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Isotopic evidence for initial coastal colonization and
subsequent diversification in the human occupation
of Wallacea
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The resource-poor, isolated islands of Wallacea have been considered a major adaptive

obstacle for hominins expanding into Australasia. Archaeological evidence has hinted that

coastal adaptations in Homo sapiens enabled rapid island dispersal and settlement; however,

there has been no means to directly test this proposition. Here, we apply stable carbon and

oxygen isotope analysis to human and faunal tooth enamel from six Late Pleistocene to

Holocene archaeological sites across Wallacea. The results demonstrate that the earliest

human forager found in the region c. 42,000 years ago made significant use of coastal

resources prior to subsequent niche diversification shown for later individuals. We argue that

our data provides clear insights into the huge adaptive flexibility of our species, including its

ability to specialize in the use of varied environments, particularly in comparison to other

hominin species known from Island Southeast Asia.
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Recent, high-profile studies of symbolic material culture
(e.g., ref. 1), technological complexity (e.g., ref. 2), fossil
morphology and chronology (e.g., ref. 3), and genetics4 are

demonstrating an increasingly complex and dynamic picture of
the capacities and interactions of different hominin populations
in the Late Pleistocene (126–12 ka), particularly in Asia. If we are
to determine the ‘uniqueness’ of Homo sapiens, the last extant
hominin on the face of the planet, it is becoming apparent that we
must examine how its ecological adaptations differed from those
of other members of the genus Homo5,6. It has been suggested
that Late Pleistocene populations of H. sapiens expanding across
the globe were able to not only flexibly exploit varied, and often
extreme, environments—including deserts, tropical rainforests,
high-altitude settings, and deep-sea maritime habitats—but also
specialize in the occupation of them, enabling our species as a
whole to proliferate even while local communities may sometimes
have failed6. By contrast, earlier and contemporaneous Homo
species expanding into Eurasia in the Early and Middle Pleisto-
cene (2.6 Ma–126 ka) made generalized use of forest and grass-
land mosaics7,8, potentially making them vulnerable to more
extreme Late Pleistocene environmental changes (e.g., ref. 3) and
unable to survive on islands depauperate in large terrestrial
fauna9.

Testing this hypothesis is particularly timely given recent finds
that imply other hominin species may have ventured into chal-
lenging adaptive settings4,10. Wallacea provides an ideal ‘island
laboratory’ setting in which to do so in the increasingly
palaeoanthropologically significant Southeast Asian region. Wal-
lacea is an isolated series of islands that was never connected to
the neighboring Pleistocene landmasses of Sunda or Sahul,
necessitating water crossings to reach9,11–15. These islands have
been hypothesized as hosting depauperate island forest

environments, lacking in reliable terrestrial protein and carbohy-
drate resources13,16,17. Significantly, while these islands are home
to some of the earliest firm evidence for H. sapiens east of Africa
and the Middle East c. 45 ka (refs. 13,18,19), fossil and artifact finds
have also suggested the presence of earlier members of the genus
Homo on the island of Flores from ~1Ma (refs. 20,21), Luzon from
0.7Ma (ref. 22), and Sulawesi from ~0.2 Ma (ref. 23). Although
zooarchaeological records have provided some insights into the
ecological niches of different hominin populations in Wallacea9,24,
more direct assessments of overall hominin resource reliance and
palaeoenvironmental change in the region have been lacking.

In this paper, we examine the adaptations of the earliest
known fossil members of our species in Wallacea by means of
isotopic analysis of archaeological human tooth enamel from
two islands (Timor and Alor; Fig. 1). Timor has yielded the
earliest dated material culture and fossil evidence for H.
sapiens in Wallacea at the sites of Asitau Kuru (formerly Jer-
imalai) and Laili18,19. At the former, faunal remains and cul-
tural artifacts suggest Late Pleistocene human reliance on
marine shellfish and fish, obtained in part through offshore
fishing13. Laili also provides evidence for early reliance on
marine resources18. This stands in contrast to the generalized
mixed grassland and woodland adaptations associated with
other hominins in the region9,24,25. However, human reliance
on pelagic fishing at Asitau Kuru has been questioned26.
Moreover, there remains the possibility that giant rat taxa,
with proposed preferences for closed forest environments and
an adult body weight of up to 6 kg, represented significant food
resources; and they have been identified in early coastal and
inland archaeological contexts in Alor and Timor (e.g., ref. 27).
Insights into the environments present on Wallacea, as well as
human reliance on different ecosystems is difficult to resolve

Fig. 1 Maps showing the location of the studied sites within Wallacea. Asitau Kuru, Lene Hara, Matja Kuru 1 and 2 (Timor), Makpan, and Tron Bon Lei
(Alor).
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using traditional zooarchaeological methods alone due to
preservation biases and the role of nonhuman predators in site
taphonomy (e.g., ref. 28).

Here, we apply stable carbon (δ13C) and oxygen (δ18O) isotope
analyses to human and faunal tooth enamel from six Late Pleis-
tocene/Holocene archaeological sequences (Fig. 1) on Timor and
Alor, in order to determine the varying reliance of early human
colonisers of Wallacea on tropical forest and terrestrial versus
marine resources. Stable carbon isotope analysis of faunal
(including hominin) tooth enamel in tropical regions has been
used to assess the proportion of C3-dominated woodland/forest
and C4 grassland biomass in diets29–31. In regions such as
Pleistocene Wallacea, where some researchers have suggested that
tropical forests dominated terrestrial environments32, with
grasslands considered largely absent, the most significant driver
of terrestrial stable carbon isotope variation will be the canopy
effect, whereby low light and respired CO2 cause forest-dwelling
plant biomass and its consumers to have more negative δ13C
values than their counterparts in more open habitats30,31.
Meanwhile, marine producer biomass has higher δ13C than all C3

terrestrial plants33,34, enabling marine consumers to be dis-
tinguished from terrestrial C3 consumers35. Based on research
done in East Africa30, Sri Lanka31, and Japan35, including
extensive modern studies30, we expect preindustrial humans
relying completely on tropical forest, open C3 resources, and
marine resources to have tooth enamel δ13C values of c. −14‰, c.
−11‰, and c. −4‰, respectively.

Stable oxygen isotope (δ18O) measurements from animal tooth
enamel provide additional paleoecological information about
water and food, and have also been argued to distinguish
terrestrial from marine consumers36. Based on existing,
published, and available chronological information, the Late
Pleistocene–Holocene deposits of Asitau Kuru, Matja Kuru 1 and
2, Lene Hara, Makpan, and Tron Bon Lei provide a unique suite of
human and associated faunal samples spanning the earliest fossil
appearance of H. sapiens in Wallacea, through the Last Glacial
Maximum, and across the Terminal Pleistocene–Holocene
transition18,19. They also cover both coastal and hinterland habi-
tats (Fig. 1). Ample terrestrial and marine animal remains also
allow us to build the first detailed paleoecological and palaeoen-
vironmental records for Pleistocene Wallacea and test assump-
tions in relation to: (1) pure C3 terrestrial environments on Timor
and Alor in the past; (2) the δ13C distinction between available
terrestrial and marine resources; and (3) environmental shifts
across the Pleistocene–Holocene boundary proposed elsewhere
in Southeast Asia (e.g.,5,37). The preservation of a subsection of the
analysed tooth enamel samples was also checked using
Fourier transform infrared spectroscopy (FTIR) as per Roberts
et al.31,38.

Our extensive faunal baseline demonstrates that terrestrial and
marine environments can be clearly distinguished isotopically in
Wallacea on the basis of stable isotope analysis of fossil tooth
enamel. We show that a tooth of the earliest preserved H. sapiens
fossil found from the region c. 42–39,000 years ago shows that this
individual made significant use of coastal resources. From 20,000
years ago, human populations show an increasing reliance on
interior, terrestrial environments on the islands of both Timor
and Alor at a time of increasing forest expansion in Island
Southeast Asia more generally, though some individuals continue
to intensively use marine resources. We argue that our data further
demonstrates the huge adaptive flexibility of our species,
acutely visible as it rapidly and persistently colonized Wallacean
environments. Its ability to specialize in the use of more
extreme environments seems to stand in contrast to other hominin
species known from Island Southeast Asia based on current
evidence.

Results
Sites, samples, and chronology. The detailed stratigraphic and
chronological information for the six sites studied (Supplementary
Note 1) has enabled division of the human and faunal samples into
occupation phases at each site (Figs. 2–6). To display and compare
our data on a broader scale, we have also divided the human and
faunal data into broader island phases of occupation for Timor and
Alor, respectively, based on the stratigraphic and chronometric
information (Supplementary Note 1, Supplementary Tables 6 and
7, Fig. 2). For the sites of Asitau Kuru, Lene Hara, Matja Kuru 1,
and Matja Kuru 2 on Timor, this system includes four broad
phases: a Late Pleistocene pre-LGM phase (46,000–29,000 years
ago), a Terminal Pleistocene phase (20,000–11,001 years ago), an
Early and Middle Holocene phase (11,000–4001 years ago), and a
Late Holocene Neolithic phase (4000–0 years ago). For the sites of

Fig. 2 δ13C measurements for human and faunal tooth enamel from the
islands of Alor and Timor analyzed in this study. Data shown by phases
developed on the basis of existing and published stratigraphic, and
chronological information (Supplementary Note 1). Boxplots (showing
median and interquartile range—with outliers indicated) of terrestrial fauna
are shown in green (black diamond points) and those of marine fauna in
blue (black square points). Human samples are shown as white symbols
depending on site (circle, Asitau Kuru; diamond, Matja Kuru 1 and 2; square,
Lene Hara; triangle, Makpan; and inverted triangle, Tron Bon Lei). Source
data for Fig. 2 can be found in the accompanying Source Data file in Table 1
(Fig. 2).
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Makpan and Tron Bon Lei on Alor, the phasing system includes
three broad phases: a Late Pleistocene pre-LGM phase
(40,000–21,000 years ago), a Terminal Pleistocene to Middle
Holocene phase (15,000–7400 years ago), and a Late Holocene
Neolithic phase (4000–0 years ago). The specific associated dates
for the human samples within these broader phases are discussed
in the main text where appropriate.

Stable isotope analysis of archaeological tooth enamel. Faunal
δ13C from the Late Pleistocene–Holocene sequences of Asitau
Kuru, Matja Kuru 2, Makpan, and Tron Bon Lei (Figs. 2–6) show
a δ13C division in terms of terrestrial and marine fauna (Fig. 2,
Supplementary Figs. 13 and 14, Supplementary Data 1). For the
island of Timor, terrestrial fauna recovered from the coastal site
of Asitau Kuru (Fig. 3) and inland site of Matja Kuru 2 (Fig. 4)
have δ13C ranges of −14.9 to −7.9‰ (mean=−11.6 ± 1.8‰)
and −14.9 to −9.0‰ (mean=−12.0 ± 1.4‰), respectively. By
contrast, the marine fauna from Asitau Kuru (Fig. 3) has a δ13C
range of −8.3 to 3.7‰ (mean=−4.1 ± 3.0 ‰). The situation is
slightly more complex on Alor (Fig. 2) where terrestrial fauna
from Makpan (Fig. 5) has δ13C ranging from −19.2‰ to −3.1‰
(mean=−8.7 ± 3.5‰), and marine fauna from Makpan (Fig. 5)
and Tron Bon Lei (Fig. 6) have δ13C ranging from −6.4 to 4.9‰
(mean=−3.2 ± 2.9‰) and −8.9 to 4.7‰ (mean=−5.4 ±
3.5‰), respectively.

A Shapiro–Wilk test indicated that the δ13C (p= < 0.05) and
δ18O (p= < 0.05) of the entire faunal dataset (n= 223) were non-
normally distributed. Mann–Whitney–Wilcoxon tests demon-
strated the δ13C (W= 9257, p= < 0.05) and δ18O (W= 5264,
p= < 0.05) of fauna to be significantly different between Timor
and Alor. Consequently, the faunal δ13C and δ18O datasets of the
islands (Timor n= 111; Alor n= 112) were separated for
subsequent analyses unless otherwise specified. For both Timor
and Alor, Shapiro–Wilk tests found the resulting δ13C and δ18O
datasets for each island to be non-normally distributed (p= <
0.05). Mann–Whitney–Wilcoxon tests found marine and terres-
trial fauna to be significantly different in terms of δ13C on both
Timor (W= 2657, p= < 0.05) and Alor (W= 2423, p= < 0.05).
No difference was found between terrestrial and marine faunal
groups in terms of δ18O on either Timor (W= 1507, p= > 0.05)
or Alor (W= 1375, p= > 0.05).

In terms of terrestrial palaeoenvironmental conditions and
changes in Late Pleistocene–Holocene Wallacea, our data directly
confirms the C3 forest–woodland preferences for now-extinct
giant rat taxa on both Timor and Alor (Figs. 3–5; as per ref. 27).
Separation of the terrestrial fauna dataset from Timor (n= 76)
and Kruskal–Wallis analysis shows there to be no significant δ13C
differences by phase on this island (Kruskal–Wallis chi-squared
= 3.157, df= 3, p= > 0.05). Although significant differences in
δ18O were noted between phases (Kruskal–Wallis chi-squared=
13.647, df= 3, p= <0.05), pairwise comparison failed to draw out
any specific differences (>0.05) (Supplementary Table 8). For the
Alor terrestrial faunal dataset (n= 42), the situation is more
complicated. Here, a Kruskal–Wallis test (Kruskal–Wallis chi-
squared= 14.386, df= 2, p= <0.05) followed by pairwise com-
parison demonstrated significant δ13C differences between phases
A (40,000–21,000 years ago) and C (4000–0 years ago), and B
(15,000–7400 years ago) and C (4000–0 years ago; Supplementary
Table 9). No significant differences were found for δ18O
(Kruskal–Wallis chi-squared= 2.321, df= 2, p= > 0.05).

The difference between the islands is driven by the fact that in
the earliest phase of occupation on Alor (40–21,000 cal. years BP)
there is an overlap between terrestrial and marine fauna in δ13C
(Figs. 2 and 5). From this point, the δ13C of terrestrial fauna
declines through the phases, with terrestrial and marine fauna

becoming obviously different between 15,000–7400 cal. years BP
and 4000–0 cal. years BP (Fig. 2). These results suggest that C4

resources may have been available to some terrestrial fauna in the
earliest phase of human occupation on Alor, with their presence
declining through time. However, it is also possible that elevated
rat δ13C could be a product of early access to marine resources39.
Finally, separation of the combined dataset of marine fauna for
Timor and Alor (n= 105), and Kruskal–Wallis analysis and
pairwise comparison (Kruskal–Wallis chi-squared= 17.975, df=
8, p= < 0.05) showed significant δ13C differences between reef
taxa such as Balistidae (Triggerfishes) and more wide-ranging
taxa, such as Scaridae (Parrotfishes) (Supplementary Table 10),
indicating the potential utility of isotopic analysis of teeth to
distinguish fish from different marine niches (see also ref. 40).

Our large, robust faunal baseline enables the long-term
ecological niches of Late Pleistocene/Holocene human foragers
to be directly determined for Asitau Kuru, Matja Kuru 2,
Makpan, and Tron Bon Lei, as well as the additional sites of Lene
Hara and Matja Kuru 1 where only human samples were available
(Figs. 2–6; n= 26). Sampled human δ13C and δ18O ranges
between −14.1 and −5.6‰ and −6.2 to −3.2‰, respectively
(Fig. 2, Supplementary Data 2). The earliest human sample in the
study, and the earliest recovered fromWallacea, from context B63
at Asitau Kuru, dated to c. 42,440–38,853 cal. years BP, has a δ13C
value of −5.6‰ (Fig. 3). This is indicative of a high reliance on
marine resources, given the lack of any evidence for C4 resources
in this part of Timor at this time and zooarchaeological evidence
for abundant marine resources (Fig. 2). The majority of the
remaining humans sampled from the Terminal Pleistocene and
Holocene contexts of Asitau Kuru (Fig. 3), Lene Hara (Fig. 3),
Matja Kuru 1 and 2 (Fig. 4), and the site of Makpan (Fig. 5) on
Alor, have δ13C values between −14.1‰ and −9.6‰, indicating
human reliance on a mixture of terrestrial tropical forest
resources and more open C3 environments (Fig. 2).

Indeed, Fig. 6 demonstrates that even the δ13C values of
humans excavated from Tron Bon Lei (Supplementary Note 1),
with an assumed economic and cultural reliance on marine
resources, have a range of between −12.5‰ and −9.6‰. With
perhaps the exception of the individual from square C with a
value of −9.6‰, who likely demonstrates some contribution of
marine or C4 resources, this shows that terrestrial C3 resources
made up the majority of the diets of these individuals. Never-
theless, it is clear that two Terminal Pleistocene/Holocene
individuals at Makpan, Alor (−8.1‰; 15,000−11,000 cal. years
BP; Fig. 5), and Matja Kuru 2, Timor (−5.6‰; Fig. 4;
11,000–4000 cal. years BP) incorporated a significant proportion
of C4/marine and marine resources into their diets, respectively,
based on associated faunal data (Fig. 2), suggesting that diets were
diverse between individuals and societies during the Terminal
Pleistocene and Holocene.

Fourier transform infrared spectroscopy. Full results of the
infrared indices of samples subjected to FTIR analysis are shown
in Supplementary Data 3. All of the fossil and modern enamel
samples displayed classic enamel FTIR spectra (Supplementary
Fig. 15). No additional bands from secondary carbonate (e.g.
calcite at 710 cm−1; ref. 41) were observed in the spectra of the
fossil samples (Supplementary Fig. 15). Boxplots of API, BPI,
WAMPI, PCI, and BAI for the groups of ‘Modern’, ‘Fossil
Human’, ‘Fossil Terrestrial Fauna’, and ‘Fossil Marine Fauna’ are
shown in Supplementary Fig. 16. Broadly, there are minimal
changes between the groups with fossil samples perhaps having
marginally lower API, slightly higher BPI, and higher BAI than
the ‘Modern’ sample (Supplementary Fig. 16). Analysis of var-
iance (ANOVA) and post-hoc Tukey pairwise comparisons
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support this, finding no significant differences in A-site carbo-
nation (F(3,55)= 1.194, p > 0.05), B-site carbonation (F(3,55)=
1.387, p > 0.05), PCI (F(3,55)= 1.845, p > 0.05), or WAMPI (F
(3,55)= 1.245, p > 0.05) between the different sample groups. By
contrast, BAI does show a difference between the groups

(F(3,55)= 6.232, p < 0.05), with ‘Fossil Marine Fauna’ and ‘Fossil
Terrestrial Fauna’ being significantly different from ‘Modern’
samples (Supplementary Table 11).

Poor preservation of skeletal material has been suggested
elsewhere in tropical rainforest environments, though such

Fig. 3 Isotope data from Asitau Kuru (Timor). Stable carbon (δ13C) and oxygen (δ18O) isotope data from terrestrial and marine faunal tooth enamel
samples, with human samples shown as white circles, displayed by site phases (see Supplementary Note 1).
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Fig. 4 Isotope data from Matja Kuru 1 and 2 (Timor). Stable carbon (δ13C) and oxygen (δ18O) isotope data from terrestrial faunal tooth enamel samples
from Matja Kuru 2 (Timor), with human samples shown as white diamonds, displayed by site phases (see Supplementary Note 1). Regional phasing has
been used for the 11,000–4000 cal. years BP grouping so individuals from Matja Kuru 1 and 2 can be combined. The grouping of 16,000–11,000 cal. years
BP is only represented by two human individuals from Matja Kuru 1 as there is no occupation at Matja Kuru 2 at this time (see Supplementary Note 1).
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comments have mainly focused on organic bone material42. The
fossil enamel FTIR spectra produced here are virtually indis-
tinguishable from modern spectra (Supplementary Figs. 15 and
16). The precipitation of carbonate minerals is likely to be more

of a problem in the context of more porous materials, such as
bone43,44. Subtle differences noted in faunal enamel apatite
during fossilization noted here, including increased BAI and
decreased A-carbonate on phosphate index, have also been

Fig. 5 Isotope data from Makpan (Alor). Stable carbon (δ13C) and oxygen (δ18O) isotope data from terrestrial and marine faunal tooth enamel samples,
with human samples shown as white triangles, displayed by site phases (see Supplementary Note 1).
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demonstrated in other studies, including within the tropics of
South Asia, and have been argued to be a product of the reduction
in organic material within the apatite matrix through time31,38,45.
Such change is not considered to have major impacts on overall
enamel apatite structure or stable carbon and oxygen isotope
measurements from enamel45, as further suggested by the
preservation of expected ecological differences in the enamel
here and elsewhere29,31.

Discussion
Our stable isotope data allow us to directly assess the ecological
reliance on different categories of resources that accompanied our
species’ arrival and subsequent settling of Wallacea. The earliest
humans to arrive in this part of the world seemingly specialized in
the use of coastal resources. While we cannot currently distin-
guish between pelagic and other forms of offshore resource use13,
and our sample size from this early period is limited, we can be
confident that the δ13C value for this individual indicates a reli-
ance on marine resources. Following 20,000 cal. years BP, a clear
diversification in human resource use across Wallacea emerges.
While some coastal reliance is indicated by one individual at
Matja Kuru 2, and perhaps also Makpan, most individuals

demonstrate broader use of interior environments, including
closed tropical forest habitats. This may be considered surprising,
particularly given the ongoing presence of fish and shellfish9, the
symbolic burial of an individual at Tron Bon Lei with fishhooks
(Supplementary Note 1), as well as archaeological evidence for
increased transfer of material culture between islands from this
time46,47. However, tooth enamel δ13C reflects the whole diet of
an individual, and our data highlights the necessity of paying
more attention to the contribution of plant (and terrestrial ani-
mal) resources to human diets on tropical islands, particularly as
those populations become more established—something also
recently urged even for the study of the later Lapita expansion in
the Pacific48,49.

This study presents the first detailed palaeoenvironmental
information for Late Pleistocene–Holocene Wallacea, directly
associated with records of human behavior. Our data indicates
that, on Timor, tropical forest environments remained prevalent
throughout the past 45,000 years, only decreasing during the Late
Holocene with the arrival of human-induced deforestation during
the Iron Age27,50. There is no evidence for the presence of C4

grassland environments in the vicinity of any of the sites studied.
By contrast, on Alor, C4 resources may have been available to some
small mammals, and presumably also humans, during the earliest

Fig. 6 Isotope data from Tron Bon Lei (Alor). Stable carbon (δ13C) and oxygen (δ18O) isotope data from terrestrial and marine faunal tooth enamel
samples, with human samples shown as white inverted triangles, displayed by site phases (see Supplementary Note 1).
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period of occupation (40,000–21,000 years ago). From this point
onward, these resources disappear as tropical forest environments
expanded across the Terminal Pleistocene–Holocene boundary.
While it remains possible that elevated δ13C for some fauna in the
earlier phase represents consumption of marine resources, this
palaeoenvironmental pattern of increasing tropical forests during
the Terminal Pleistocene has also been documented elsewhere in
both Island and Mainland Southeast Asia5. In these cases, the
expansion of tropical forest during the Terminal Pleistocene and
Early Holocene has also been associated with increasingly specia-
lized human hunting of arboreal and semi-arboreal mammals and
the use of tropical forest plants5.

Our isotopic evidence supports human colonization models of
Wallacea and Australia that suggest a rapid, initial coastal colo-
nization, followed by later inland settlement12,14, at least with
regards to the sites studied here. This mode of colonization
is distinct from isotopic and material evidence from the Wet Zone
rainforests of Late Pleistocene Sri Lanka31,51 and archaeological
evidence from the Niah Caves in Borneo52 that indicate dedi-
cated, specialized tropical forest foraging by early human popu-
lations in these regions from 45,000 years ago. This further
highlights the potential role of sophisticated seafaring in the
human colonization of eastern Wallacea and Australasia12,13,53. A
later, increased focus on terrestrial resources or nearshore coastal
resources during the Terminal Pleistocene and Holocene has also
been argued on the basis of zooarchaeological evidence from
Timor, and elsewhere in Island Southeast Asia18,54. This sub-
sistence pattern occurs alongside an increase in occupation
intensity across Wallacea from the Terminal Pleistocene, as well
as an increase in formalized long-distance trading networks, and
is likely representative of exchange between settled groups in the
region46,47.

The adaptive flexibility visible in the colonization of almost all
of the Earth’s continents by our species in the Late Pleistocene
stands in stark contrast to the adaptations of other hominin
species3,6,9,24. While there is some evidence that other hominins
may have made water crossings20–23 or ventured into high-
altitude environments10, where present, existing zooarchaeologi-
cal/paleontological and palaeoenvironmental evidence suggests a
general, albeit diverse, focus on mixed grassland and woodland
environments, with dispersals and contractions often reliant on
climatically driven environmental change24,55. Future isotopic
analysis and more detailed zooarchaeological work are required to
test this distinction, both in Wallacea and beyond. However, there
is clear evidence that different populations of H. sapiens were able
to specialize in a variety of extreme environments even as our
species as a whole generalized in the use of multiple settings6.
This flexibility, perhaps supported by unique capacities of inno-
vation, technological sophistication, and social communication
(e.g., ref. 56), enabled adaptation to a variety of conditions, not
just through space but also through time, that would eventually
leave us the last hominin standing.

Methods
Sites, samples, and chronology. We sampled available human and animal teeth
from the Late Pleistocene–Holocene deposits of Asitau Kuru, Matja Kuru 1 and 2,
and Lene Hara on the island of Timor and Makpan and Tron Bon Lei on the island
of Alor. Existing, including published, stratigraphic, and chronological information
was compiled, in order to enable the placement of samples in their proper context.
All of the available dates used, stratigraphic information, and accompanying
archaeological finds can be found in Supplementary Note 1, Supplementary
Figs. 1–12, and Supplementary Tables 1–7. The available samples were selected on
the basis of occupation phases noted and published for each archaeological site
(Supplementary Note 1, Supplementary Tables 1–7). Based on these established
sequences, samples were also grouped into an overall ‘phasing’ for each of the
islands of Timor and Alor to provide larger sample sizes for the broader evaluation
of adaptive context for the arrival of humans on each island, hypothesized
palaeoenvironmental changes across the Terminal Pleistocene/Holocene boundary,

and changes following the arrival of ‘Neolithic’ material culture during the Holo-
cene (Supplementary Note 1, Supplementary Tables 6 and 7).

Although bone collagen is frequently the primary tissue used in the isotopic
determination of ancient diets, it is often degraded and nearly impossible to extract
from archaeological remains in the humid tropics, particularly those dating back to
the Pleistocene57,58. This is the case for the sites studied here. By contrast, tooth
enamel consists primarily of an inorganic fraction extremely resilient to
postmortem diagenesis59, meaning that it is the fossil tissue of choice for tropical
dietary reconstruction58,60. Tooth identification and analyses were conducted at the
Australian National University (ANU). Fish, reptile, and non-murid mammal
identifications were facilitated through comparisons with specimens from the ANU
Archaeology and Natural History Osteology Laboratory reference collection. Murid
identifications were facilitated through comparisons with archaeological and fossil
specimens collected from previous ANU expeditions, material held in KA’s private
collections, the Australian National Wildlife Collection of the Commonwealth
Scientific and Industrial Research Organisation National Facilities and Collections,
and descriptions and illustrations in Aplin and Helgen61 and Glover62.

Tooth enamel records an isotopic dietary signature for the period of enamel
formation that will vary depending on the species and tooth sampled. For humans,
the longest isotopic signature is provided by third molars that can develop any time
between 7 and 13 years of age, and the mid to late teenage years63,64. While
collagen δ13C is also biased toward protein components of the diet65, tooth enamel
δ13C reflects that of the whole diet during formation. Due to the rarity of fossil
human remains in Pleistocene archaeological sites, we sampled all of the available
human teeth present (Supplementary Data 2). The result is one of the largest
collections of human tooth enamel data that spans the Late Pleistocene/Holocene
(see refs. 31,60 for comparison in Sri Lanka) and the first for Island Southeast Asia.
While some of these teeth come from skeletons that have been aged and sexed, the
majority are loose teeth. Subtle variations in δ13C and δ18O between teeth could
occur as a result, particularly for teeth formed during ‘weaning’66. However, overall
this minor ‘noise’ will not hinder the testing of the major δ13C distinctions between
closed canopy C3 resources, C3 open settings, C4 resources, and marine resources.

Stable isotope analysis of archaeological tooth enamel. All teeth or teeth
fragments were cleaned using air-abrasion to remove any adhering external
material. Enamel powder for bulk analysis was obtained using gentle abrasion with
a diamond-tipped drill along the full length of the buccal surface, in order to ensure
a representative measurement for the entire period of enamel formation. All
enamel powder was pretreated to remove organic or secondary carbonate con-
taminates. This method followed established protocols that have been applied
elsewhere to Pleistocene tooth enamel in the tropics, where it has proven to be
effective31,60,67,68, enabling future comparison between datasets. Samples were
washed in 1.5% sodium hypochlorite for 60 min, followed by three rinses in pur-
ified H2O and centrifuging, before 0.1 M acetic acid was added for 10 min, followed
by another three rinses in purified H2O. Samples were then lyophilized for 24 h.

Following reaction with 100% phosphoric acid, gases evolved from the samples
were measured by stable carbon and oxygen isotope analysis using a Thermo Gas
Bench 2 connected to a Thermo Delta V Advantage Mass Spectrometer at MPI-
SHH. δ13C and δ18O values were compared against International Standards
(IAEA-603 (δ13C= 2.5; δ18O=−2.4); IAEA-CO-8 (δ13C=−5.8; δ18O=−22.7);
USGS44 (δ13C=−42.2)) and in-house standard (MERCK (δ13C=−41.3; δ18O=
−14.4)) using Isodat 3.0 software from Thermo Electron Corporation. Replicate
analysis of MERCK carbonate standards suggests that machine measurement error
is c. ±0.1‰ for δ13C and ±0.2‰ for δ18O. While each sample was measured only
once to preserve material for future analyses, as is standard for this approach,
overall measurement precision and reproducibility for tooth enamel samples on
this machine setup was studied through the measurement of repeat extracts from
an in-house bovid tooth enamel standard (n= 20; δ13C=−12.4 ± 0.2‰; δ18O=
−8.0 ± 0.3‰).

Fourier transform infrared spectroscopy. While reliable δ13C- and δ18O-based
dietary and environmental indicators have been demonstrated across millions of
years29, protocols to check the structural preservation of fossil tooth enamel
samples remain important (see ref. 69). This is particularly the case in tropical
forest environments with ion-rich soils and high hydrological activity. One means
to check enamel preservation is the application of FTIR, which absorbs radiation at
discrete vibrational frequencies related to the presence and crystallographic
environment of key functional groups (see refs. 45,70,71). The polyatomic ions of
interest are phosphates (PO4

3−), carbonates (CO3
2−), and hydroxyl groups (OH−).

The observed absorbance bands of enamel can be ascribed to the internal vibrations
of these molecular groups41,72 (Supplementary Table 12).

We use the empirical indices from Sponheimer and Lee-Thorp70, and Roche
et al.45 to characterize the crystal-chemical properties of enamel bioapatite
(Supplementary Table 12). The possible presence of calcite was assessed in all
samples by checking for a peak at 710 cm−1 (refs. 41,70). 14 ‘Fossil Human’, 15 ‘Fossil
Terrestrial Fauna’, and 15 ‘Fossil Marine Fauna’ samples were subjected to FTIR
analysis following pretreatment, in order to determine the remaining potential for
diagenetic structural and compositional modification of enamel after pretreatment.
Samples were randomly selected to cover a variety of the temporal phases and all of
the sites studied (Supplementary Data 3). The fossil spectra were compared to those

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15969-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2068 | https://doi.org/10.1038/s41467-020-15969-4 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


available for 15 modern primate and cervid samples, and historical (late nineteenth
and early twentieth century) human enamel samples (‘Modern’), from populations
living in tropical forest environments in Sri Lanka already published by Roberts
et al.73 (Supplementary Data 3).

For all samples, powdered enamel was analysed between 400 and 4,000 cm−1 by
FTIR with Attenuated Total Reflectance (FTIR-ATR—Bruker Vertex 70 v) using
the OPUS 8.5 software from Bruker. Each sample was measured three times. The
background was subtracted and a baseline correction was carried out using the
OPUS 8.5 software from Bruker. The baselines of the spectra were normalized and
all three spectra of each sample were averaged before calculation of the various
infrared indices. To ensure better reproducibility of the measurements, only spectra
with a minimum absorbance of 0.06 for the highest phosphate band at ~1035 cm−1

were taken into account. The reproducibilities of the indices BPI, API, BAI, and
PCI are ±0.01, ±0.007, ±0.1, and ±0.1, respectively.

Statistical analysis. All δ13C and δ18O datasets were tested for normality using
the Shapiro–Wilk test and histogram observations. Following observations of a lack
of normality, the significance of δ13C and δ18O variation between the two islands
(Timor and Alor), and between terrestrial and marine fauna on each island were
tested using Mann–Whitney–Wilcoxon tests. The significance of δ13C and δ18O
variation between taxa and between the different periods was tested using
Kruskal–Wallis tests. Where significant, these tests were followed by a pairwise
Wilcoxon comparison to determine which groups were significantly different from
each other. In all cases, the dataset being tested and its size are explicitly stated. All
statistical analyses were conducted using the free program R software74.

All FTIR index values were tested for normality using the Shapiro–Wilk test
and histogram observations. Analysis of variance (ANOVA) followed by post hoc
Tukey pairwise comparisons were performed for each of the main FTIR indices of
enamel apatite (PCI, BAI, BPI, API, and WAMPI—per45 and defined in
Supplementary Table 12) across the sample groups (i.e., ‘Fossil Marine Fauna’,
‘Fossil Terrestrial Fauna’, ‘Fossil Humans’, and ‘Modern’), in order to determine
statistical differences in enamel crystallinity and structure between fossil and
modern samples. All statistical analyses were again conducted using the free
program R software74.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All of the data reported in the paper are presented in the main text or in
the Supplementary Notes, Tables, Figures, and Data files. The source data underlying
Fig. 2 and Supplementary Fig. 16 are provided as a Source Data file. The source data for
Fig. 2, as well as Supplementary Data Files 1 and 2, also underlie Figs. 3–6. All other data
supporting the findings and interpretations of this study are available in existing
publications and the Supplementary Information provided alongside this manuscript.
The faunal and human remains sampled from Timor-Leste are curated in the
Archaeology collection at the College of Asia and the Pacific, Australian National
University, Australia under the site codes J (Asitau Kuru), MK (Matja Kuru), and LH
(Lene Hara). These materials are to be returned to Timor-Leste upon construction of a
national museum storehouse. The faunal and human remains from Alor are housed in
the Department of Archaeology, Universitas Gadjah Mada, Indonesia, under the site
codes TBL (Tron Bon Lei) and MP (Makpan). All site codes are followed by suffixes of a
single letter denoting the excavation square and a number denoting the spit.

Received: 26 January 2020; Accepted: 6 April 2020;

References
1. Aubert, M. et al. Earliest hunting scene in prehistoric art. Nature 576, 442–445

(2019).
2. Akhilesh, K. et al. Early Middle Palaeolithic culture in India around 385-172

ka reframes Out of Africa Models. Nature 554, 97–101 (2018).
3. Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000-

108,000 years ago. Nature 577, 381–385 (2020).
4. Reich, D. et al. Denisova admixture and the first modern human disper-

sals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528
(2011).

5. Rabett R.J. Human Adaptation in the Asian Palaeolithic (Cambridge
University Press, Cambridge, 2012).

6. Roberts, P. & Stewart, B. A. Defining the ‘generalist-specialist’ niche for
Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).

7. Zhu, R. X. et al. Early evidence of the genus Homo in East Asia. J. Hum. Evol.
55, 1075–1085 (2008).

8. Gamble, C. Timewalkers: The Prehistory of Global Colonization (Alan Sutton
Press, Cheltenham, 1993).

9. O’Connor, S. et al. Hominin dispersal and settlement east of Huxley’s Line: the
role of sea-level changes, island size, and subsistence behaviour. Curr.
Anthropol. 58, S567–S582 (2017).

10. Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan
Plateau. Nature 569, 409–412 (2019).

11. Bird, M., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia
during the last glacial period: a savanna corridor in Sundaland? Quat. Sci. Rev.
24, 2228–2242 (2005).

12. Bird, M. I. et al. Early human settlement of Sahul was not an accident. Nat. Sci.
Rep. 9, 8220 (2019).

13. O’Connor, S., Ono, R. & Clarkson, C. Pelagic fishing at 42,000 years before the
present and the maritime skills of modern humans. Science 334, 1117–1121
(2011).

14. Kealy, S., Louys, J. & O’Connor, S. Reconstructing palaeogeography and inter-
island visibility in the Wallacean Archipelago during the likely period of Sahul
Colonization, 65–45 000 Years Ago. Archaeol. Prospect. 24, 259–272 (2017).

15. Norman, K. et al. An early colonization pathway into northwest Australia 70-
60,000 years ago. Quat. Sci. Rev. 180, 229–239 (2017).

16. O’Connell, J. F. & Allen, J. The restaurant at the end of the universe: modeling
the colonization of Sahul. Aust. Archaeol. 74, 5–31 (2012).

17. Samper Carro, S. C. et al. Human maritime subsistence strategies in the Lesser
Sunda Islands during the terminal Pleistocene-early Holocene: New evidence
from Alor, Indonesia. Quat. Int. 416, 64–79 (2016).

18. Hawkins, S. et al. Oldest human occupation of Wallacea at Laili Cave, Timor-
Leste, shows broad-spectrum foraging responses to late Pleistocene
environments. Quat. Sci. Rev. 171, 58–72 (2017).

19. Shipton, C. et al. A new 44,000-year sequence from Asitau Kuru (Jerimalai),
Timor-Leste, indicates long-term continuity in human behaviour. Archaeol.
Anthropol. Sci. 11, 5717–5741 (2019).

20. Morwood, M. J. et al. Further evidence for small-bodied hominins from the
Late Pleistocene of Flores, Indonesia. Nature 437, 1012–1017 (2005).

21. Van den Bergh, G. D. et al. Homo floresiensis-like fossils from the early Middle
Pleistocene of Flores. Nature 534, 245–248 (2016).

22. Ingicco, T. et al. Earliest known hominin activity in the Philippines by 709
thousand years ago. Nature 557, 233–237 (2018).

23. Van den Bergh, G. D. et al. Earliest hominin occupation of Sulawesi,
Indonesia. Nature 529, 208–211 (2016).

24. Roberts, P. & Amano, N. Plastic pioneers: Hominin biogeography east of the
Movius Line during the Late Pleistocene. Archaeol. Res. Asia 17, 181–192
(2019).

25. Brumm, A. et al. Age and context of the oldest known hominin fossils from
Flores. Nature 534, 249–253 (2016).

26. Anderson, A. The antiquity of sustained offshore fishing. Antiquity 87,
879–895 (2013).

27. Louys, J. et al. New genus and species of giant rat from Alor Island, Indonesia.
J. Asia-Pac. Biodiv 11, 503–510 (2018).

28. Samper Carro, S. C., Louys, J. & O’Connor, S. Methodological considerations
for icthyoarchaeology from the Tron Bon Lei sequence, Alor, Indonesia.
Archaeol. Res. Asia 12, 11–22 (2017).

29. Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. Stable carbon isotope ratio
differences between bone collagen and bone apatite, and their relationship to
diet. J. Archaeol. Sci. 16, 585–599 (1989).

30. Levin, N.E. et al. in The Geology of Early Humans in the Horn of Africa (eds J.
Quade & J.G. Wynn.) 215–234 (Geological Society of America Special Paper
446, Boulder, Colorado, 2008).

31. Roberts, P. et al. Fruits of the forest: Human stable isotope ecology and
rainforest adaptations in Late Pleistocene and Holocene (~ 36 to 3 ka) Sri
Lanka. J. Hum. Evol. 106, 102–118 (2017).

32. Monk, K.A., de Fretes, Y. & Reksodiharjo-Lilley, G. The Ecology of Nusa
Tenggara and Maluku (Periplus Editions, Jakarta, Indonesia, 1997).

33. Smith, B. N. & Epstein, S. Two categories of 13C/12C ratios for higher plants.
Plant Physiol. 47, 380–384 (1971).

34. Fry, B. Stable Isotope Ecology (Springer, New York, 2006).
35. Kusaka, S. et al. Carbon isotope ratios of human tooth enamel record the

evidence of terrestrial resource consumption during the Jomon period, Japan.
Am. J. Phys. Anthropol. 158, 300–311 (2015).

36. Clementz, M. T. & Koch, P. L. Differentiating aquatic mammal habitat and
foraging ecology with stable isotopes in tooth enamel. Oecologia 129, 461–472
(2001).

37. Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests
of Sundaland are unrepresentative of their biogeographic past and highly
vulnerable to disturbance. PNAS 106, 11188–11193 (2009).

38. Roberts, P. et al. Fossil herbivore stable isotopes reveal middle Pleistocene
hominin palaeoenvironment in ‘Green Arabia’. Nat. Ecol. Evol. 2, 1871–1878
(2018).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15969-4

10 NATURE COMMUNICATIONS |         (2020) 11:2068 | https://doi.org/10.1038/s41467-020-15969-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


39. Polis, G. A. et al. In Food Webs at the Landscape Level (eds Polis, G. A., Power,
M. E. & Huxel, G. R.) 200–216 (University of Chicago Press, Chicago, Illinois,
USA, 2004).

40. Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition
of bone collagen from marine and terrestrial animals. Geochim. Cosmochim.
Acta 48, 625–639 (1984).

41. Farmer, V. C. The Infrared Spectra of Minerals (The Mineralogical Society,
London, 1974).

42. Tappen, M. Bone weathering in the tropical rain forest. J. Archaeol. Sci. 21,
667–673 (1994).

43. Lee-Thorp, J. A. & van der Merwe, N. J. Aspects of the chemistry of modern
and fossil biological apatites. J. Archaeol. Sci. 18, 343–354 (1991).

44. Michel, V., Ildefonse, P. & Morin, G. Assessment of archaeological bone and
dentine preservation from Lazaret Cave (Middle Pleistocene) in France.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 109–119 (1996).

45. Roche, D. et al. Preservation assessment of Miocene-Pliocene tooth enamel
from Tugen Hills (Kenyan Rift Valley) - through FTIR, chemical and stable-
isotope analyses. J. Archaeol. Sci. 37, 1690–1699 (2010).

46. Reepmeyer, C. et al. Kisar, a small island participant in an extensive maritime
obsidian network in the Wallacean Archipelago. Archaeol. Res. Asia 19,
100139 (2019).

47. Shipton, C. et al. Shell Adzes, Exotic Obsidian, and Inter-Island voyaging in
the early and Middle Holocene of Wallacea. JICA https://doi.org/10.1080/
15564894.2019.1581306 (2019).

48. Maxwell, J. J. et al. Timing and importance of arboriculture and agroforestry
in a temperate East Polynesia Society, the Moriori, Rekohu (Chatham Island).
Quat. Sci. Rev. 149, 306–325 (2016).

49. Tromp, M. et al. Exploitation and utilization of tropical rainforests indicated
in dental calculus of ancient Oceanic Lapita culture colonists. Nat. Hum.
Behav. https://doi.org/10.1038/s41562-019-0808-y (2020).

50. O’Connor, S. & Aplin, K. A matter of balance: an overview of Pleistocene
occupation history and the impact of the Last Glacial Phase in East Timor and
the Aru Islands, eastern Indonesia. Archaeol. Ocean 42, 82–90 (2007).

51. Wedage, O. et al. Specialized rainforest hunting by Homo sapiens 45,000 years
ago. Nat. Commun. 10, 739 (2019).

52. Barker, G., Farr, L. Archaeological Investigations in the Niah Caves, Sarawak
(The Archaeology of the Niah Caves, Sarawak 2) (McDonald Institute for
Archaeological Research, Cambridge, 2016).

53. Balme, J. Of boats and string: the maritime colonisation of Australia. Quat.
Int. 285, 68–75 (2013).

54. Boulanger, C. et al. Coastal subsistence strategies and mangrove swamp
evolution at Bubog I Rockshelter (Ilin Island, Mindoro, Philippines) from the
Late Pleistocene to the mid-Holocene. JICA 14, 584–604 (2019).

55. Louys, J. & Turner, A. Environment, preferred habitats and potential refugia
for Pleistocene Homo in Southeast Asia. C. R. Palevol 11, 203–211 (2012).

56. Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning
is essential for human adaptation. PNAS 108, 10918–10925 (2011).

57. Krigbaum, J. Neolithic subsistence patterns in northern Borneo reconstructed
with stable carbon isotopes of enamel. J. Anthropol. Archaeol. 22, 292–304
(2003).

58. Krigbaum, J. Reconstructing human subsistence in the West Mouth (Niah
Cave) Sarawak) burial series using stable isotopes of carbon. Asian Perspect.
44, 73–89 (2005).

59. Wang, Y. & Cerling, T. A model of fossil tooth and bone diagenesis:
implications for paleodiet reconstruction from stable isotopes. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 107, 281–289 (1994).

60. Roberts, P. et al. Direct evidence for human reliance on rainforest resources in
late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).

61. Aplin, K. P. & Helgen, K. M. Quaternary murid rodents of Timor Part I: new
material of Coryphomys buehleri Schaub, 1937, and description of a second
species of the genus. Bull. Am. Mus. Nat. 341, 1–80 (2010).

62. Glover, I. Archaeology in Eastern Timor, 1966–67. Terra Australis 11
(Department of Prehistory, Research School of Pacific Studies (Australian
National University, Canberra, 1986).

63. Hillson, S. Dental Anthropology (Cambridge University Press, Cambridge,
1996).

64. Scheid, R.C. Woelfel’s Dental Anatomy 7th edn (Lipincoot, Williams &
Wilkins, Philadelphia, 2007).

65. Ambrose, S.H. & Norr, L. In Prehistoric Human Bone: Archaeology at the
Molecular Level (eds Lambert, B. & Grupe, G.) 1–37 (Springer, Berlin, 1993).

66. Wright, L. E. & Schwarcz, H. P. Stable carbon and oxygen isotopes in human
tooth enamel: Identifying breastfeeding and weaning in prehistory. Am. J.
Phys. Anthropol. 106, 1–18 (1998).

67. Sponheimer, M. et al. Hominins, sedges, and termites: New carbon isotope
data from the Sterkfontein valley and Kruger National Park. J. Hum. Evol. 48,
301–312 (2005).

68. Lee-Thorp, J. A. et al. Isotopic evidence for an early shift to C4 resources by
Pliocene hominins in Chad. PNAS 109, 20369–20372 (2012).

69. Schoeninger, M. J. et al. Isotopic alteration of mammalian tooth enamel. Int. J.
Osteoarchaeol. 13, 11–19 (2003).

70. Sponheimer, M. & Lee-Thorp, J. A. Isotopic evidence for the diet of an early
hominid, Australopithecus africanus. Science 283, 368–370 (1999).

71. Nagy, Z. K. et al. Comparative performance of concentration and temperature
controlled batch crystallizations. J. Process Control 18, 399–407 (2008).

72. LeGeros, R. Z. Calcium phosphates in Oral Biology and Medicine. Monogr.
Oral. Sci. 15, 1–201 (1991).

73. Roberts, P. et al. Historical tropical forest reliance amongst the Wanniyalaeto
(Vedda) of Sri Lanka: an isotopic perspective. Hum. Ecol. 46, 435–444 (2018).

74. R Core Team. R: A language and environment for statistical computing (R
Foundation for Statistical Computing, Vienna, Austria, 2013).

Acknowledgements
For permission to conduct fieldwork, we thank the Secretaria do Estado da Arte e
Cultura, Timor-Leste, and the Indonesian Ministry of Research, Technology, and Higher
Education (RISTEK) Foreign Research Permit Division (S.O’.C. 1172/FRP/E5/Dit.KI/V/
2016). This project was funded by the Max Planck Society, a European Research Council
Starter Grant awarded to P.R. (no. 850709), an Australian Research Council Laureate
Fellowship awarded to S.O’.C. (FL120100156), and the Australian Research Council
Centre of Excellence for Australian Biodiversity and Heritage (CE170100015). We would
like to thank the landowners and villagers of Alor and Timor-Leste, staff and students
from the Universitas Gadja Mada, Pusat Penelitian Arkeologi Nasional, and Balai
Arkeologi Bali for their assistance in the field. We also thank CartoGIS ANU for their
assistance.

Author contributions
P.R., J.L., C.S., S.K., and S.O’C. designed the research; P.R., J.L., J.Z., C.S., S.K., S.S.C., S.
H., C.B., S.M., B.F., K.A., and S.O’C. collected the data; P.R., J.L., J.Z., C.S., S.K., S.S.C., S.
H., C.B., and S.O’C. analyzed the data; P.R., J.L., J.Z., C.S., S.K., S.S.C., S.H., C.B., S.M., B.
F., N.B., M.M., K.A., and S.O’C. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15969-4.

Correspondence and requests for materials should be addressed to P.R. or S.O.

Peer review information Nature Communications thanks John Krigbaum and the other,
anonymous, reviewers for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15969-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2068 | https://doi.org/10.1038/s41467-020-15969-4 | www.nature.com/naturecommunications 11

https://doi.org/10.1080/15564894.2019.1581306
https://doi.org/10.1080/15564894.2019.1581306
https://doi.org/10.1038/s41562-019-0808-y
https://doi.org/10.1038/s41467-020-15969-4
https://doi.org/10.1038/s41467-020-15969-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea
	Results
	Sites, samples, and chronology
	Stable isotope analysis of archaeological tooth enamel
	Fourier transform infrared spectroscopy

	Discussion
	Methods
	Sites, samples, and chronology
	Stable isotope analysis of archaeological tooth enamel
	Fourier transform infrared spectroscopy
	Statistical analysis
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




