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Background: In recent years, increasing interest has arisen in the application of data from 
corneal biomechanics in many areas of ophthalmology, particularly to assist in the detection 
of early corneal ectasia or ectasia susceptibility, to predict corneal response to surgical or 
therapeutic interventions and in glaucoma management. Technology has evolved and, 
recently, the Scheimpflug principle was associated with a non-contact air-puff tonometer, 
allowing a thorough analysis of corneal biomechanics and a biomechanically corrected 
intraocular pressure assessment, opening up new perspectives both in ophthalmology and 
in other medical areas. Data from corneal biomechanics assessment are being integrated in 
artificial intelligence models in order to increase its value in clinical practice.
Objective: To review the state of the art in the field of corneal biomechanics assessment 
with special emphasis to the technology based on ultra-high-speed Scheimpflug imaging 
during non-contact tonometry.
Summary: A meticulous literature review was performed until the present day. We used 
136 published manuscripts as our references. Both information from healthy individuals and 
descriptions of possible associations with systemic diseases are described. Additionally, it 
exposed information regarding several fields of ocular pathology, from cornea and ocular 
surface through areas of refractive surgery and glaucoma until vascular and structural 
diseases of the chorioretinal unit.
Keywords: cornea, corneal biomechanics, Corvis, ultra-high speed Szcheimpflug camera

General Biomechanics
Biomechanics is often defined as “mechanics applied to biology” and has contrib
uted significantly to understanding anatomic human behavior in different special
ities of medicine. In the last fifty years, the concept of biomechanics evolved in the 
setting of human diseases, injuries and response to treatment. Nevertheless, the 
study of human body biomechanics did not meet sufficient accuracy and predict
ability to contribute significantly in clinical practice for many years.1

The term biomechanics can be defined as the quantification of the complex 
mechanical behaviour of biological structures, and its application to better under
stand physiology and physiopathology in order to improve diagnosis, prognosis and 
treatment of many disorders.2

Biological tissues can have multiple and complex responses when facing stress 
and strains. Thus, models trying to describe it have to consider the heterogeneous 
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non-linear and anisotropic character that is not completely 
stable across different points, different timings and differ
ent patients.3

Corneal Biomechanics
Assessing the biomechanical response of living tissue is 
complex and demands knowledge of some basic concepts 
of mechanical engineering:4

● Elastic modulus or Young’s modulus: describes how 
much a load will deform the material under specific 
conditions.5 The material deformation is expressed as 
a strain and will lead to an internal response within 
the material (stress). Young’s modulus is depicted by 
the slope of the stress-strain plot. The greater the 
slope is, the higher the modulus and the stiffer the 
material are such that greater force is required to 
deform a more rigid material.

● Viscoelasticity: implies that the material behavior is 
strain rate (time) dependent and is different during 
loading and unloading phases, differently from pure 
elastic materials, that have symmetric loading- 
unloading behaviour. More specifically, the stress- 
strain pathways by which viscoelastic materials 
return to the steady state are dependent on loading 
rates and the difference between loading and unload
ing behavior is characterized by Hysteresis,6 which 
represents the amount of energy dissipated during the 
loading-unloading process, usually as thermal energy. 
Viscoelasticity is an intrinsic characteristic of every 
living tissue.

The cornea has been recognized for a long time as an 
anisotropic composite with nonlinear viscoelastic proper
ties rather than a linear elastic structure because its proper
ties are determined by the interaction of diverse materials 
like collagen and a polyanionic, hydrophilic ground sub
stance and are not directionally uniform.7 The anterior 
stroma and Bowman membrane are the chief collagenous 
layers, providing the majority of the cornea’s tensile 
strength.The viscoelastic behaviour its provided by the 
ground substance.8,9

Understanding these concepts and how they apply to 
the cornea and the eye as a whole, highlights why it is so 
difficult to define the cornea biomechanically with a single 
number or scale. Moreover, the distinct features found 
when the center is compared to the periphery and when 
the anterior cornea is compared to the posterior regions 

make biomechanical characterization an even more chal
lenging task.

Corneal biomechanics have been assessed through 
Extensiometry in vitro studies by measuring stress-strain 
and Young’s modulus in isolated corneas.10 Nonetheless, 
the impossibility of performing this test in vivo and the 
artifact resulting from testing corneal tissue outside of its 
native curved configuration has prompted accelerated 
efforts to develop nondestructive, noninvasive tools for 
clinical biomechanical property measurement.

In recent years, the assessment of corneal biomecha
nics has been the subject of increasing interest both in the 
detection of ectasia susceptibility and in the prediction of 
corneal responses to surgical or therapeutic 
interventions.11–15 Additionally, as intraocular pressure 
(IOP) has been shown to be influenciated by corneal 
biomechanical behaviour, its role in the prediction of 
glaucoma susceptibility is another area of interest.16

The first commercially available device capable of 
evaluating the cornea’s biomechanical features was the 
Ocular Response Analyzer® (ORA, Reichert, Inc., 
Depew, NY), which quantifies the dynamics of corneal 
deformation and recovery as an indicator of corneal hys
teresis (CH), through a high-speed air-puff.17 CH is the 
difference between the ingoing and outgoing applanation 
pressures (P1 – P2) and represents the energy loss due to 
viscous damping in the cornea and extra-corneal struc
tures. Additionally, it can measure the overall elastic resis
tance of the cornea – corneal resistance factor (CRF) – 
which is a formula derived from the CH, with an incorpo
rated empirically determined adjustment factor (k) to P2 
(CRF = P1 – kP2).18–20 However, as CH could be asso
ciated with low or high elasticity depending on the visc
osity, there is not a direct relationship between the CH and 
the Young’s modulus21 and conclusions from studies using 
the ORA should be considered cautiously. Another main 
limitation is that there is a significant variability in CH and 
CRF among normal healthy individuals that can be influ
enced by the variability of IOP in the same population.22

The Corvis ST® (Corvis, Oculus Optikgeräte GmbH, 
Wetzlar, Germany) is a non-contact tonometer that 
employs a similar air puff perturbation and has been com
mercially available since 2011. However, it has coupled an 
ultra-high-speed Scheimpflug camera that records the 
deformation process at 4330 frames/second along an 
8 mm horizontal corneal cross-section during corneal 
deformation.23,24 Analysis of the images gives insight 
into the infrared signal behavior observed with the ORA, 
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and, because direct analysis of shape is possible, provides 
additional opportunities for a more direct derivation of 
biomechanical response.25,26 Contrary to the ORA, the 
Corvis does not vary the air puff pressure from measure
ment to measurement, and differences in applied force 
might confound attempts to directly compare results 
obtained with these two instruments.27 Additionally, the 
associated Scheimpflug principle allowed the measure
ment of several new parameters, usually referred as 
Dynamic Corneal Response analysis (DCR), and the bio
mechanically corrected intraocular pressure (bIOP), open
ing up new perspectives within the aforementioned fields. 
The main limitation of this device is that the measure
ments are made only in a single 8 mm horizontal corneal 
cross-section, which could eventually be overcome 
through an analysis on several cross-sections across the 
entire 360°. Figure 1 represents an example of a print-out 
showing the corneal shape within different timepoints and 
several biomechanical parameters and Table 1 describes all 
the parameters derived from the Corvis with explanation.

Other techniques that combine corneal deformation 
analysis with high-speed imaging have been proposed, 
such as Supersonic shear-wave imaging,28 Surface wave 
elastometry29 or Elastography with gonioscopy lens,30 but 
are not currently applied in vivo.

Another approach is the measurement of corneal biome
chanics in vivo through the analysis of light scatter and 
mapping the biomechanical state of the cornea with 
3-D capability, determining intrinsic viscoelastic properties 
decoupled from structural information and applied pressure, 
through Brillouin optical microscopy technology.15 

However, besides the demonstrated impact of age on corneal 
biomechanics and differences between normal and keratoco
nic corneas, the accuracy of the reported findings is relatively 
weak in this setting and still needs further development.31

Corneal Biomechanics in Healthy 
Individuals
Ocular structures are known to be different among differ
ent populations across the world and some studies have 

Figure 1 Example of a print-out from the Corvis ST® describing the corneal, shape within different timepoints and several biomechanical parameters. 
Notes : Copyright ©2021. Reproduced from Baptista PM, Marta AA, Marques JH, Abreu AC, Monteiro S, Menéres P, Pinto MDC. The Role of Corneal Biomechanics in the 
Assessment of Ectasia Susceptibility Before Laser Vision Correction. Clin Ophthalmol. 2021;15:745-758.146
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Table 1 Ultra-High-Speed Scheimpflug Camera-Based Corneal Biomechanical Parameters with Explanation

Parameters Abbreviations Explanation

Corvis-derived non-contact 
tonometry IOP [mmHg]

cIOP Corvis-derived intraocular pressure

Corvis-derived central corneal 
thickness [µm]

cCCT Corvis-derivated central corneal thickness

1st Generation Parameters Abbreviations Explanation

Deformation Amp. Max [mm] MaxDefoA Corneal deformation amplitude during MaxDT, as the sum of corneal deflection amplitude 
and MaxWEM

A1 Time [ms] A1T Time from the measurement beginning to the first applanation moment

A1 Velocity [m/s] A1V Velocity of the corneal apex during the first applanation

A2 Time [ms] A2T Time from the measurement beginning to the second applanation moment

A2 Velocity [m/s] A2V Velocity of the corneal apex during the second applanation

HC Time [ms] HCT Time from the measurement beginning to the moment of reaching the highest concavity 

(HC)

Peak Dist. [mm] HCPD Distance between the corneal peaks at the HC

Radius [mm] HCR Radius of corneal curvature during the HC

A1 Deformation Amp. [mm] A1DefoA Corneal deformation amplitude during A1, as the sum of corneal deflection amplitude and 
MaxWEM

HC Deformation Amp. [mm] HCDefoA Corneal deformation amplitude during HC, as the sum of corneal deflection amplitude and 
MaxWEM

A2 Deformation Amp. [mm] A2DefoA Corneal deformation amplitude during A2, as the sum of corneal deflection amplitude and 
MaxWEM

A1 Deflection Length [mm] A1DL Horizontal length of the flattened cornea at the A1

HC Deflection Length [mm] HCDL Horizontal length of the flattened cornea at the HC

A2 Deflection Length [mm] A2DL Horizontal length of the flattened cornea at the A2

A1 Deflection Amp. [mm] A1DA Corneal deflection amplitude during A1, determined as the displacement of the corneal 
apex in relation to the initial state without the MaxWEM quantification

HC Deflection Amp. [mm] HCDA Corneal deflection amplitude during HC, determined as the displacement of the corneal 
apex in relation to the initial state without the MaxWEM quantification

A2 Deflection Amp. [mm] A2DA Corneal deflection amplitude during A2, determined as the displacement of the corneal 
apex in relation to the initial state without the MaxWEM quantification

Deflection Amp. Max [mm] MaxDA Corneal deformation amplitude during MaxDT, as the sum of corneal deflection amplitude 

and MaxWEM

Deflection Amp. Max [ms] MaxDT Moment of the maximum deformation, during the oscillatory phase near HC

Whole Eye Movement Max 
[mm]

MaxWEM Amplitude of the Maximum whole eye movement

Whole Eye Movement Max [ms] MaxWEMT Time at which occurs the amplitude of the Maximum whole eye movement (near A2)

A1 Deflection Area [mm2] A1DArea Deflection area in A1

(Continued)
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described corneal biomechanical properties among differ
ent adult32–34 and children35 populations.

The age-related changes in corneal stroma were studied 
ex vivo and the proved increase in spacing between col
lagen fibers can be hypothesised to be linked with increas
ing natural sun-related collagen crosslinking over the 
years.36 Recent studies with Corvis reported37 alterations 
in corneal biomechanics with age, but there is still con
troversy in literature.38,39 Other factors like axial 
length,40,41 height/weight, higher meat or vitamin 
E intake38 or even fasting42 and dry eye43 were shown to 
predict corneal biomechanical status, but the evidence is 
still poor. Additionally, there is some evidence of the 
relationship between corneal hydration status and biome
chanical properties. However, data come from artificially 

created conditions, and the modalities of study are not well 
suited to in vivo applications.44

Therefore, deeper knowledge of the corneal biomecha
nical response in relation with populations in different lati
tudes, different lifestyles or other body biometric parameters 
would be invaluable for the prediction of disease progression 
or treatment outcomes regarding clinical situations where 
the biomechanical aspects of an eye are important. Thus, it is 
of utmost importance to establish normative data to value 
the results within different ocular or systemic diseases.

It is well known the biomechanical effect of UV-A/ 
riboflavin (B2 Vitamin) corneal crosslinking (CXL).45 

However, there is no scientific evidence of the daily-life 
sun exposure, solarium, or oral B2 vitamin intake as pre
dictors of corneal biomechanics.

Table 1 (Continued). 

Parameters Abbreviations Explanation

HC Deflection Area [mm2] HCDArea Deflection area in HC

A2 Deflection Area [mm2] A2DArea Deflection area in A2

A1 dArc Length [mm] A1dArcL Delta arc length of corneal surface in A1

HC dArc Length [mm] HCdArcL Delta arc length of corneal surface in HC

A2 dArc Length [mm] A2dArcL Delta arc length of corneal surface in A2

dArcLengthMax [mm] MaxdArcL Delta arc length of corneal surface in MaxDT

2nd Generation Parameters Abbreviations Explanation

Max InverseRadius [mm^-1] MIR 1/HCR

DA Ratio Max (2mm) DARM2 Ápex MaxDA/MaxDA at 2mm from the ápex

PachySlope [µm] PqS Peripheric (8mm horizontal) pachymetry/Ápex pachymetry

DA Ratio Max (1mm) DARM1 Ápex MaxDA/MaxDA at 1mm from the ápex

Ambrosio Relational Thickness 
(horizontal 8mm)

ARTh Ambrosio Relational Thickness in the horizontal 8mm cornea of the image

Biomechanically-corrected IOP bIOP IOP adjusted for biomechanical parameters

Integrated Radius [mm^-1] IR Area under the curve of the 1/HCR function

Stiffness parameter in A1 SP-A1 Air puff pressure - bIOP/A1DA

Stress Strain Index SS-I Finite element modeling algorithm for the estimation of the non-linear in vivo biomechanical 
behaviour in corneal with normal topography

Corvis biomechanical index CBI Exponential function score made through a logistic regression analysis of 6 parameters (SP- 
A1, DARM1, DARM2, ARTh, A1V and MaxDefoA) and adjusted for IOP and CCT to 

describe ectasia risk

Tomographic and biomechanical 

Index

TBI Generated by the random Forest method with leave-one-out cross-validation, including 

tomographic and biomechanical parameters, to detect ectasia susceptibility
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Corneal Biomechanics and Systemic 
Disease
Investigation upon the impact of diabetes on corneal bio
mechanical parameters and IOP measurements has been 
initiated some years ago with the ORA but the results were 
rather controversial.46,47 Recently, the complex data from 
the Corvis are been added and confirmed biomechanically 
altered corneas48 but its role, namely in IOP measurements 
in these patients, is not yet established. Vascular walls 
share some of the stromal corneal components49 and 
there is evidence in the literature about the importance of 
vascular type I collagen regulation, for both vessel devel
opment and remodeling in pathologic states like athero
sclerosis and pulmonary hypertension.50 As type 1 
collagen is the main type present in the corneal stroma 
(but also other components are shared between the cornea 
and vascular walls) the complex study of corneal biome
chanics by the Scheimpflug technology can be a potential 
non-invasive surrogate marker of differential vascular 
responses to the aggression of diabetes and have a role 
in prognosis. As the complex regulation in the genesis of 
diabetic macular edema is still not completely clear, there 
are not a perfect approach51 and many factors, other than 
VEGF can play a role, including the individual vascular 
wall structure. Besides the reported association between 
retinal vascular caliber and corneal biomechanical 
properties,52 data in this setting are scarce and there are 
no descriptions about the above inferences in literature.

The spectrum of auto-immune collagen vascular dis
eases (CVD) is wide and the majority of those can affect 
the eye. Besides the little knowledge about the association 
of corneal biomechanics and these diseases, few studies 
tried to assess it with the ORA, namely in Systemic Lupus 
Erythematosus (SLE) or Rheumatoid Arthritis (RA).53,54 

More recently, some association between disease activity 
was postulated through the Corvis, analysis.55 In heredi
tary CVD like Marfan Syndrome, besides the biomecha
nical alterations founded, it was associated with an 
increased risk of ectopia lens.56

Corneal Biomechanics and Ocular 
Surface
Ocular surface disease (OSD) is an increasingly prevalent 
disorder, due to the current lifestyle and a greater auto
immune burden in the population.43 Recently, alterations 
in corneal biomechanics using Scheimpflug technology 
were reported in OSD subjects,57 more pronounced when 

associated with an auto-immune disease like Sjogren 
Syndrome.58 However, data are scarce and causality rela
tionships remain controversial, as the biomechanical 
alterations can have some inflammatory basis or the eye 
rubbing due to eye discomfort in OSD can lead to altered 
corneas. Another issue that remains to be proven is the 
possible direct effect of the tear film in the air puff mea
surements. Given this, the study of DCRs in these eyes can 
introduce valuable information within the areas of kerato
conus and refractive surgery screening.

Contact lenses (CL) are a common option in the cor
rection of an increasingly broad spectrum of refractive 
errors. While soft contact lens are appropriate for most 
of the mild and moderate refractive errors in otherwise 
healthy eyes, rigid-gas permeable contact lenses (RGP- 
CL) are a common non-surgical option in keratoconus 
patients which do not reach good visual quality by spec
tacles, through its regularization effect on corneal 
surface.59 Although the optimization of material properties 
has greatly improved its oxygen permeability and comfort 
and greatly reduced the incidence of side reactions, both 
types constitute aggression to the ocular surface. This is 
particularly important in keratoconus patients with long- 
term utilization of RGP-CL, in which is still not concluded 
if the chronic hypoxia stimulation, the change of tear 
components, the proinflammatory effect on the ocular sur
face, and the induction of apoptosis can promote the 
progression of the disease.60

There are few reports in the literature showing short- 
term61 but not long-term biomechanical alterations asso
ciated with soft CL62 with the ORA and short-term altera
tions associated with RGP-CL with the Corvis.63 

However, more consistent data are needed, to generate 
consensus regarding the issue of disease progression in 
RGP-CL wearers.

Corneal Biomechanics and Corneal 
Ectatic Diseases
The knowledge regarding corneal ectatic diseases and its 
management had evolved in the last decades.64 Currently, 
the mainstays of corneal ectasia are the biomechanical 
failure and stromal thinning, causing corneal bulging 
with subsequent visual impairment due to irregular astig
matism. Moderate and advanced stages are easily recog
nized, but the identification of mild or subclinical forms 
remains a challenge.15 However, in the last years, the 
evolution on the assessment of corneal biomechanics 
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allowed important advances in the diagnosis, staging, and 
prognosis of ectatic corneal diseases, such as keratoconus 
and pellucid marginal degeneration.65–67

Understanding the cornea’s biomechanical behavior is 
being established for the detection of subclinical KC as 
well as for detection of ectasia progression, while changes 
in topography are subtle.68

Although Corvis-derived first-generation parameters 
did not improve the performance obtained through the 
pressure-derived ORA data for discriminating healthy 
and KC eyes,69 the Scheimpflug camera analysis enabled 
the development of new integrated parameters that con
sider the IOP influence on the DCR parameters. More 
recently, these were combined with tomographic para
meters creating a new Index called Tomographic and 
Biomechanical Index (TBI) with proven superior accuracy 
for the detection of ectatic disease or even ectasia 
susceptibility.70

Although recent evolutions, more data are needed to 
validate this Index within other populations and to under
stand its practical value, namely at the level of screening 
in family members and early diagnosis of disease progres
sion. Additionally, biomechanical properties may be of 
great value in the future era of genotype-phenotype disease 
characterization.

Corneal Biomechanics and Corneal 
Crosslinking
Corneal collagen cross-linking (CXL) has a stiffening 
and stabilizing effect on corneal stroma, due to the 
induced changes in the physicochemical properties of 
the collagen and increased resistance to enzymatic 
degradation. Through several protocols, mainly using
radiation with wavelength within the ultraviolet spec
trum and riboflavin as the photosensitizer, has been 
used increasingly to stabilize the cornea and stop the 
progression of keratoconus.71

Few studies try to measure the CXL effect on cor
neal biomechanics with the ORA. While some reported 
no statistically significant differences,72,73 others found 
mild evidence of the effect.74,75 Regarding the Corvis, 
in the same line, there were no consistent proves of 
evident alterations in former studies,76 including com
parisons between different protocols.77,78 However, 
a recent study showed some consistent evidence of 
differences, mainly in Corvis-derivated second applana
tion parameters.45 Device repeatability issues due to 

inferior waveform quality in keratoconus eyes are 
a limitation in the ORA assessments, but the broad- 
cornea approach carried out by both devices contrasts 
with the theoretical most localized effect of CXL, being 
a possible factor that can limit the results assessment.45 

With the Corvis this could eventually be overcome 
through an analysis on several cross-sections across the 
entire 360° and/or analyzing only the ectatic area in 
more advanced disease stages. Since Riboflavin-dextran 
solution can be associated with short-term alterations in 
ex vivo corneal biomechanics due to altered hydration 
status,79 it can be hypothesized as another contributing 
factor. However, data are still scarce and the validity 
and importance of such findings are unclear, maintaining 
controversy within this issue.

Corneal Biomechanics and 
Intracorneal Ring Segments
The implantation of intrastromal corneal ring segments 
(ICRS) in patients with keratoconus is a minimally inva
sive and reversible surgical procedure in which an “arc- 
shortening effect” on the corneal lamellae flattens the 
central cornea, reducing low and high order aberrations, 
with reported improvements in vision quality and 
increased tolerance to contact lenses in some 
patients.80 The ICRS has evolved allowing to increase 
the customization in the treatment of eyes with asym
metric astigmatism. However, even though some long- 
term studies reporting the stability of the surgical 
procedure,81,82 it is still controversial if the new 
implant-related steady-state in the forces along the 
stroma has a role in biomechanical stabilization, and/or 
if it makes the patient less prone to eye rubbing a more 
flatten cornea. A recent study showed no consistent 
changes in biomechanical properties six months follow
ing ICRS implantation83 but data are scarce.

There are several reports on literature showing good 
refractive and functional results after the implantation of 
ICRS.80,84,85 Nevertheless, as a new corneal shape is created, 
the final functional result is not completely predictable.80 The 
idea of better functional results in softer corneas was reported 
years ago with the ORA86,87 but a recent study highlighted 
the low predictive value of corneal biomechanics in compar
ison with other presurgical characteristics.88

Both the controversies regarding a possible halting 
effect and the search for more consistent predictors of 
functional outcomes to optimize the nomograms of ICRS 
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need more data from corneal biomechanics, namely 
through Scheimpflug technology.

Corneal Biomechanics and Corneal 
Grafts
The differential effect of different corneal transplantation 
techniques in corneal biomechanics has been described 
with the ORA. In keratoconus eyes, increments in corneal 
stiffness after PK and DALK were reported.89 In PBK 
eyes, normal values after DSAEK90 or DMEK91 were 
reported with the ORA. Recently, differences in DCR 
between the four techniques were highlighted through the 
Scheimpflug technology.92,93 Additionally, differences 
between uncorrected IOP and bIOP were exposed in post- 
keratoplasty eyes.93 However, data regarding DCR and 
bIOP from the Scheimpflug technology are still scarce 
and the role of biomechanics in the IOP assessment after 
these procedures is still not established.

The role of the Bowman layer in corneal biomechanics 
is not well established. It is reasonable to think that the 
Bowman layer has a role, but there is some recent evi
dence of the opposite,94 which can call into question the 
promising role of Bowman layer transplantation for 
keratoconus.95

Corneal Biomechanics and Other 
Procedures
Phacoemulsification cataract surgery is the most per
formed surgical intervention worldwide. Despite the evo
lution in the procedure, the corneal incision is still the 
most performed approach. There is evidence of corneal 
stiffness decrease in the short follow-up after cataract 
surgery with the subsequent falsely low IOP 
measurements.96,97 This finding is of particular interest in 
the evaluation of postoperative IOP, particularly for glau
coma patients, and when assessing the effectivity of 
a combined procedure with glaucoma surgery, namely 
with the new minimally invasive glaucoma surgery 
devices. However, there is a lack of evidence of the 
biomechanical status in the long term after cataract 
surgery.

The implantation of phakic intraocular lenses is 
a common procedure nowadays, with the new lens options 
overtaking the limitations of former ones. Due to techno
logical evolution, the indications increased and nowadays 
these lenses are good options in cases of high myopia or 
stable keratoconus. Given the issues of increased 

glaucoma risk and biomechanical progressive alterations, 
respectively, it is of utmost importance to study the effect 
of the procedure in the DCR and the role of bIOP in these 
eyes. A rapid normalization after posterior chamber PIOLs 
implantation was reported,98 but data are scarce, or absent 
regarding the anterior chamber PIOls, more prone to cor
neal and glaucomatous complications.

Corneal Biomechanics and Corneal 
Refractive Surgery
Corneal ectasia after corneal laser vision correction (LVC) 
procedures is rare99 but can be devastating in previously 
healthy eyes in young people. The actual incidence is 
decreasing,100 due to the evolution both in the laser- 
associated technology and the progress made in the pre
operative risk evaluation.

Both the baseline biomechanical status of the cornea, 
the structural impact of the procedure and possible major 
or recurrent mild trauma after surgery are the main pre
dictors of biomechanical decompensation leading to ecta
sia progression after LVC.70 Thus, side by side with the 
evolution in laser-associated technology, the exclusion of 
eyes with mild or subclinical forms of corneal ectasia has 
been crucial for the high safeness of the procedure.101

After the ectasia risk score system (ERSS) validation, 
including the residual stromal bed (RSB) concept,102 the 
study of the structural impact from the procedure evolved 
and the percent tissue altered (PTA) became the main 
parameter associated with an increased risk.103,104 In 
2018, after a review of more than 30,000 LASIK cases, 
Bohac et al105 concluded that, although the aforemen
tioned widely accepted risk factors were the most preva
lent in cases of corneal ectasia after LASIK, there is a need 
to augment the accuracy with higher sensitivity and speci
ficity, since ectasia has been reported in cases without any 
of these risk factors.

Since a focal reduction in corneal elastic modulus pre
cipitates the cycle of biomechanical decompensation, as 
proposed by Roberts et al,106 it was expected that biome
chanical assessment would enhance the overall accuracy in 
the identification of mild forms of ectatic corneal 
disease.19 Although the first original set of Corvis corneal 
deformation parameters had a relatively poor performance 
in distinguishing healthy and keratoconus (KC) eyes, in 
2014, a parameter combining deformation response para
meters with corneal thickness profile and developed 
through logistic regression analysis was introduced – the 
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Corneal biomechanical Index (CBI).107 However, to 
address ectasia risk there was a need to go further, and 
Ambrósio et al70 combined data from the corneal deforma
tion response, including CBI, with tomographic data, 
through artificial intelligence and originated a more accu
rate index, the new Tomographic and Biomechanical 
Index (TBI).

Corneal Biomechanics and Corneal 
Dystrophies
Some data associated Fuchs endothelial corneal dystrophy 
(FECD) with reduced CH and CRF.108 Additionally, the 
potential role of biomechanically corrected IOP measure
ments in FECD patients after posterior lamellar kerato
plasty was highlighted.109

However, data are still scarce, particularly those 
associated with Corvis, for this and other corneal 
dystrophies.

Corneal Biomechanics and Various 
Types of Glaucoma
Glaucoma is the leading cause of irreversible blindness 
worldwide, affecting more than 70 million people and 
estimated to affect about 110 million in 2040.110

The progressive and permanent vision loss results 
from optic nerve damage and loss of retinal ganglion 
cells (RGC). Reducing effectively and continuously 
intraocular pressure (IOP) remains the only proven con
servative method for preventing and delaying the pro
gression of glaucomatous visual impairment.111 

However, the irreversible sustained injury of the optic 
nerve, gradual narrowing of the visual field, and progres
sive loss of visual function despite average IOP below 
normal levels (normotensive glaucoma) suggests that 
other important factors play a role.112 The isolated office- 
based IOP measurement is recognized as a major limita
tion in glaucoma management today, and although not yet 
clinically established, continuous measurement strategies 
including night time are assumed as an important step 
forward.113

The classical IOP assessment through the Goldman 
applanation tonometry is based on the Imbert Fick prin
ciple, which is directly dependent on corneal biomecha
nics. Growing evidence suggests that biomechanical 
factors are involved in the pathogenesis of 
glaucoma.114–118

According to the mechanical hypothesis of glau
coma, the lamina cribrosa is the main location of 
damage to the retinal nerve fibers. Additionally, in 
recent years, the evidence of biomechanical properties 
of the sclera and scleral lamina cribrosa (LC) acting as 
major determinants of biomechanical behaviour of the 
optic nerve head (ONH) is getting more 
consistent119–121 highlighting its important role for glau
comatous damage inferred years before.122,123 In fact, as 
cornea, sclera and LC are continuous sheaths, consti
tuted by the same components, the hypothesis of bio
mechanical properties of this unit determining the 
response of the ONH to IOP can be an explanatory 
factor to the amount of axonal nerve damage even 
with IOP within the normal range in asymmetrical nor
mal-tension glaucoma.124

In the last years, the role of corneal biomechanics in 
glaucoma setting has grown and both the CH and CRF 
from the ORA were proven to have a role both in diagnosis 
and prognosis,125,126 with special attention in eyes with 
ocular hypertension or in normotension glaucoma 
patients.16

As the Scheimpflug technology increased the com
plexity of corneal biomechanics evaluation, there is still 
a lack of data regarding the differential role of the 
various Corvis-derived DCRs in the glaucoma spectrum. 
However, besides the measurement of several DCRs, the 
Corvis technology was validated by Vinciguerra et al127 

for an IOP measurement with reduced biomechanical 
effect in the form of the aforementioned bIOP and, 
more recently, this was shown to be the most accurate 
form of measure the truth intraocular pressure in ex vivo 
studies with human eyes.128 Moreover, the novel DCR 
parameters and the bIOP are suggested nowadays as 
a new risk factor for the development of NTG129,130 

and functional progression in POAG,130 but the evi
dence is still poor.

Recent data suggest that corneal biomechanical prop
erties are related with axial length in high myopic 
eyes.40,41 In fact, these eyes have significantly thinner 
lamina cribrosa than non-highly myopic eyes, which can 
increase the translaminar pressure gradient at a given 
intraocular pressure and may explain the increased sus
ceptibility to glaucoma.131 The advent of multimodality 
in ophthalmology has helped to describe the relationship 
between high myopia and POAG in recent years. 
However, the causal relationship between these two 
entities is still controversial.132
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Corneal Biomechanics and Other 
Ocular Diseases (AION and 
Vascular Occlusions)
The lamina cribrosa (LC) hypothetically plays a key role 
in the optic nerve and retinal vascular pathologies, as it is 
a local of anastomotic susceptibility and all main vessels 
pass through it. If corneal biomechanics is valued as 
a non-invasive biomarker of the LC structure, as described 
above, it makes sense to study its role in these entities. It is 
reported in the literature the association of central corneal 
thickness (CCT) and central retinal vein occlusion 
(CRVO)133 but there are no data regarding corneal biome
chanics itself. Additionally, high intraocular pressure, on 
the other hand, has been implicated as a risk factor many 
years before.134

The anterior ischemic optic neuropathy (AION) patho
physiology, by concept, includes hypoperfusion of the 
small vessels surrounding the optic disc. In contrast to 
glaucomatous eyes, the LC was shown to be anatomically 
normal in the eyes who underwent an AION event135 

compared with controls and, in contrast to CRVO it was 
reported the lack of association with CCT.136 Besides the 
idea of shared pathophysiology, AION and NTG eyes 
were recently shown to differ regarding LC morphology, 
given rise to other possible factors like LC biomechanics 
behavior studied by the ORA.137 However, there are no 
data from the assessment of the DCRs or bIOP with 
Scheimplflug technology. Given this, the study of both 
the DCRs and the bIOP with the Corvis in the eyes with 
RVO or AION can be of utmost importance to increase the 
capability of risk prediction.

Corneal Biomechanics and 
Age-Related Macular Degeneration 
(AMD)
Bruch membrane (BM) is elastin- and collagen-rich extra
cellular matrix (ECM), sharing most of the components with 
the corneal tissue. This membrane acts as a barrier between 
retinal pigment epithelium (RPE) and choriocapillaris (CC), 
playing an important role both in normal physiology and 
pathological processes like choroidal neovascularization 
(CNV). As the impairment of BM properties has a pivotal 
role for the function of the photoreceptor (PR)-RPE-BM-CC 
unit, it forms the basis of the current pathophysiological 
paradigm in AMD.138 Accumulating evidence suggests 
that the structure and function of BM are unique to each 

human individual at a given age and, therefore, uniquely 
affect the progression of ocular disease.139,140 Increased CH 
and CRF by the ORA in eyes with AMD, particularly in 
those with CNV was reported years ago.141 However, there 
are no reports about the study of corneal biomechanics with 
the Scheimpflug technology in those patients. As the 
mechanisms of AMD progression to different late forms 
are not completely established and given the idea of the 
corneal biomechanics as a possible surrogate biomarker of 
BM tissue characteristics, it can play a role both in evolving 
risk prediction models and in the study of novel preventive 
and therapeutic modalities.

Corneal Biomechanics and Angioid 
Streaks/Pseudoxanthoma Elasticum
Angioid streaks (AS) result from crack-like breaks in BM, 
which is abnormal in its structural composition, with exten
sive calcification and thickening, predisposing to these loca
lized areas of rupture. It can occur secondary to blunt trauma 
or spontaneously and can be associated with several systemic 
conditions. While the spectrum of associations is wide, the 
most common are usually described with the mnemonic 
PEPSI (Pseudoxanthoma elasticum (PXE), Ehler-Danlos 
syndrome, Paget’s disease of bone, Sickle cell disease and 
other hemoglobinopathies, Idiopathic).142 PXE is a rare 
genetic disorder characterized by ectopic tissue mineraliza
tion with elastorrhexia and progressive fragmentation of 
elastic fibers primarily affecting the skin, the retina, and the 
cardiovascular system. Alterations in the ECM of the vessel 
walls leading to stiffening were reported in the literature.143 

In the posterior eye, there is the mineralization of the elastic 
fibers, loss of elasticity, and enhanced calcification, leading 
to the characteristic AS, with serious risk of early-onset 
CNV.144 Besides the probable ubiquitous alterations in con
nective tissues, there are no reports about corneal tissue 
studies in these patients.

Given the most visual threatening complication is the 
CNV and understanding the process as an exponentiation 
of the RPE-BM-CC complex alterations, the study of 
corneal biomechanics can play a role not only in the 
aforementioned risk prediction but also in increasing 
knowledge about AMD pathophysiology itself. 
Additionally, it can be of value in gene therapy studies 
among these systemic entities. Recently, an association 
between corneal biomechanical properties and the number 
of anti-VEGF injections in these eyes was highlighted,145 
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but more studies are needed in order to address the poten
tial usefulness of these properties in risk prediction.

Conclusion
Since biomechanics is a ubiquitous characteristic of biologic 
tissues, the non-invasive and rapid acquisition of data from 
corneal biomechanics can be of value in systemic diseases. 
While the application of data from corneal biomechanics is 
evolving in many areas of ophthalmology, there are fields in 
which data are still scarce and more studies are needed. The 
application of ultra-high-speed Scheimpflug imaging tech
nology during non-contact tonometry associated with data 
analysis by artificial intelligence methods can be mainstays 
for the present and future transformation in this field.
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