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Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease and the management of relapses is one of the biggest clinical

challenges. TP53 alterations are established high‐risk markers and are included in the current disease staging criteria. KRAS is the most

frequently mutated gene affecting around 20% of MM patients. Applying Clonal Competition Assays (CCA) by co‐culturing color‐
labeled genetically modified cell models, we recently showed that mono‐ and biallelic alterations in TP53 transmit a fitness advantage

to the cells. Here, we report a similar dynamic for two mutations in KRAS (G12A and A146T), providing a biological rationale for the

high frequency of KRAS and TP53 alterations at MM relapse. Resistance mutations, on the other hand, did not endowMM cells with a

general fitness advantage but rather presented a disadvantage compared to the wild‐type. CUL4B KO and IKZF1 A152T transmit

resistance against immunomodulatory agents, PSMB5 A20T to proteasome inhibition. However, MM cells harboring such lesions only

outcompete the culture in the presence of the respective drug. To better prevent the selection of clones with the potential of inducing

relapse, these results argue in favor of treatment‐free breaks or a switch of the drug class given as maintenance therapy. In summary,

the fitness benefit of TP53 and KRASmutations was not treatment‐related, unlike patient‐derived drug resistance alterations that may

only induce an advantage under treatment. CCAs are suitable models for the study of clonal evolution and competitive (dis)advantages

conveyed by a specific genetic lesion of interest, and their dependence on external factors such as the treatment.

INTRODUCTION

Intra‐tumor genetic heterogeneity is one hallmark of multiple mye-
loma (MM) and an important factor in tumor evolution and disease
progression.1–5 The typical disease course for patients with MM is

frequent relapses upon different therapies and the development of
multidrug resistance.6 In MM, a plethora of different treatments are
available. Notably, recent studies show that novel therapies, such as
bispecific antibodies or CAR T cells, may induce deep and ongoing
remission in multidrug‐resistant patients. Regrettably, no cure is
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achieved and primary or secondary resistance is observed,7,8 known
already from standard drugs like immunomodulators (IMiDs) or pro-
teasome inhibitors (PIs). To decipher the underlying evolutionary
trajectories and to better understand the clonal variation from disease
diagnosis to the relapsed‐refractory state, intensive research has
been conducted on the genomic landscape of MM, mostly using
bulk sequencing approaches like whole exome and whole genome
sequencing (WES/WGS).4,9,10 A number of genetic alterations have
been identified and were associated with increased clonal fitness or
disease relapse.2,7,11–13 There is growing evidence for clonal diversity
as the major driver of treatment failure and drug resistance. Still, the
specific impact on clinics and biology remains unclear for the vast
majority of identified genetic alterations. Many studies remain largely
descriptive, lacking functional characterization, especially scalable
methods for the analysis of interaction dynamics between different
clones and cell competition. Moreover, cell competition occurs
against healthy tissue when the space is limited,14 and MM cells are
located in the bone marrow niche, which is a confined space.15 It also
plays a role in mammalian development, organ homeostasis, and
aging, and critically influences the initiation and development of all
cancer types.14,16,17

The concept of cell fitness describes both, the cell's ability to
remain in a cell population and the capacity of a clone to expand
under the given environmental conditions. Less fit cells get replaced
by fitter congeners in a continuous process that ensures the highest
fitness of a tissue. The replacement can happen actively by the
removal of less fit cells (e.g., clone extinction via apoptosis, phago-
cytosis, or entosis) or passively by outcompeting over time through
enhanced cell survival, proliferation, or differentiation.17 The vast
majority of healthy cells show a neutral competition fitness, meaning
they are overall equally fit and the replacement is stochastic though
maintaining the number of cells within a tissue.14,18 Nonneutral
competition fitness, on the other hand, is associated with develop-
ment, aging, or oncogenic processes.14,17 In cancer, clonal expansion
can be explained in two ways: cancer cells die less than their com-
petitors and/or they proliferate more. When mutations arise, they
confer a neutral or selective fitness advantage or disadvantage to the
cell.19 The cancer cell is in constant competition against normal tissue,
microenvironment, and other tumor cells. Diverse intrinsic and ex-
trinsic pressures suffered by the mutant cells promote the selection
and expansion of distinct subclones.14

Here we apply Clonal Competition Assays (CCAs) based on the
coculturing of fluorescence‐marked isogenic MM cells with or without
a genetic alteration under study, for example, point mutations or
deletions. This experimental setting allows us to study the implications
of specific genetic lesions on cellular fitness and their impact under
different environmental conditions such as drug exposure (Figure 1A).
In this study, our focus was on KRAS as the activation of RAS‐mediated
oncogenic signaling pathways is a hallmark of various cancers22,23

and it is frequently mutated in relapsed MM.24,25 Other emblematic
cancers prone to KRAS mutations are lung, colorectal, and pancreatic
adenocarcinomas and urogenital cancers.23 In MM, mutations in KRAS
and NRAS are the most recurring somatic variants, with a mutational
frequency at diagnosis of around 20%–25% each.4,25‐28 Persistence or
de novo occurrence of KRAS alterations at disease relapse was also
described.24,29 Mutational hotspots for KRAS are regions in exon 2,
for example, p.G12 in the P‐loop (representing up to 40% of KRAS
mutations in MM) or in exon 3, for example, p.Q61 in switch 1 (35%)
(Figure 1B). However, several other KRAS mutations also occur.25 In
our CCAs we investigated two different KRAS point mutations, p.G12A
within the exon‐2 hotspot and a second less frequent mutation
p.A146T in exon 4 (switch 2) as these two mutations represent two
different mechanisms for RAS activation. Furthermore, we compare

the fitness signatures of KRAS and TP53 mutations to confirmed
resistance mutations in CUL4B, IKZF1, and PSMB5.

METHODS

Generation of the mutant cell lines

The OPM2 MM cell line was chosen for the generation of mono-
allelic KRAS‐altered variants (A146T and G12A) because it originally
has an intact RAS pathway. Notably, many other commonly used
MM cell lines are not suitable models as they already harbor mu-
tations in the RAS genes, for example, KRAS A146T in AMO1, NRAS
Q61L in L363, or KRAS G12A in MM1S. The two OPM2 KRAS mu-
tants were generated as previously described by stable transfection
with Sleeping Beauty (SB) transposon plasmids.25 AMO1, on the
other hand, is one of the few MM cell lines harboring wild‐type (WT)
TP53 and was therefore chosen to generate mono‐ and/or bi‐allelic
TP53 lesions as previously published.30 AMO1 and L363 cell lines
were used to study mutations associated with drug resistance as
they are sensitive to immunomodulatory agents (IMiDs) or protea-
some inhibitors (PIs), respectively. The inserted mutations are either
located in the drug binding site, for example, for PSMB5 in the S1
pocket essential for the proteasomal chymotrypsin‐like activity
(CCA: PSMB5 A20T vs. WT)31 or they affect associated genes or
downstream transcription factors like IKZF1 (CCA: IKZF1 A152T vs.
WT)2 or CUL4B (CCA: CUL4B KO vs. WT) that forms part of the
CRBN‐CRL4 E3 ubiquitin ligase network.2 All investigated mutations
were derived from drug‐resistant MM patients and have previously
been functionally confirmed to confer drug resistance.2,31 For
choosing a suitable cell line, an intact wild‐type pathway of interest
is important. When designing a CCA, the Cancer Cell Line
Encyclopedia (CCLE), the MM cell line characterization dataset
created by Keat's Lab (https://myelomagenomics.tgen.org/), and
published datasets, for example, Vikova et al.32 Theranostics might
be considered to pick the best cell lines.32

Generation of fluorescently labeled cells (stable
transfection)

The cells of interest for the CCA were stably transfected with
SB expression plasmids for the fluorescent proteins EGFP,33

LSS‐mKate2,34 and a transposase vector by electroporation using a
Gene Pulser XCell (Bio‐Rad Laboratories) with a single exponential
decay pulse of 280–300V. After overnight recovery, geneticin (G418)
was added to the electroporated cell culture to extinguish un-
transfected and only transiently transfected cells and select the stably
transfected cells. It took 10–14 days for the selection process to be
completed. Cultures were routinely checked for mycoplasma negativity.

Setup of the CCA and flow cytometry

CCAs were set up by mixing WT and mutant cells in different ratios,
for example, 3:1 for the KRAS WT and the KRAS mutants. To confirm
reproducibility, the CCAs were performed at least in two identical
technical replicates. Additionally, the fluorescent markers were
switched between WT and mutants in independent experiments. For
each CAA experiment, two million cells were seeded in a T75 culture
flask. Cells were cultured in RPMI‐1640 medium supplemented with
10% fetal bovine serum, 1mM sodium pyruvate, 2 mM glutamine,
100 U/mL penicillin, and 100 µg/mL streptomycin and kept at 5%
CO2 and 37°C. Cultures were regularly split (every 3–4 days). OPM2
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cells are semi‐adherent and were scratched with a cell scraper before
each splitting, the other cell lines were grown as suspension cultures.
Every 4–5 days, a sample of the CCA co‐culture was taken, washed,
and resuspended in phosphate‐buffered saline for flow cytometry
using a FACS Calibur (BD Biosciences). EGFP and mKate/RFP are
both excitable with a 488 nm laser. A total of 10,000 cells was
counted per sample for each time point. The relative number/ratio of
color‐coded cells in the cultures under study was analyzed with
FlowJo version 8.8.7 (BD Biosciences). To generate the plots, PRISM
GraphPad was used with the following settings: standard curve to
interpolate, sigmoidal, 4PL (parameter logistic), X is log, and no special
handling of outliers.

RNA extraction, library preparation, and sequencing

For RNA‐Seq analysis, the OPM2 KRAS WT and the OPM2‐derived
KRAS A146T and G12A cells were seeded in triplicates at a density
of 100,000 cells/mL. Three days after seeding, two million cells

were pelleted and stored at −80°C. The RNeasy Mini kit (Qiagen)
was used to extract the RNA and the quality was checked with a
2100 Bioanalyzer and the RNA 6000 Nano kit (Agilent). The RNA
integrity number (RIN) was ≥9.3 for all samples. Libraries were
prepared from 1 µg of total RNA using the TruSeq stranded mRNA
kit (Illumina). Quantification was conducted with a Qubit 3.0
Fluorometer (Thermo Fisher) and a 2100 Bioanalyzer with the DNA
1000 kit (Agilent). Pooled libraries were sequenced (single‐end) on
the NextSeq 500 (Illumina) using the High Output Kit v2.5 (75
cycles).

Bioinformatic analysis

Sequencing quality was evaluated via FastQC (v. 0.11.7) (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). RNA‐sequencing
reads were quality‐ and adapter‐trimmed using Cutadapt (v. 2.5) with
a cutoff Phred score of 20 in NextSeq mode, and reads without any
remaining bases were discarded (parameters: ‐‐nextseq‐trim=20 ‐m 1 ‐a

F IGURE 1 Clonal competition assay (CCA) for the study of the long‐term impact of genomic alterations on the overall cell fitness, and KRAS in its active and

inactive conformational shape. (A) Schematic illustration of the general principle of the CCA. Initially, the alteration of interest (e.g., point mutation, deletion, etc.) is

introduced into a cell line by gene editing approaches like CRISPR Cas9 or Sleeping Beauty (SB). Then, SB vectors for the stable expression of fluorescent proteins

(e.g., EGFP or mKate/RFP) are integrated. Different colors are used to differentiate between theWT and the mutant or between different alterations of interest. Co‐
cultures are set up by mixing cells of different colors. The culture is regularly split and drugs can be added. Every 4–5 days a sample is taken from the culture and the

ratio of differently colored cells is measured by flow cytometry. (B) Schematic representation of RAS superfamily proteins activation and inactivation cycle by

hydrolyzing GTP into GDP via the GTPase activating proteins (GAPs) and the Guanine exchange factor (GEF) proteins triggering or stopping downstream signaling.

Superimposition of the cartoon diagram of KRAS displaying the conformational change in switch 2 induced by the hydrolysis of GTP changing from the signaling

conformation (red, PDB: 6XI7,20) to the nonsignaling conformation (green, PDB: 7C40,21). The backbone is shown in white, the P‐loop Walker Motif A in blue, and

switch 1 in yellow as it is in the IN conformation in both PDBs.

HemaSphere | 3 of 11

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


ACTGTCTCTTATACACATCT). Trimmed reads were mapped to
the human genome (RefSeq GRCh38.p13 primary assembly and
mitochondrion) using STAR (v. 2.7.2b)35 with default parameters
except for including transcript annotations from RefSeq annotation
version 109.20190905 for GRCh38.p13. RNA‐Seq quality data
per sample is given in Supporting Information S1: Table 1. Mapped
reads were quantified at the exon level and summarized for
each gene using featureCounts (v. 1.6.4) from the Subread
package36 based on the annotation above. Multimapping and mul-
tioverlapping reads were counted unstranded with a fractional
count for each alignment and overlapping feature (parameters: ‐s
0 ‐t exon ‐M ‐O ‐‐fraction).

Differential gene expression analysis was performed in R (v. 4.3.1)
with DESeq. 2 (v. 1.22.2)37 incorporating log fold change shrinkage
using apeglm.38 Genes with a log2FC >│1│ and adjusted p < 0.025
were considered as differentially expressed. Gene Set Enrichment
Analysis (GSEA) was carried out using the gseKEGG function
from clusterProfiler R package (v. 4.8.1)39 and the KEGG pathways
annotations (v. 106). Default parameters were used unless otherwise
specified. Notably, the keyType parameter was set to “ncbi‐geneid”
to ensure consistent gene identification across databases, and the
minimum gene set size (minGSSize) was set to 15 to filter out small
gene sets. Genes identified from the DESeq2 analysis were ranked
based on the absolute |log2FC| between the KRAS A146T/G12A group
and the KRAS WT group. Genes were excluded from the analysis if
they lacked log2FC information or if they were duplicates based on
HGNC symbols or gene IDs. A false discovery rate (FDR) < 0.25 was
applied to select significant pathways. We conducted a streamlined
analysis to pinpoint pivotal genes within three chosen proliferation
pathways (JAK‐STAT, PI3K‐Akt, and MAPK), considering their sig-
nificance in our biological framework. To achieve this, we focused on
genes that were common to at least two of the three pathways and
exhibited notable effects in the GSEA analysis, thus identifying them as
pertinent in the “core enrichment” section.

Structural analysis

The structural 3D representations (Figures 1B, 2A,B and Supporting
Information S1: Figure 1) were performed with PyMOL Molecular
Graphics System (2002; DeLano Scientific) and data from public
databases (Protein Data Bank) as listed in Supporting Information S1:
Table 2. The 2D representations (interaction maps) were directly
extracted from PDBe from PDB IDs 6BOF (chain B) for KRAS A146T
mutant40 and from 6MBU for KRAS WT41 (Supporting Information
S1: Figure 2).

RESULTS

KRAS mutations confer a growth advantage to the
mutated cells

Here we show not‐treatment‐related, increased fitness for cells
harboring the KRAS mutations G12A (Figure 2, left) and A146T
(Figure 2, right) in respective comparison to OPM2 KRAS WT cells.
Starting with a co‐cultivation ratio of 1:3 for the KRAS mutants to
the WT, both mutants expanded faster than the WT and reached
50% of the cells in the flask between co‐culturing days 41 and 48.
By day 83 the starting values were reversed (Figure 2C–F,
Supporting Information S1: Figure 3) and mutant to WT ratios of
3:1 to 4:3 had been obtained. The experiments were set up in two
independent replicates for each setting (Supporting Information S1:

Figure 3). An almost linear progression was observed for the CCA.
The R2 of the sigmoidal growth trajectory was 0.970 for KRAS G12A
green (Figure 2C), 0.986 for KRAS A146T green (Figure 2D), 0.936
for KRAS G12A red (Figure 2E), and 0.963 for KRAS A146T red
(Figure 2F). These results fit with other published mathematical
models13 and were confirmed by switching the red and green color‐
labeling between the WT and the respective mutants. There were
no significant differences in the outcome of the CCAs if
G12A mutant cells were labeled in red (range: 25.0%–70.8%) or in
green (range: 23.2%–74.6%) with p = 0.74 (two‐tailed MWU‐test,
Figure 2C,E). Both showed similar dynamics with the mutant cells
outcompeting the WT cells. The same holds true for cells harboring
the A146T mutation coded either in red (range: 20.9%–64.0%)
or in green (range: 24.1%–69.6%) (Figure 2D,F) with p = 0.44. We
furthermore observed a similar fitness advantage for both KRAS
mutants (p = 0.88) taking all replicate experiments into account.

Global transcriptomics analysis reveals increased
proliferation signaling as key dysregulated pathways

To define the gene expression profile associated with KRAS muta-
tions, we performed differential gene expression analysis comparing
KRAS G12A/A146T mutants with the WT (Figure 3). The Principal‐
Component Analysis (PCA) with PC1 (57% variance) and PC2 (34%
variance) revealed a clustering according to the mutational alteration
(Figure 3A and Supporting Information S1: Figure 4). The KRAS ex-
pression was significantly lower in both the KRAS A146T (p = 0.017)
and KRAS G12A (p = 0.001) mutant groups compared to the WT
group (Figure 3B). We identified a total of 186 differentially ex-
pressed genes (DEGs) in the comparison between KRAS A146T and
the WT group with the cut‐off criterion log2FC > |1| and adjusted
p < 0.05 (Figure 3C and Supporting Information S1: Table 3). Simi-
larly, while comparing the KRAS G12A mutant and the WT group,
130 DEGs were found (Figure 3C and Supporting Information S1:
Table 4). The gene expression analysis revealed distinctive gene
regulation patterns. The KRAS A146T mutants showed a pre-
dominant upregulation pattern, with 132 genes upregulated and 54
genes downregulated. The KRAS G12A mutants exhibited a more
balanced pattern, with 69 upregulated and 61 downregulated genes.
Remarkably, 56 DEGs overlapped between both mutant groups,
with 43 upregulated and 13 downregulated genes (Figure 3D and
Supporting Information S1: Table 5). The SHISAL1 gene exhibited
differential regulation, being upregulated in the KRAS G12A mutant
and downregulated in the KRAS A146T mutant (Figure 3D). Gene
Set Enrichment Analysis (GSEA) was performed on KEGG pathways
to delve into the molecular intricacies of KRAS mutations. The
analysis identified a total of 46 and 133 significantly enriched
pathways in KRAS A146T and KRAS G12A, respectively (FDR < 0.25)
(Supporting Information S1: Tables 6 and 7). Within the significantly
enriched pathways in G12A, we observed an accumulation of
pathways linked to pivotal cellular processes, such as cell pro-
liferation, cell growth, and cell death. Those pathways are listed in
the barplots in Figure 4A and Supporting Information S1: Figure 5.
The enrichment of the MAPK signaling pathway (NES = 1.30,
FDR = 0.09), the PI3K‐Akt signaling pathway (NES = 1.34, FDR =
0.06), and the JAK‐STAT signaling pathway (NES = 1.57, FDR = 0.02)
were emphasized for the KRAS G12A versus WT comparison
(Figure 4B), as alterations in KRAS have been described to primarily
activate the MAPK pathway.43,44 In Figure 4C and Supporting
Information S1: Figure 5C, we have simplified the “Leading Edge
Analysis” to identify genes with the most significant impact on the
studied biological process. In Figure 4C, we showed the importance of
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these genes as DEGs, highlighting AREG, BCL2, and CDKN1A. For KRAS
A146T, the MAPK and the PI3K‐Akt signaling pathways were also
enriched in cells carrying the mutation with an NES of 1.02
and 1.11, respectively; however, the enrichment did not reach
statistical significance. The JAK‐STAT signaling pathway, on the other
hand, was found significantly enriched (NES = 1.72, FDR = 0.02) (Sup-
porting Information S1: Figure 5A,B). For KRAS A146T, the important
genes among these pathways were AREG, IL2RB, and CSF1R (Sup-
porting Information S1: Figure 5C). Of note, the drug metabolism‐
cytochrome P450 pathway was downregulated in both KRAS mutants
compared to the WT with NES = −1.28, FDR = 0.24, for KRAS G12A,
and NES = −1.63, FDR = 0.11, for KRAS A146T. Notably, the total

number of significantly shared pathways in KRAS A146T and KRAS
G12A is 30.

Implications of drug resistance‐related mutations
on cell fitness

The described KRAS CCA was compared with other published CCAs
investigating different genetic alterations from previous studies in our
laboratory.2,13 Both, the L363 IKZF1 A152T and the L363 CUL4B KO
mutants outcompeted WT cells when Lenalidomide (LEN) was added
to the culture (Figure 5A).2 The same effect was observed for the

F IGURE 2 Clonal competition assays of OPM2 sublines bearing KRAS mutations G12A or A146T compared to OPM2 KRAS WT cells. (A) Structural

representation of the oncogenic KRAS mutation G12A (PDB: 5VPI,42) in complex with GTP and the magnesium ion cofactor. (B) KRAS A146T mutation in complex

with GDP (PBD: 6BOF,40), there is no magnesium ion coordination in this structure. The mutated residues are represented in red. GTP and GDP are displayed in

blue; for clarity no different colors indicating charges are assigned to any atom. Clonal Competition Assays reveal a gradual increase of the mutants KRAS G12A (C, E)

and KRAS A146T (D, F) outcompeting the OPM2 KRAS WT cells due to enhanced fitness. This effect was confirmed by technical replicates and by switching the color

coding between WT and mutant cells. The error bars indicate the two‐paired 95% CI.
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F IGURE 3 (See caption on next page).
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L363 PSMB5 A20T mutant in the presence of Bortezomib (BOR). In
the absence of the drug, this selection or survival fitness was not
observed, even reversed, as the mutants were overgrown by the WT
cells as long as the drug was not added to the co‐culture. Biallelic
TP53 lesions in AMO1 cells, on the other hand, transmitted a fitness
advantage in the absence of a drug, similar to the one described for
the two KRAS‐altered OPM2 cell lines.

DISCUSSION

Our data show that lesions in cancer driver genes like the here
described KRAS G12A and A146T or mono‐ and biallelic TP53
alterations,45 intrinsically confer a fitness advantage to the cells.
This provides a biological rationale for the observation that such
alterations are frequently found in patients at diagnosis and become

F IGURE 3 RNA‐seq transcriptome analysis and differentially expressed genes (DEGs) in the KRAS A146T and G12A mutation‐bearing cells. (A) Principal‐
component analysis (PCA) results. The figure shows a scatter plot of the first two principal components (PC1 and PC2) depicting the distribution of the gene

expression profile according to the mutational status. Percentages on each axis represent the percentages of variation explained by the principal components. (B) Bar

plots showing expression levels in transcripts per million (TPM) in KRAS mutants and KRAS WT. (C) Volcano plots indicating gene expression differences between

KRAS mutants and KRAS WT. DEGs with an adjusted p < 0.05 and a log2FC >│1│ are depicted in colors. Triangles indicate genes with a –Log10 adjusted p‐value
higher than 300. (D) Heatmap of the 57 overlapping DEGs in both comparisons. Log2FC > 0 is indicated in red and log2FC < 0 in blue. Venn diagrams of all DEGs

(upper panel), upregulated DEGs (middle panel), and downregulated DEGs (lower panel) found in the two comparisons.

F IGURE 4 Gene Set Enrichment Analysis (GSEA) results of the G12A mutation‐bearing cells. (A) Barplot with GSEA results depicting positively and negatively

enriched gene sets in KRAS G12A altered cells related to proliferation, cell division, growth, or cell death. A false discovery rate (FDR) of <0.25 was chosen as the

cut‐off. (B) Enrichment plots of the PI3K‐Akt, MAPK, and JAK‐STAT signaling pathways. The enrichment profile is indicated by the red line. (C) Heatmap of log2FC on

overlapping genes shared by the MAPK, JAK‐STAT, and PI3K‐Akt pathways in the GSEA analysis. Each row represents one of the three evaluated pathways and the

columns represent those 28 genes that were shared at least by two of the three pathways and had a substantial impact on the GSEA analysis.
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even more prominent during the course of the disease,24 whereas
mutations in drug resistance‐associated genes are rare at diagnosis
and generally found in low allele frequencies2,12,46 at relapse. Alter-
native mechanisms such as epigenetic dysregulation in regulatory
regions for gene expression also contribute to drug resistance.46,47

However, concerning single point mutations and small gene deletions,
our recently performed meta‐analysis of 1838 MM cases reported
mutation frequencies of not higher than 0.44% at diagnosis
(N = 1373) and 2.15% in pretreated MM patients (N = 465) for IKZF1,
CUL4B, CRBN,2 the direct binding site of all IMiDs. Equally low per-
centages were reported with regard to mutations affecting genes
encoding proteasomal subunits. Even PSMD1, the highest‐scoring out
of 46 genes, exhibited a mutation frequency of only 0.44% at diag-
nosis (N = 1137) and of 1.47% in pretreated patients (N = 447).46

Mutations in the primary binding target of all PIs, PSMB5, were
even rarer with 0.3% and 0.5%.46 These numbers are surprisingly low
considering the high number of clinically resistant cases.6 In
treatment‐free intervals, when the cancer is not under the selective
pressure of a drug, such resistance mutations might get lost or
be drastically reduced to small subclones, even to the single‐cell
level, making their detection challenging. In this way, they can stay
hidden and still expand later. A recent longitudinal sequencing study
describes three different patterns of subclonal evolution for the rise
of drug‐resistant disease: first coexistence of competing and ex-
panding subclones, second spatial dominance, and third mono‐clonal
single‐cell expansion.48 Focusing on TP53, KRAS, and NRAS, key dri-
vers of relapse in MM, parallel evolution was reported in this study,
referring to subclones that accumulate new mutations during their
evolution.48 Monoallelic point mutations in TP53 and del17p are
considered high‐risk alterations for an adverse disease course in MM
as defined in the International Staging System (ISS).45,49 Around 8%
of newly diagnosed MM patients have a del17p, around 6% harbor
monoallelic mutations, and around 4% show biallelic TP53 lesions.50

Using CCAs, we previously unraveled a proliferative fitness ad-
vantage for mono‐ and biallelic TP53 alterations.45 Unlike for TP53
somatic variants, there is no general consent on whether point

mutations in KRAS impact the survival of MM patients.4 In the current
study, we report competitive advantages for two KRAS alterations,
one affecting the common p.G12 exon‐2 hotspot that comprises
about 40% of all KRAS mutations in MM, and the second, a less
frequently affected downstream exon‐4 mutation at location p.A146,
which is present in 2.3% of the KRAS mutated cases in CoMMpass.24

The Ras superfamily of proteins is a group of enzymes with GTPase
activity that rule cell signaling functions and trigger cell division,
proliferation, migration, survival, and growth.4,22,51 Oncogenic mu-
tation of the RAS genes can cause incessant RAS activation by im-
pairing the intrinsic GTPase activity, which for its part, allosterically
activates downstream effectors and impacts a plethora of important
cellular activities by activating the MEK (mitogen‐activated protein
kinase)‐ERK (extracellular signal‐regulated kinase) module, the
PI3K (phosphoinositide‐3 kinase)‐AKT pathway, and other signaling
cascades.22,52 Our RNA sequencing analysis comparing the
whole transcriptomes of the KRAS WT OPM2 cells with the two
mutation‐bearing sublines revealed an enrichment of several
proliferation‐associated pathways including the above‐mentioned
ones (Figure 4B,C and Supporting Information S1: Figure 5). To reg-
ulate activity, RAS proteins hydrolyze GTP gamma phosphate to
GDP switching from an active state (GTP‐bound) to an inactive state
(GDP‐bound) (Figure 1B and Supporting Information S1: Figure 1). The
reaction kinetic is rather slow but gets accelerated by GAPs. The
dissociation of the GDP and reloading of the pocket with a new GTP is
mediated by GEFs.53 The phosphates of the GTP are in contact with
three loops of KRAS (Figure 1B), first, the so‐called P‐loop or glycine‐
rich loop (residues 10–17), where glycine nitrogens surround the
phosphates, a lysine causes nucleophilic attack and the last serine/
threonine binds to a magnesium ion and stabilizes the beta and gamma
phosphates in the right position.54 The p.G12 hotspot mutations are
located within this glycine‐rich P‐loop; they disrupt the hydrolysis of
the GTP and therefore provoke a constitutively active state
and downstream signaling of the protein (Supporting Information S1:
Figure 1).53 The p.A146T mutation is located within another loop
(residues 30 to 40), which forms part of switch I and closes the

F IGURE 5 Clonal competition assays (CCA) examples of different genetic alterations and models of the cell death/cell growth equilibrium with regard to clonal

fitness and therapy. (A) Alterations in drug resistance‐associated genes (CUL4B and PSMB5) only confer a proliferative fitness in the presence of the respective drug

(Lenalidomide or Bortezomib). In the absence of selection pressure, the WT cells outcompete the mutant‐bearing sublines in the CCAs. On the contrary, KRAS and

TP53 alterations intrinsically confer a growth advantage to the affected cells. Shown here is a meta‐analysis of CCAs made for previously published studies2,13 and the

OPM2 KRAS WT vs KRAS G12A comparison. (B) The complex interplay between clonal fitness and antitumor therapy determines if the cancer gets cleared as a

response to the treatment or if it grows, provoking a relapse. The CCA is a suitable tool to study the interaction and outcome by modulating internal and external

factors of the system.

8 of 11 | CCAs identify fitness signatures in cancer progression and resistance in MM



GDP/GTP pocket from the top (Figure 1B and Supporting Information
S1: Figure 1). GEFs take this loop into the OUT conformation allowing
the release of the GDP. The p.A146T mutation promotes the switch I
OUT conformation and diminishes the affinity for the GDP, thus it
fosters faster exchange and reloading (Supporting Information S1:
Figure 2).40,55 The next loop in the sequence forms part of switch II
(residues 60–76), and is catalytically relevant and necessary for the
hydrolysis of GTP. Once the GTP is hydrolyzed, switch II changes its
conformation by separating from the pocket and pointing the alpha
helix upside down (Supporting Information S1: Figure 1). Because of
the inability to bind to effector proteins, this is considered the inactive
OUT conformation. Mutations within this loop provoke the IN con-
formation.54 Thus, the two functionally investigated mutations G12A
and A146T are representative of the impact of all alterations found in
these two regulatory sites and, by different modes of action, induce
proto‐oncogenic activation.

In patients, the emergence of unique subclones after years
of treatment and multiple relapses is a clear indicator of the clonal
competition hypothesis. It is only a matter of time until clones with
the highest proliferation rate and potential for adaptation will become
dominant.48 Comparing the dynamics of different genetic alterations
in a clonal competition setting, resistance‐associated mutations
only provided a fitness advantage under drug pressure, unlike TP5313

and KRAS alterations, which transmitted a fitness benefit per se
(Figure 5A). However, our view on the complex subclonal archi-
tecture, on clonal evolution, and fitness signatures is still incomplete
and requires further investigation. Most functional studies aiming to
understand the impact of an alteration of interest are currently
performed individually, not in a competitive setting, which better
describes the real situation in a patient. A CCA therefore represents a
useful approach to mimic the real‐life dynamics in a laboratory‐
controlled environment, and moreover, the opportunity to variegate
external factors such as treatments (Figure 5B). In this work, we have
used stable transposition of cDNA genes for the fluorescent proteins
EGFP33 and LSS‐mKate2,34 to color‐code genetically altered cells
and their wild‐type parental cell line and make them visually distin-
guishable in a co‐culture. However, to compare more than just two
different cell varieties, for example, to study genetic alterations in
different genes, multiple alterations in the same gene, or to compare
mono‐ with biallelic hits, it is necessary to expand the portfolio of
available colors. The preparation of expression plasmids for different
fluorescent proteins is a possibility. Noncolored cells also constitute a
defined population (“black” in flow cytometry) and can thus also be
added as another component in CCAs. Importantly, expression of
the fluorescent protein alone did not affect the fitness of the cells
employed in this study, although this should initially be tested for
each new expression plasmid.

Altogether, our results show that it is possible to perform ana-
lytical, even quantitative genetics with CCA. This approach can be
applied to characterize fitness advantages transmitted through
patient‐specific lesions and to select promising treatments.
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