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Abstract

Purpose: This study aims to evaluate the performance of four artificial intelligence-

aided diagnostic systems in identifying and measuring four types of pulmonary nod-

ules.

Methods: Four types of nodules were implanted in a commercial lung phantom.

The phantom was scanned with multislice spiral computed tomography, after which

four systems (A, B, C, D) were used to identify the nodules and measure their vol-

umes.

Results: The relative volume error (RVE) of system A was the lowest for all nodules,

except for small ground glass nodules (SGGNs). System C had the smallest RVE for

SGGNs, −0.13 (−0.56, 0.00). In the Bland–Altman test, only systems A and C passed

the consistency test, P = 0.40. In terms of precision, the miss rate (MR) of system C

was 0.00% for small solid nodules (SSNs), ground glass nodules (GGNs), and solid nod-

ules (SNs) but 4.17% for SGGNs. The comparable system D MRs for SGGNs, SSNs,

and GGNs were 71.30%, 25.93%, and 47.22%, respectively, the highest among all the

systems. Receiver operating characteristic curve analysis indicated that system A had

the best performance in recognizing SSNs and GGNs, with areas under the curve of

0.91 and 0.68. System C had the best performance for SGGNs (AUC = 0.91).

Conclusion: Among four types nodules, SGGNs are the most difficult to recognize,

indicating the need to improve higher accuracy and precision of artificial systems.

System A most accurately measured nodule volume. System C was most precise in

recognizing all four types of nodules, especially SGGN.
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1 | INTRODUCTION

Artificial intelligence (AI) is increasingly used in image processing.

Improvements in and combinations of various optimization methods

are gradually being applied to various medical image processing

fields. These include assisted localization of pulmonary nodules1 and

digital tomography.2 The emergence of an artificial intelligence-aided

diagnostic system (AIADS) has been a great step forward in precision

medicine. For instance, multislice spiral computed tomography

(MSCT) can be combined with AIADS to measure the size, volume,
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and density of pulmonary nodules, aiding in systematic and rational

clinical decision-making and treatment.3,4

However, the accuracy and precision of nodule volume mea-

surement by AIADS is affected by several factors, including acquisi-

tion and reconstruction parameters, pulmonary nodule

characteristics, and system technology.5,6 This is a relatively young

area of research requiring quantification of the impact of these fac-

tors on pulmonary nodule volume measurement. Limited research

has focused on the influence of acquisition and reconstruction

parameters on volume measurement.7–10 A few studies have com-

pared the accuracy of two detection systems for pulmonary nodule

volume measurement.11 However, there are few reports comparing

different AIADS to assess the influence of pulmonary nodule char-

acteristics on the accuracy and precision of nodule measurement

and detection.

The malignant potential of a pulmonary nodule varies depend-

ing on its density and size. Nodule diameter is strongly correlated

with malignancy. Less than 1% of nodules with a diameter <5 mm

are malignant compared with 6% to 28% of those measuring

5–10 mm and 64%–82% of nodules >20 mm in diameter.12–16 A

ground glass nodule (GGN) is reportedly more likely to be malig-

nant than a solid nodule (SN).17 Before the development of MSCT,

it was difficult to qualitatively assess small nodules and GGNs

because of their small size, low density, and lack of specificity on

F I G . 1 . (a) The image of the professional
phantom; (b) The diagram of nodules.
Nodules are randomly distributed in the
phantom. −800HU, −630HU,
and + 100HU were the density of nodules.
And 3, 5, 8, 10, 12mm were the diameter
of nodules.

(a) (b)

(c) (d)
F I G . 2 . CT images of different types of
nodules in phantom.
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imaging.18,19 However, MSCT has substantially increased the detec-

tion rate of SNs and GGNs by manual identification.20 However,

due to the numerous scanned slices generated by MSCT, even if

only one organ is examined, clinicians face a huge workload in

thoroughly examining each study. AI software is based on auto-

matic extraction by the computer of data on pulmonary nodules

that indicates their morphologic features. It intelligently detects the

shape, edge, density, and size of nodules to improve the diagnostic

efficiency and accuracy of medical images. Therefore, the applica-

tion of AI software in medical imaging can not only reduce pres-

sure on physicians but also, more importantly, aid in faster

diagnosis and treatment for patients. Many studies have shown AI

systems have the advantage over traditional diagnostic methods of

efficiency in identifying and diagnosing pulmonary nodules.3,4 This

study analyzed the performance of different AIADS software to

determine factors influencing the accuracy of the identification of

various pulmonary nodules.

In our study, the models of solitary pulmonary nodules were

implanted into a commercial lung phantom. Scanned and recon-

structed MSCT images were then analyzed by four different AIADSs

and their performance compared. The purpose was to provide some

information that might aid in technical improvement and in the clini-

cal application of AIADSs.

2 | MATERIALS AND METHODS

2.A | Lung phantom

A professional phantom (Multipurpose Chest Phantom N1 Lungman,

Kyoto Kagaku, Japan) was used to simulate the chest of an adult

male. Fifteen nodules with different diameters and densities were

used to simulate pulmonary nodules in the chest. These included a

small ground glass nodule (SGGN, diameter 5.33 � 2.18 mm, density

-800 HU or -630 HU), small solid nodule (SSN, diameter

5.33 � 2.18 mm, density 100 HU), ground glass nodule (GGN, diam-

eter 11 � 1.1 mm, density -800 HU or -630 U), and solid nodule

(SN, diameter 11 � 1.1 mm, density 100 HU).

The phantom image and diagram of nodules are shown in Fig. 1.

Partial CT images obtained by phantom scanning are shown in

Fig. 2, showing four types of nodules in different scanning layers.

2.B | MSCT parameters

SIEMENS SOMATOM Definition Flash was used for scanning the

phantom at 120 kVp with 100 mAs. The calculated effective dose

was regular with 3.28 mSv. Other conventional acquisition parame-

ters included scanning slice thickness 5 mm, rotation time 0.5 s,

pitch 1.0, detector collimation 128 × 0.6 mm, field of view

360 mm, and pixel 512 × 512. A convolution kernel (B60f, sharp)

was used to reconstruct the images in 1 mm slices. Considering the

possible random error, the phantom was scanned repeatedly for

three times. Finally, three groups of images were transmitted to

PACS.

2.C | Four AI systems

Four AI pulmonary nodule-assisted detection systems which were

relatively mainstream and mature in China (Care.ai CT, YITU;

σ-Discover, 12Sigma; InferRead CT, Infervision; Lung-Sight, IMsight)

were used for image analysis and automatic detection of lung nod-

ules. To maintain business privacy, we use A,B,C,D to name the four

systems.

Care.ai CT: Based on excellent algorithm models and technolo-

gies such as 3D RetinaNet, the chest CT artificial intelligence aided

diagnosis system is developed to realize all bit multitask intelligent

diagnosis.

σ-Discover: Through the combination of medical big data and

deep learning technology, the bottleneck of medical field completely

relying on doctor’s experience and manual processing has been over-

turned and solved.

InferRead CT: Based on deep learning technology, it can trace

back the historical images and intelligently match the historical

cases similar to the current cases in the case database. So as to

provide intelligent reference for doctors to make accurate clinical

decisions.

Lung-Sight: After deep learning of hundreds of thousands of clin-

ical data and quantitative analysis of dozens of parameters of nod-

ules, more than 3mm of nodules can be detected.

2.D | Image analysis

Two senior radiologists specializing in chest imaging used four

AIADSs from different companies for image recognition and auto-

matic detection of pulmonary nodules. The diameter of the

implanted nodules was used to determine the true volume. Two

radiologists recorded the volume detection data for each pul-

monary nodule in each group of images by four different systems.

After detection, they compared the consistency of their records

with each other. If there were discrepancies in the data, then the

nodules were redetected until the results were consistent.

A B C D
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0.00
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2.00

3.00

4.00
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GN

SN
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V
R

E

F I G . 3 . RVE of each AIADS for detecting different nodules. RVE,
the relative volume error; AIADS, artificial intelligence-aided
diagnosis system; SGGN, small ground glass nodule; SSN, small solid
nodule; GGN, ground glass nodule; SN, solid nodule; A,B,C,D is the
code name of four AIADSs.
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2.E | Outcome measures

The results for each system’s performance for each type of nodule

were compared in terms of the relative volume error (RVE)

and miss rate (MR). These were calculated with the following

formulas:

RVE¼VM�VT

VT

� �
:

MR¼NL

NT
�100%

� �
:

Relative volume error was defined as the ratio of the difference

between the measured value and the reference value to the refer-

ence value. MR was defined as the ratio of undetected nodules to

total nodules. Accuracy was defined as the best nodule volume mea-

surement and was evaluated by the RVE, consistency test followed.

TAB L E 1 Paired Comparisons of Nodules’ RVE for Four AIADSs

Nodule groups

A vs B A vs C A vs D B vs C B vs D C vs D

Statistics Sig. Statistics Sig. Statistics Sig. Statistics Sig. Statistics Sig. Statistics Sig.

SGGN −5.37 <0.01* 8.08 <0.01* −16.63 <0.01* 13.45 <0.01* −11.26 <0.01* −24.71 <0.01*

SSN −8.28 <0.01* −8.00 <0.01* −9.95 <0.01* 0.28 >0.99 −1.68 0.56 −1.95 0.30

GGN −5.69 <0.01* −8.60 <0.01* −19.46 <0.01* −2.91 0.02* −13.77 <0.01* −10.86 <0.01*

SN −6.69 <0.01* −8.05 <0.01* −15.29 <0.01* −1.36 >0.99 −8.60 <0.01* −7.24 <0.01*

Note: The Kruskal–Wallis test was used.

Abbreviations: GGN, Ground Glass Nodules; RVE, relative volume error; SGGN, Small Ground Glass Nodules; SN, Solid Nodules; SSN, Small Solid Nod-

ules.

*Significant < 0.05.

F I G . 4 . Consistency Test between system A and others. A,B,C,D is the code of four AIADSs.
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Precision, defined as correctly identifying a nodule, was evaluated

with the miss rate (MR), and receiver operating characteristic (ROC)

curves.

2.F | Statistical analysis

The Kruskal–Wallis test was used for intergroup comparisons and the

paired comparisons Kruskal–Wallis test for intragroup comparisons.

The Bland–Altman test was used to assess the consistency of four

AIADS. To compare the MR among the groups, the Chi-square test

or Fisher’s exact probability test was used. Conventional ROC curves

are used to represent dichotomous classifier performance. For multi-

classification ROC curves, "One vs all" is used.21 The diagnostic per-

formance for the four types of nodules was analyzed by one vs all

ROC curves, calculating the area under the curve (AUC), sensitivity,

and specificity of each system. The Z-test was used to paired com-

parison of AUC. SPSS 20.0 was used to analyze differences in RVE

and MR. The Bland–Altman test and one vs all ROC curve analysis

were carried out in Medcalc. GraphPad Prism 5.01 was used for sta-

tistical analysis. The significance level was set at 0.05.

3 | RESULTS

3.A | Accuracy of the four systems for measuring
nodule volume

The RVE of system A was the lowest, while that of system D was the

highest (Fig. 3). For SGGNs there were significant differences when

comparing the systems with each other as follows: C < A < B < D

were − 0.13 (−0.56, 0), 0.32 (0.14, 0.42), 0.65 (0.65, 0.65), 2.58 (2.58,

2.58), respectively (Table 1). For SSNs, the RVE of system A was −

0.04 (−0.07,−0.04), significantly lower than that of the other systems.

There were no significant differences between of B, C, D. For GGNs,

there were significant differences when comparing two systems:

A < C < B < D with results of 0.16 (0.03, 0.24), 0.69 (0.27, 1.35), 0.35

(0.28, 0.45), and 2.37 (2.37, 2.42), respectively. For SNs, there were

significant differences between two systems except between systems

B and C. The ranking was A < B < C < D, equal to 0.13 (0.10, 0.14),

0.73 (0.43, 0.90), 0.91 (0.48, 1.30), and 2.50 (2.22, 2.77), respectively.

In terms of RVE, system A has the highest accuracy; hence, we

used it as the standard with which to compare the other systems

(Fig. 4). Systems A and C passed the consistency test, P = 0.40, indi-

cating that A and C have similar accuracy in measuring nodule vol-

ume. However, compared with A, systems B and D did not pass the

consistency test, P < 0.01.

3.B | Precision of the four systems in identifying
different types of nodule

All four systems correctly identified the SN, but the results for the

SGGN and SSN were fairly different. System C had the lowest MR

for SGGN and SSNs, equal to 4.17% and 0.00%, while other systems

differed significantly. It was performing significantly better than the T
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other systems. For the GGN, system D had a significantly higher MR

than the other systems. On the other hand, all four systems correctly

identified the SN at a rate of 100% (Table 2).

According to ROC curve analysis, one vs all relationships existed

between of four nodules, which were SGGN and others, SSN and

others, GGN and others, SN and others. Overall, the diagnostic perfor-

mance of systems A, B, and C for nodules (≧10 mm) was generally

better, and all AUCs were >0.80. System D performed worse in classi-

fying the SGGN (AUC 0.79), SSN (0.57), and GGN (0.56) (Fig. 5).

For the SGGN, system C’s performance was significantly superior

to the other three. Its AUC was 0.91, with a sensitivity of 100.00%

and a specificity of 76.20%. None of the systems did well with the

SSN, with all AUCs close to 0.50. System A, however, did perform

significantly better even for this lesion (AUC 0.68, sensitivity

99.10%, and specificity 61.60%). For the GGN, systems A and C per-

formed significantly better than B and D. For the SN, system D per-

formed better than the other three (AUC 0.94, sensitivity 100.00%,

and specificity 88.00% (Tables 3 and 4).

In summary, compared with other systems, system A was best at

classifying SSNs and GGNs. System C was best for the SGGN, and

system D was best at classifying the SN but performed poorly with

the other three types of nodules.

4 | DISCUSSION

With the development of MSCT technology, subsecond scanning

speed and submillimeter scanning volume are increasingly used. It

can detect a variety of microlesions, more clearly indicating their

morphologic characteristics. The international manufacturers of

imaging equipment have launched their own semiautomatic or

automatic software for assessing pulmonary nodules.12,16 In this

study, we evaluated the accuracy and precision of the four lat-

est AIADSs introduced in China, finding that the performance of

the systems varied depending on the size and density of the

nodules.

The factors that may affect the detection and evaluation of pul-

monary nodule detection include scanning and reconstruction param-

eters, the character of the nodules, and technology used for

measurements. Many studies have shown that radiation dose has no

significant effect on the measurement of a nodule’s diameter, nor is

measurement error affected by the reconstruction algorithm

used.22–28 A few studies, however, have indicated a reconstruction

algorithm that reduces measurement errors for GGNs but not for

SNs.11

In terms of the accuracy of the AIADSs we assessed, RVE with A

was lowest overall, indicating its greater accuracy. System C most

precisely identified SGGNs. System D was least accurate in measur-

ing volume. Therefore, systems A and C were most accurate for

measuring pulmonary nodule volume. The core technology for this

measurement by AI software is nodule segmentation. If the segmen-

tation is accurate, then the volume measurement is accurate. There-

fore, emphasis on nodule segmentation technology and the

establishment of mathematical models for the nodules of different

sizes and densities might help improve less accurate systems, such

as B and D.
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Even experienced chest radiologists find it challenging to classify

pulmonary nodules, with poor consistency in observer results. If

management guidelines for pulmonary nodules are based only on the

size and classification, then inconsistencies in the classification of will

lead to inconsistencies in the management.29,30 To address this

issue, the diagnosis of nodule type must be more objective. CT man-

ufacturers and software developers must improve the algorithms and

technologies to achieve this goal.

In our study, we analyzed the abilities of the AIADSs to recog-

nize four types of nodules. The MR of system C was significantly

lower than of other systems. System C was more sensitive in recog-

nizing small nodules and low-density nodules. All four systems did

well at recognizing SNs, likely because they are larger and have

higher density. By contrast, SGGNs are more difficult to identify.

Due to its low density, small diameter and unclear boundary, the

SGGNs may not be as clear as SNs compared with the lung back-

ground, so the software has certain difficulties in recognition. These

results are consistent with that of Reeves et al.31

We found significant differences between the AIADSs we ana-

lyzed. Although one or another system had the best performance for

a particular purpose such accuracy in measuring nodule volume (e.g.,

system A) or precision in identifying the type of nodule (such as sys-

tem C) for SGGNs, no one system consistently outperformed the

others in all the aspects of pulmonary nodule assessment. The short-

comings we identified, particularly for systems B and D, might

prompt the developers to improve the algorithms to achieve better

performance. Many studies have focused on various methodologies

to distinguish among the types of pulmonary nodules, such as the

support vector machine,32 neural networks,33 decision trees,34 or

other classifiers,35 but the results have been unsatisfactory. A study

based on a deep residual neural network yielded a good results, indi-

cating that combining deep residual learning, course learning, and

transfer learning can improve the accuracy of nodule classification.36

5 | CONCLUSION

Among four types nodules, SGGNs are the most difficult to recog-

nize, indicating the need to improve higher accuracy and precision of

artificial systems. System A most accurately measured nodule vol-

ume. System C was most precise in recognizing all four types of

nodules, especially SGGN. The superior performance of the software

is related to its stronger computing power and more mature algo-

rithms. This paper is helpful to provide reference for quantitative

selection of better software for clinical selection.
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