 32: 685–695.

Hu, Z., P. J. Killion, and V. R. Iyer, 2007 Genetic reconstruction of
a functional transcriptional regulatory network. Nat. Genet. 39:
683–687.

Hughes, J. D., P. W. Estep, S. Tavazoie, and G. M. Church,
2000a Computational identification of cis-regulatory elements
associated with groups of functionally related genes in Saccha-
romyces cerevisiae. J. Mol. Biol. 296: 1205–1214.

Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton
et al., 2000b Functional discovery via a compendium of ex-
pression profiles. Cell 102: 109–126.

Huh, W. K., J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson
et al., 2003 Global analysis of protein localization in budding
yeast. Nature 425: 686–691.

Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler et al.,
2001 Integrated genomic and proteomic analyses of a system-
atically perturbed metabolic network. Science 292: 929–934.

Iyer, V., and K. Struhl, 1995 Poly(dA:dT), a ubiquitous promoter
element that stimulates transcription via its intrinsic DNA struc-
ture. EMBO J. 14: 2570–2579.

Iyer, V. R., C. E. Horak, C. S. Scafe, D. Botstein, M. Snyder et al.,
2001 Genomic binding sites of the yeast cell-cycle transcrip-
tion factors SBF and MBF. Nature 409: 533–538.

Johnson, A. D., and I. Herskowitz, 1985 A repressor (MAT alpha 2
Product) and its operator control expression of a set of cell type
specific genes in yeast. Cell 42: 237–247.

Jolma, A., and J. Taipale, 2011 Methods for analysis of transcrip-
tion factor DNA-binding specificity in vitro. Subcell. Biochem.
52: 155–173.

Jolma, A., T. Kivioja, J. Toivonen, L. Cheng, G. Wei et al.,
2010 Multiplexed massively parallel SELEX for characteriza-
tion of human transcription factor binding specificities. Genome
Res. 20: 861–873.

Kanoh, J., and F. Ishikawa, 2003 Composition and conservation
of the telomeric complex. Cell. Mol. Life Sci. 60: 2295–2302.

Kaplan, N., I. K. Moore, Y. Fondufe-Mittendorf, A. J. Gossett, D.
Tillo et al., 2009 The DNA-encoded nucleosome organization
of a eukaryotic genome. Nature 458: 362–366.

Keene, J. D., 2007 RNA regulons: coordination of post-transcrip-
tional events. Nat. Rev. Genet. 8: 533–543.

Kim, H. D., T. Shay, E. K. O’Shea, and A. Regev,
2009 Transcriptional regulatory circuits: predicting numbers
from alphabets. Science 325: 429–432.

Kodadek, T., 1993 How does the GAL4 transcription factor rec-
ognize the appropriate DNA binding sites in vivo? Cell. Mol.
Biol. Res. 39: 355–360.

Koerber, R. T., H. S. Rhee, C. Jiang, and B. F. Pugh,
2009 Interaction of transcriptional regulators with specific nu-
cleosomes across the Saccharomyces genome. Mol. Cell 35:
889–902.

Kundaje, A., X. Xin, C. Lan, S. Lianoglou, M. Zhou et al., 2008 A
predictive model of the oxygen and heme regulatory network in
yeast. PLOS Comput. Biol. 4: e1000224.

Lam, F. H., D. J. Steger, and E. K. O’Shea, 2008 Chromatin de-
couples promoter threshold from dynamic range. Nature 453:
246–250.

Lee, C. K., Y. Shibata, B. Rao, B. D. Strahl, and J. D. Lieb,
2004 Evidence for nucleosome depletion at active regulatory
regions genome-wide. Nat. Genet. 36: 900–905.

Lee, E., and H. J. Bussemaker, 2010 Identifying the genetic deter-
minants of transcription factor activity. Mol. Syst. Biol. 6: 412.

Lee, K., S. C. Kim, I. Jung, K. Kim, J. Seo et al., 2013 Genetic
landscape of open chromatin in yeast. PLoS Genet. 9: e1003229.

Lee, S. I., D. Pe’er, A. M. Dudley, G. M. Church, and D. Koller,
2006 Identifying regulatory mechanisms using individual var-

iation reveals key role for chromatin modification. Proc. Natl.
Acad. Sci. USA 103: 14062–14067.

Lee, T. A., P. Jorgensen, A. L. Bognar, C. Peyraud, D. Thomas et al.,
2010 Dissection of combinatorial control by the Met4 tran-
scriptional complex. Mol. Biol. Cell 21: 456–469.

Lee, T. I., N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph et al.,
2002 Transcriptional regulatory networks in Saccharomyces
cerevisiae. Science 298: 799–804.

Lee, W., D. Tillo, N. Bray, R. H. Morse, R. W. Davis et al., 2007 A
high-resolution atlas of nucleosome occupancy in yeast. Nat.
Genet. 39: 1235–1244.

Lenstra, T. L., and F. C. Holstege, 2012 The discrepancy between
chromatin factor location and effect. Nucleus 3: 213–219.

Lenstra, T. L., J. J. Benschop, T. Kim, J. M. Schulze, N. A. Brabers
et al., 2011 The specificity and topology of chromatin interac-
tion pathways in yeast. Mol. Cell 42: 536–549.

Li, X. Y., S. Thomas, P. J. Sabo, M. B. Eisen, J. A. Stamatoyanno-
poulos et al., 2011 The role of chromatin accessibility in direct-
ing the widespread, overlapping patterns of Drosophila
transcription factor binding. Genome Biol. 12: R34.

Lickwar, C. R., F. Mueller, S. E. Hanlon, J. G. McNally, and J. D.
Lieb, 2012 Genome-wide protein-DNA binding dynamics sug-
gest a molecular clutch for transcription factor function. Nature
484: 251–255.

Lieb, J. D., X. Liu, D. Botstein, and P. O. Brown, 2001 Promoter-
specific binding of Rap1 revealed by genome-wide maps of pro-
tein-DNA association. Nat. Genet. 28: 327–334.

Liko, D., M. G. Slattery, and W. Heideman, 2007 Stb3 binds to
ribosomal RNA processing element motifs that control transcrip-
tional responses to growth in Saccharomyces cerevisiae. J. Biol.
Chem. 282: 26623–26628.

Liu, X., C. K. Lee, J. A. Granek, N. D. Clarke, and J. D. Lieb,
2006 Whole-genome comparison of Leu3 binding in vitro
and in vivo reveals the importance of nucleosome occupancy
in target site selection. Genome Res. 16: 1517–1528.

Luscombe, N. M., M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann
et al., 2004 Genomic analysis of regulatory network dynamics
reveals large topological changes. Nature 431: 308–312.

Lyons, T. J., A. P. Gasch, L. A. Gaither, D. Botstein, P. O. Brown
et al., 2000 Genome-wide characterization of the Zap1p zinc-
responsive regulon in yeast. Proc. Natl. Acad. Sci. USA 97:
7957–7962.

Maas, W. K., and A. J. Clark, 1964 Studies on the mechanism of
repression of arginine biosynthesis in Escherichia coli. II.
Dominance of repressibility in diploids. J. Mol. Biol. 8: 365–
370.

MacIsaac, K. D., T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo
et al., 2006 An improved map of conserved regulatory sites for
Saccharomyces cerevisiae. BMC Bioinformatics 7: 113.

MacQuarrie, K. L., A. P. Fong, R. H. Morse, and S. J. Tapscott,
2011 Genome-wide transcription factor binding: beyond di-
rect target regulation. Trends Genet. 27: 141–148.

Maerkl, S. J., and S. R. Quake, 2007 A systems approach to mea-
suring the binding energy landscapes of transcription factors.
Science 315: 233–237.

Mak, H. C., L. Pillus, and T. Ideker, 2009 Dynamic reprogramming
of transcription factors to and from the subtelomere. Genome
Res. 19: 1014–1025.

Maniatis, T., J. V. Falvo, T. H. Kim, T. K. Kim, C. H. Lin et al.,
1998 Structure and function of the interferon-beta enhanceo-
some. Cold Spring Harb. Symp. Quant. Biol. 63: 609–620.

Mannhaupt, G., R. Schnall, V. Karpov, I. Vetter, and H. Feldmann,
1999 Rpn4p acts as a transcription factor by binding to PACE,
a nonamer box found upstream of 26S proteasomal and other
genes in yeast. FEBS Lett. 450: 27–34.

Mapping Yeast Transcriptional Networks 33



Marbach, D., J. C. Costello, R. Kuffner, N. M. Vega, R. J. Prill et al.,
2012 Wisdom of crowds for robust gene network inference.
Nat. Methods 9: 796–804.

Marion, R. M., A. Regev, E. Segal, Y. Barash, D. Koller et al.,
2004 Sfp1 is a stress- and nutrient-sensitive regulator of ribo-
somal protein gene expression. Proc. Natl. Acad. Sci. USA 101:
14315–14322.

Martens, J. A., L. Laprade, and F. Winston, 2004 Intergenic tran-
scription is required to repress the Saccharomyces cerevisiae
SER3 gene. Nature 429: 571–574.

McIsaac, R. S., A. A. Petti, H. J. Bussemaker, and D. Botstein,
2012 Perturbation-based analysis and modeling of combinato-
rial regulation in the yeast sulfur assimilation pathway. Mol.
Biol. Cell 23: 2993–3007.

Mencia, M., Z. Moqtaderi, J. V. Geisberg, L. Kuras, and K. Struhl,
2002 Activator-specific recruitment of TFIID and regulation of
ribosomal protein genes in yeast. Mol. Cell 9: 823–833.

Meng, X., M. H. Brodsky, and S. A. Wolfe, 2005 A bacterial one-
hybrid system for determining the DNA-binding specificity of
transcription factors. Nat. Biotechnol. 23: 988–994.

Michoel, T., A. Joshi, B. Nachtergaele, and Y. Van de Peer,
2011 Enrichment and aggregation of topological motifs are
independent organizational principles of integrated interaction
networks. Mol. Biosyst. 7: 2769–2778.

Middendorf, M., A. Kundaje, C. Wiggins, Y. Freund, and C. Leslie,
2004 Predicting genetic regulatory response using classifica-
tion. Bioinformatics 20(Suppl 1): i232–i240.

Moorman, C., L. V. Sun, J. Wang, E. de Wit, W. Talhout et al.,
2006 Hotspots of transcription factor colocalization in the ge-
nome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA
103: 12027–12032.

Morozov, A. V., and E. D. Siggia, 2007 Connecting protein struc-
ture with predictions of regulatory sites. Proc. Natl. Acad. Sci.
USA 104: 7068–7073.

Mortazavi, A., B. A. Williams, K. McCue, L. Schaeffer, and B. Wold,
2008 Mapping and quantifying mammalian transcriptomes by
RNA-Seq. Nat. Methods 5: 621–628.

Nagalakshmi, U., Z. Wang, K. Waern, C. Shou, D. Raha et al.,
2008 The transcriptional landscape of the yeast genome de-
fined by RNA sequencing. Science 320: 1344–1349.

Natarajan, K., M. R. Meyer, B. M. Jackson, D. Slade, C. Roberts
et al., 2001 Transcriptional profiling shows that Gcn4p is
a master regulator of gene expression during amino acid star-
vation in yeast. Mol. Cell. Biol. 21: 4347–4368.

Neil, H., C. Malabat, Y. d’Aubenton-Carafa, Z. Xu, L. M. Steinmetz
et al., 2009 Widespread bidirectional promoters are the
major source of cryptic transcripts in yeast. Nature 457: 1038–
1042.

Nishizawa, M., T. Komai, Y. Katou, K. Shirahige, T. Ito et al.,
2008 Nutrient-regulated antisense and intragenic RNAs mod-
ulate a signal transduction pathway in yeast. PLoS Biol. 6:
2817–2830.

Nutiu, R., R. C. Friedman, S. Luo, I. Khrebtukova, D. Silva et al.,
2011 Direct measurement of DNA affinity landscapes on
a high-throughput sequencing instrument. Nat. Biotechnol. 29:
659–664.

Odom, D. T., 2011 Identification of transcription factor-DNA in-
teractions in vivo. Subcell. Biochem. 52: 175–191.

Pachkov, M., I. Erb, N. Molina, and E. van Nimwegen,
2007 SwissRegulon: a database of genome-wide annotations
of regulatory sites. Nucleic Acids Res. 35: D127–D131.

Patsialou, A., D. Wilsker, and E. Moran, 2005 DNA-binding prop-
erties of ARID family proteins. Nucleic Acids Res. 33: 66–80.

Pavlidis, P., T. S. Furey, M. Liberto, D. Haussler, and W. N. Grundy,
2001 Promoter region-based classification of genes. Pac.
Symp. Biocomput., 151–163.

Peña-Castillo, L., and T. R. Hughes, 2007 Why are there still over
1000 uncharacterized yeast genes? Genetics 176: 7–14.

Petti, A. A., R. S. McIsaac, O. Ho-Shing, H. J. Bussemaker, and D.
Botstein, 2012 Combinatorial control of diverse metabolic and
physiological functions by transcriptional regulators of the yeast
sulfur assimilation pathway. Mol. Biol. Cell 23: 3008–3024.

Pilpel, Y., P. Sudarsanam, and G. M. Church, 2001 Identifying
regulatory networks by combinatorial analysis of promoter ele-
ments. Nat. Genet. 29: 153–159.

Piña, B., J. Fernandez-Larrea, N. Garcia-Reyero, and F. Z. Idrissi,
2003 The different (sur)faces of Rap1p. Mol. Genet. Genomics
268: 791–798.

Planta, R. J., P. M. Goncalves, and W. H. Mager, 1995 Global
regulators of ribosome biosynthesis in yeast. Biochem. Cell Biol.
73: 825–834.

Polach, K. J., and J. Widom, 1996 A model for the cooperative
binding of eukaryotic regulatory proteins to nucleosomal target
sites. J. Mol. Biol. 258: 800–812.

Proft, M., F. D. Gibbons, M. Copeland, F. P. Roth, and K. Struhl,
2005 Genomewide identification of Sko1 target promoters re-
veals a regulatory network that operates in response to osmotic
stress in Saccharomyces cerevisiae. Eukaryot. Cell 4: 1343–
1352.

Qi, Y., A. Rolfe, K. D. MacIsaac, G. K. Gerber, D. Pokholok et al.,
2006 High-resolution computational models of genome bind-
ing events. Nat. Biotechnol. 24: 963–970.

Rando, O. J., and F. Winston, 2012 Chromatin and transcription
in yeast. Genetics 190: 351–387.

Raveh-Sadka, T., M. Levo, and E. Segal, 2009 Incorporating nu-
cleosomes into thermodynamic models of transcription regula-
tion. Genome Res. 19: 1480–1496.

Reddy, T. E., C. DeLisi, and B. E. Shakhnovich, 2007 Binding site
graphs: a new graph theoretical framework for prediction of
transcription factor binding sites. PLOS Comput. Biol. 3: e90.

Reid, J. L., V. R. Iyer, P. O. Brown, and K. Struhl, 2000 Coordinate
regulation of yeast ribosomal protein genes is associated with
targeted recruitment of Esa1 histone acetylase. Mol. Cell 6:
1297–1307.

Reimand, J., J. M. Vaquerizas, A. E. Todd, J. Vilo, and N. M. Luscombe,
2010 Comprehensive reanalysis of transcription factor knockout
expression data in Saccharomyces cerevisiae reveals many new
targets. Nucleic Acids Res. 38: 4768–4777.

Ren, B., F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings et al.,
2000 Genome-wide location and function of DNA binding pro-
teins. Science 290: 2306–2309.

Rhee, H. S., and B. F. Pugh, 2011 Comprehensive genome-wide
protein-DNA interactions detected at single-nucleotide resolu-
tion. Cell 147: 1408–1419.

Roberts, C. J., B. Nelson, M. J. Marton, R. Stoughton, M. R. Meyer
et al., 2000 Signaling and circuitry of multiple MAPK path-
ways revealed by a matrix of global gene expression profiles.
Science 287: 873–880.

Robertson, G., M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao et al.,
2007 Genome-wide profiles of STAT1 DNA association using
chromatin immunoprecipitation and massively parallel sequenc-
ing. Nat. Methods 4: 651–657.

Rossetti, L., S. Cacchione, A. De Menna, L. Chapman, D. Rhodes
et al., 2001 Specific interactions of the telomeric protein
Rap1p with nucleosomal binding sites. J. Mol. Biol. 306: 903–
913.

Roy, S., J. Ernst, P. V. Kharchenko, P. Kheradpour, N. Negre et al.,
2010 Identification of functional elements and regulatory cir-
cuits by Drosophila modENCODE. Science 330: 1787–1797.

Segal, E., and J. Widom, 2009 From DNA sequence to transcrip-
tional behaviour: a quantitative approach. Nat. Rev. Genet. 10:
443–456.

34 T. R. Hughes and C. G. de Boer



Segal, E., M. Shapira, A. Regev, D. Pe’er, D. Botstein et al.,
2003 Module networks: identifying regulatory modules and
their condition-specific regulators from gene expression data.
Nat. Genet. 34: 166–176.

Sharon, E., Y. Kalma, A. Sharp, T. Raveh-Sadka, M. Levo et al.,
2012 Inferring gene regulatory logic from high-throughput
measurements of thousands of systematically designed pro-
moters. Nat. Biotechnol. 30: 521–530.

Sherlock, G., 2000 Analysis of large-scale gene expression data.
Curr. Opin. Immunol. 12: 201–205.

Shoemaker, D. D., E. E. Schadt, C. D. Armour, Y. D. He, P. Garrett-
Engele et al., 2001 Experimental annotation of the human
genome using microarray technology. Nature 409: 922–927.

Shore, D., and K. Nasmyth, 1987 Purification and cloning of
a DNA binding protein from yeast that binds to both silencer
and activator elements. Cell 51: 721–732.

Siggers, T., M. H. Duyzend, J. Reddy, S. Khan, and M. L. Bulyk,
2011 Non-DNA-binding cofactors enhance DNA-binding spec-
ificity of a transcriptional regulatory complex. Mol. Syst. Biol. 7:
555.

Slattery, M., T. Riley, P. Liu, N. Abe, P. Gomez-Alcala et al.,
2011 Cofactor binding evokes latent differences in DNA bind-
ing specificity between Hox proteins. Cell 147: 1270–1282.

Smith, D. L., and A. D. Johnson, 1992 A molecular mechanism for
combinatorial control in yeast: MCM1 protein sets the spacing
and orientation of the homeodomains of an alpha 2 dimer. Cell
68: 133–142.

Smith, E. N., and L. Kruglyak, 2008 Gene-environment interac-
tion in yeast gene expression. PLoS Biol. 6: e83.

Smith, J. J., L. R. Miller, R. Kreisberg, L. Vazquez, Y. Wan et al.,
2011 Environment-responsive transcription factors bind subte-
lomeric elements and regulate gene silencing. Mol. Syst. Biol. 7:
455.

Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders
et al., 1998 Comprehensive identification of cell cycle-regu-
lated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol. Biol. Cell 9: 3273–3297.

Spivak, A. T., and G. D. Stormo, 2012 ScerTF: a comprehensive
database of benchmarked position weight matrices for Saccha-
romyces species. Nucleic Acids Res. 40: D162–D168.

Stavreva, D. A., W. G. Muller, G. L. Hager, C. L. Smith, and J. G.
McNally, 2004 Rapid glucocorticoid receptor exchange at
a promoter is coupled to transcription and regulated by chaper-
ones and proteasomes. Mol. Cell. Biol. 24: 2682–2697.

Stormo, G. D., and Y. Zhao, 2010 Determining the specificity of
protein-DNA interactions. Nat. Rev. Genet. 11: 751–760.

Stros, M., D. Launholt, and K. D. Grasser, 2007 The HMG-box:
a versatile protein domain occurring in a wide variety of DNA-
binding proteins. Cell. Mol. Life Sci. 64: 2590–2606.

Struhl, K., 1985 Naturally occurring poly(dA-dT) sequences are
upstream promoter elements for constitutive transcription in
yeast. Proc. Natl. Acad. Sci. USA 82: 8419–8423.

Struhl, K., 1999 Fundamentally different logic of gene regulation
in eukaryotes and prokaryotes. Cell 98: 1–4.

Struhl, K., 2007 Transcriptional noise and the fidelity of initiation
by RNA polymerase II. Nat. Struct. Mol. Biol. 14: 103–105.

Sun, M., B. Schwalb, D. Schulz, N. Pirkl, S. Etzold et al.,
2012 Comparative dynamic transcriptome analysis (cDTA) re-
veals mutual feedback between mRNA synthesis and degrada-
tion. Genome Res. 22: 1350–1359.

Svetlov, V. V., and T. G. Cooper, 1995 Review: compilation and
characteristics of dedicated transcription factors in Saccharomy-
ces cerevisiae. Yeast 11: 1439–1484.

Tan, S., and T. J. Richmond, 1998 Crystal structure of the yeast
MATalpha2/MCM1/DNA ternary complex. Nature 391: 660–666.

Tanay, A., 2006 Extensive low-affinity transcriptional interactions
in the yeast genome. Genome Res. 16: 962–972.

Tan-Wong, S. M., J. B. Zaugg, J. Camblong, Z. Xu, D. W. Zhang
et al., 2012 Gene loops enhance transcriptional directionality.
Science 338: 671–675.

Tavazoie, S., J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M.
Church, 1999 Systematic determination of genetic network
architecture. Nat. Genet. 22: 281–285.

Tedford, K., S. Kim, D. Sa, K. Stevens, and M. Tyers,
1997 Regulation of the mating pheromone and invasive
growth responses in yeast by two MAP kinase substrates. Curr.
Biol. 7: 228–238.

Tirosh, I., S. Reikhav, A. A. Levy, and N. Barkai, 2009 A yeast
hybrid provides insight into the evolution of gene expression
regulation. Science 324: 659–662.

Tirosh, I., S. Reikhav, N. Sigal, Y. Assia, and N. Barkai,
2010a Chromatin regulators as capacitors of interspecies var-
iations in gene expression. Mol. Syst. Biol. 6: 435.

Tirosh, I., N. Sigal, and N. Barkai, 2010b Divergence of nucleo-
some positioning between two closely related yeast species: ge-
netic basis and functional consequences. Mol. Syst. Biol. 6: 365.

Tompa, M., N. Li, T. L. Bailey, G. M. Church, B. De Moor et al.,
2005 Assessing computational tools for the discovery of tran-
scription factor binding sites. Nat. Biotechnol. 23: 137–144.

Trcek, T., D. R. Larson, A. Moldon, C. C. Query, and R. H. Singer,
2011 Single-molecule mRNA decay measurements reveal pro-
moter- regulated mRNA stability in yeast. Cell 147: 1484–1497.

Tsankov, A., Y. Yanagisawa, N. Rhind, A. Regev, and O. J. Rando,
2011 Evolutionary divergence of intrinsic and trans-regulated
nucleosome positioning sequences reveals plastic rules for chro-
matin organization. Genome Res. 21: 1851–1862.

Turcotte, B., and L. Guarente, 1992 HAP1 positive control mu-
tants specific for one of two binding sites. Genes Dev. 6: 2001–
2009.

Valouev, A., D. S. Johnson, A. Sundquist, C. Medina, E. Anton et al.,
2008 Genome-wide analysis of transcription factor binding
sites based on ChIP-Seq data. Nat. Methods 5: 829–834.

van Dijk, E. L., C. L. Chen, Y. d’Aubenton-Carafa, S. Gourvennec, M.
Kwapisz et al., 2011 XUTs are a class of Xrn1-sensitive anti-
sense regulatory non-coding RNA in yeast. Nature 475: 114–
117.

van Werven, F. J., G. Neuert, N. Hendrick, A. Lardenois, S. Buratowski
et al., 2012 Transcription of two long noncoding RNAs mediates
mating-type control of gametogenesis in budding yeast. Cell 150:
1170–1181.

Venters, B. J., and B. F. Pugh, 2009 A canonical promoter orga-
nization of the transcription machinery and its regulators in the
Saccharomyces genome. Genome Res. 19: 360–371.

Venters, B. J., S. Wachi, T. N. Mavrich, B. E. Andersen, P. Jena
et al., 2011 A comprehensive genomic binding map of gene
and chromatin regulatory proteins in Saccharomyces. Mol. Cell
41: 480–492.

Voth, W. P., Y. Yu, S. Takahata, K. L. Kretschmann, J. D. Lieb et al.,
2007 Forkhead proteins control the outcome of transcription
factor binding by antiactivation. EMBO J. 26: 4324–4334.

Wagner, A., 1999 Genes regulated cooperatively by one or more
transcription factors and their identification in whole eukaryotic
genomes. Bioinformatics 15: 776–784.

Wang, H., M. Johnston, and R. D. Mitra, 2007 Calling cards for
DNA-binding proteins. Genome Res. 17: 1202–1209.

Wang, H., D. Mayhew, X. Chen, M. Johnston, and R. D. Mitra,
2011 Calling Cards enable multiplexed identification of the
genomic targets of DNA-binding proteins. Genome Res. 21:
748–755.

Wang, L.-S., S. T. Jensen, and S. Hannenhalli, 2006 An interac-
tion-dependent model for transcription factor binding, pp. 225–
234 in Systems Biology and Regulatory Genomics: Joint RECOMB
2005 Satellite Workshops on Regulatory Genomics, edited by

Mapping Yeast Transcriptional Networks 35



E. Eskin, T. Ideker, B. Raphael, and C. Workman. Springer-Verlag,
Berlin/Heidelberg, Germany/New York.

Wasson, T., and A. J. Hartemink, 2009 An ensemble model of
competitive multi-factor binding of the genome. Genome Res.
19: 2101–2112.

Weider, M., A. Machnik, F. Klebl, and N. Sauer, 2006 Vhr1p,
a new transcription factor from budding yeast, regulates bio-
tin-dependent expression of VHT1 and BIO5. J. Biol. Chem.
281: 13513–13524.

Weirauch, M. T., and T. R. Hughes, 2010 Conserved expression
without conserved regulatory sequence: the more things
change, the more they stay the same. Trends Genet. 26: 66–74.

Weirauch, M. T., and T. R. Hughes, 2011 A catalogue of eukary-
otic transcription factor types, their evolutionary origin, and
species distribution. Subcell. Biochem. 52: 25–73.

Wellinger, R. J., and V. A. Zakian, 2012 Everything you ever
wanted to know about Saccharomyces cerevisiae telomeres: be-
ginning to end. Genetics 191: 1073–1105.

Wodicka, L., H. Dong, M. Mittmann, M. H. Ho, and D. J. Lockhart,
1997 Genome-wide expression monitoring in Saccharomyces
cerevisiae. Nat. Biotechnol. 15: 1359–1367.

Workman, C. T., H. C. Mak, S. McCuine, J. B. Tagne, M. Agarwal
et al., 2006 A systems approach to mapping DNA damage re-
sponse pathways. Science 312: 1054–1059.

Workman, J. L., 2006 Nucleosome displacement in transcription.
Genes Dev. 20: 2009–2017.

Xu, Z., W. Wei, J. Gagneur, F. Perocchi, S. Clauder-Munster et al.,
2009 Bidirectional promoters generate pervasive transcription
in yeast. Nature 457: 1033–1037.

Xu, Z., W. Wei, J. Gagneur, S. Clauder-Munster, M. Smolik et al.,
2011 Antisense expression increases gene expression variabil-
ity and locus interdependency. Mol. Syst. Biol. 7: 468.

Yang, Y., Z. Zhang, Y. Li, X. G. Zhu, and Q. Liu, 2010 Identifying
cooperative transcription factors by combining ChIP-chip data
and knockout data. Cell Res. 20: 1276–1278.

Yeo, Z. X., H. C. Yeo, J. K. Yeo, A. L. Yeo, Y. Li et al.,
2009 Inferring transcription factor targets from gene expres-
sion changes and predicted promoter occupancy. J. Comput.
Biol. 16: 357–368.

Yoshimoto, H., K. Saltsman, A. P. Gasch, H. X. Li, N. Ogawa et al.,
2002 Genome-wide analysis of gene expression regulated by
the calcineurin/Crz1p signaling pathway in Saccharomyces cer-
evisiae. J. Biol. Chem. 277: 31079–31088.

Yu, H., and M. Gerstein, 2006 Genomic analysis of the hierarchi-
cal structure of regulatory networks. Proc. Natl. Acad. Sci. USA
103: 14724–14731.

Yu, L., and R. H. Morse, 1999 Chromatin opening and transacti-
vator potentiation by RAP1 in Saccharomyces cerevisiae. Mol.
Cell. Biol. 19: 5279–5288.

Yuan, G. C., Y. J. Liu, M. F. Dion, M. D. Slack, L. F. Wu et al.,
2005 Genome-scale identification of nucleosome positions in
S. cerevisiae. Science 309: 626–630.

Yuan, Y., L. Guo, L. Shen, and J. S. Liu, 2007 Predicting gene
expression from sequence: a reexamination. PLoS Comput. Biol.
3: e243.

Yvert, G., R. B. Brem, J. Whittle, J. M. Akey, E. Foss et al.,
2003 Trans-acting regulatory variation in Saccharomyces cer-
evisiae and the role of transcription factors. Nat. Genet. 35: 57–
64.

Zhang, Y., Z. Moqtaderi, B. P. Rattner, G. Euskirchen, M. Snyder
et al., 2009 Intrinsic histone-DNA interactions are not the ma-
jor determinant of nucleosome positions in vivo. Nat. Struct.
Mol. Biol. 16: 847–852.

Zhao, Y., and G. D. Stormo, 2011 Quantitative analysis demon-
strates most transcription factors require only simple models of
specificity. Nat. Biotechnol. 29: 480–483.

Zheng, J., J. J. Benschop, M. Shales, P. Kemmeren, J. Greenblatt
et al., 2010a Epistatic relationships reveal the functional orga-
nization of yeast transcription factors. Mol. Syst. Biol. 6: 420.

Zheng, W., H. Zhao, E. Mancera, L. M. Steinmetz, and M. Snyder,
2010b Genetic analysis of variation in transcription factor
binding in yeast. Nature 464: 1187–1191.

Zhou, X., and E. K. O’Shea, 2011 Integrated approaches reveal
determinants of genome-wide binding and function of the tran-
scription factor Pho4. Mol. Cell 42: 826–836.

Zhu, C., K. J. Byers, R. P. McCord, Z. Shi, M. F. Berger et al.,
2009 High-resolution DNA-binding specificity analysis of yeast
transcription factors. Genome Res. 19: 556–566.

Zhu, J., B. Zhang, E. N. Smith, B. Drees, R. B. Brem et al.,
2008 Integrating large-scale functional genomic data to dis-
sect the complexity of yeast regulatory networks. Nat. Genet.
40: 854–861.

Zhu, Y., J. Dai, P. G. Fuerst, and D. F. Voytas, 2003 Controlling
integration specificity of a yeast retrotransposon. Proc. Natl.
Acad. Sci. USA 100: 5891–5895.

Zykovich, A., I. Korf, and D. J. Segal, 2009 Bind-n-Seq: high-
throughput analysis of in vitro protein-DNA interactions using
massively parallel sequencing. Nucleic Acids Res. 37: e151.

Communicating editor: B. J. Andrews

36 T. R. Hughes and C. G. de Boer


