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Abstract: Acquired paclitaxel (PTX) resistance limits its effectiveness and results in advanced cancer
progression. This review investigated whether the inhibition of phosphatidylinositol 3-kinase (PI3K)
signaling overcomes paclitaxel resistance in cervical cancer. It was established paclitaxel-resistant cell
lines (PTX-R ME180/PTX-R HeLa) and determined the combination index for paclitaxel and PI3K
inhibitors (BYL-719/ LY294002) by tetrazolium dye assay. Flow cytometry was used to detect the
cell cycle and apoptosis. Migration and invasion were explored by wound healing and transwell
assays. Genes related to multiple pathways were assessed by a western blot. It was found that the
PI3K pathway was significantly activated in paclitaxel-resistant HeLa and ME180 cells compared to
parental cells. PTX + PI3K inhibitor combined therapy showed a synergistic effect by strengthening
paclitaxel-induced S and G2M arrest in PTX-R cell sublines by the inactivation of cyclin A1, cyclin B1,
cyclin E, and Cdc2 expression. Moreover, combination therapy significantly enhanced drug sensitivity
and apoptosis through the activation of Bax, and cleavage of poly-(ADP-ribose) polymerase compared
with paclitaxel alone. In addition, PI3K inhibition also suppressed tumor migration and invasion
by targeting β-catenin and matrix metalloproteinase-2/9. The authors suggest that the combination
of a PI3K inhibitor with paclitaxel may enhance antitumor activity through a cascade of PI3K
signaling events.
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1. Introduction

Cervical cancer is the third most common gynecological malignancy and responsible for 10–15% of
cancer-related deaths in women [1]. Even with surgery followed by aggressive front-line chemotherapy,
which can yield cures in 80% to 90% of women with early stage I and II cervical cancers, the
problem of advanced or recurrent cervical cancer failing to respond to conventional treatment remains
unresolved [2–4].

Paclitaxel (PTX) is a microtubule-stabilizing agent widely employed as a front-line chemotherapeutic
agent for cervical cancer (used alone or in combination with other therapeutic agents). It has a response
rate of 29–63%, mainly due to acquired chemo-resistance, leading to a dismal prognosis [5,6]. Therefore,
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overcoming chemo-resistance remains a great challenge in recurrent and advanced cervical cancer
treatment. Resistance is a complex phenomenon associated with multiple mechanisms, including
deficient apoptosis [7], the expulsion of cancer drugs by cell membrane transporters [8], and the
activation of multiple signaling pathways [9]. To date, the mechanisms involved in PTX resistance have
not been fully elucidated. The discovery of new resistance reversal agents with low toxicity that target
resistance biomarkers is a major goal of cancer biologists and pharmacists.

Recent advances in molecular biology have led to a new concept of medical treatment other than
conventional chemotherapy [10]. Targeted therapy is expected to be successful in managing advanced,
persistent or recurrent cervical cancers. Excessive activation of the phosphatidylinositol 3-kinase (PI3K)
pathway is considered to play an important role in the regulation of the cell cycle [11], proliferation [12],
differentiation [13], survival and metabolism [14], and the processes of tumor development and
metastasis [15] in multiple tumors. Based on their different structures, specific substrates, and different
modes of regulation, PI3K genes are divided into three classes (I, II, and III) [16]. Activating mutations
or a copy number gain of PIK3CA at 3q26 encoding PI3K-p110α are the most significantly consistent
chromosomal alterations found in primary cervical cancer, highlighting its important role in the
progression of dysplastic uterine cervical cells to invasive cancer [17]. The hotspot mutations, E542K
and E545K/Q, are located mostly at the interface between p110α helical (Glu542, Glu545) and p85α
nSH2 domains [18], leading to increased enzymatic activity that can initiate PI3K proto-oncogene
functions [19]. It is suggested that the class I PI3K gene, PIK3CA, stands out owing to its essential role
in the PI3K/AKT signaling pathway and cervical cancer.

Previous studies have described how PI3K inhibitors alone or in combination with other anti-cancer
agents can replace conventional chemotherapeutic agents when cancer resistance is induced [20].
BYL719 is a selective PI3Kα inhibitor [21] that shows increased sensitivity, especially in preclinical
models harboring PIK3CA mutations. It induced fewer toxicities and had a more favorable safety
profile compared to a pan class I PI3K inhibitor [22]. LY294002, one of the earliest synthetic PI3K
inhibitors, is still widely used in diverse signal transduction processes involving the PI3K pathway,
despite its limitation in clinical trials due to unfavorable pharmacokinetic properties and high
toxicity [23]. Moreover, studies have yielded evidence that PI3K signaling is associated with paclitaxel
sensitivity in various malignancies [24]. Sensitivity to paclitaxel increased via the PI3K pathway when
paclitaxel-resistant prostate cancer cells were treated with LY294002 [25]. In addition, blockade of
the PI3K pathway inhibited paclitaxel-resistant ovarian cancer cell proliferation and migration, and
reversed the sensitivity of these cellular processes to paclitaxel [26]. Clinical data shows that combining
the PI3K inhibitor, BYL-719, with a taxane was well tolerated, indicating this may be a possible approach
to treating advanced solid tumors [27]. It continues to be investigated in a large cohort (NCT02379247).
However, the relationship between PI3K and paclitaxel resistance has not yet been fully elucidated in
cervical cancer. In this study, the authors attempted to identify whether inhibiting the PI3K signaling
pathway would yield enhanced paclitaxel sensitivity in paclitaxel-resistant cervical cancer.

2. Results

2.1. Genetic Patterns of PIK3CA Aberrations Exhibit Oncogenic Functions in Advanced Stage Cervical Cancer

Class I PI3K genes determine the activity of PI3K/AKT signaling and are the most frequently
occurring genetic alterations (rate: 41%) of the whole PI3K family in cervical cancer (Figure 1A). Based
on a The Cancer Genome Atlas (TCGA) database, significant PIK3CA alterations were analyzed, such
as mutations, amplification and deletions, which revealed a relatively high frequency of alterations
across multiple cancers, including cervical cancer (Figure 1B). Moreover, it was found that the PI3KCA
mutation rate was 27.3%, ranking first place in the top 10 mutation gene list identified by MutSig with
q ≤ 0.1 (Figure 1C). Additionally, data generated from cBioPortal (Figure 1D) revealed that the PIK3CA
mutation showed a high alteration rate in squamous cell carcinoma, adenocarcinoma, adenosquamous
carcinoma and mucinous adenocarcinoma compared to endometrioid carcinoma. Specific mutations
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within PIK3CA that cluster in hotspots located in exon 9 (E542/545K) (Figure 1E) were demonstrated
to enhance the activation of PI3K/AKT signaling, and were involved in carcinogenesis as well as
chemotherapy resistance [28]. Further, the authors downloaded and analyzed raw CEL files from
Gene Expression Omnibus (GEO) database and found that the PIK3CA mRNA expression level from
the GPL570 platform (GSE2109/GSE6791/GSE5787/GSE26511) was significantly upregulated in 131
cancer cases compared to eight normal cases (Figure 1F, p < 0.001). A similar result was also found
in 63 cervical cancer tissues versus 34 normal tissues from a GPL96 (GSE7803/GSE9750) platform
(Figure 1F, p < 0.05). Additional analysis for PIK3CA in different stages of cervical cancer obtained
from an available clinical information dataset, GSE9750, indicated that high PIK3CA amplification was
significantly associated with advanced stages in cervical cancer (Figure 1F, p < 0.05). Taken together,
PIK3CA alterations, including mutations and amplification, may be a good marker to predict tumor
progression and chemotherapy resistance, possibly providing a novel concept in the treatment of
advanced cervical cancer.

2.2. Involvement of PIK3CA Alterations in the Process of Paclitaxel Resistance and its Sensitivity to BYL-719
and LY294002 in Cervical Cancer Cell Lines

The mutation data sheet downloaded from the CCLE website (Figure 2A) was first summarized
and western blots were performed to assess the difference in expression of PIK3CA in four human
papilloma virus (HPV)-positive types, including five cervical cancer cell lines. Our data illustrated that,
compared to primary tissue, derived HeLa, ME180 and CaSki cell lines, originally established from
metastatic sites of cervical cancer, harbored the PIK3CA E545K mutation. The highest PIK3CA level
was found in the four HPV positive cells, excluding a higher level in C33A with an R88Q mutation
(Figure 2B). Next, the inhibitory concentration IC(50) was measured for paclitaxel in cervical cell lines.
The paclitaxel half maximal inhibitory concentration (IC50) in parental HeLa, ME180, CaSki, SiHa,
and C33A cell lines was 5.39 ± 0.208, 6.59 ± 0.711, 2.940 ± 0.390, 19.303 ± 1.886, and 21.567 ± 2.732
nM, respectively (Figure 2C). After 7 months with a low-dose paclitaxel escalation from 1 nM, HeLa
and ME180 resistant sublines stably exhibited 3.55- and 8.14-fold resistance to paclitaxel compared to
parental cells and were stably resistant to paclitaxel under 20 nM (Figure 2D), while CaSki-resistant
sublines gained a 4.54-fold resistance to paclitaxel (Figure 2C). The resistance index (RI) was in the
range of previously reported RI values for cells established from patients with clinical cancer [29].
The samples from HPV-positive HeLa and ME180 cell lines and resistant sublines showing the highest
and lowest PI3KCA expression levels were selected and assayed by a western blot and semi-quantitative
reverse transcriptase (sqRT)–PCR. The PIK3CA mRNA level was found to be significantly upregulated
in paclitaxel-resistant (PTX-R) HeLa and PTX-R ME180 cells compared to parental cell lines (p < 0.05,
Figure 2E,F). This suggests that PIK3CA activation is involved in paclitaxel resistance and may thus
be a clinically relevant target to overcome chemoresistance and prevent metastasis during paclitaxel
chemotherapy in cervical cancer.

Since PIK3CA was activated in paclitaxel-resistant cells and cells with PIK3CA mutations were
reported to show increased sensitivity to PI3K inhibitors [30], the authors examined if the combination
of paclitaxel with either BYL-719(BYL) or LY294002(LY) could restore paclitaxel sensitivity in PTX-R
HeLa and ME180 cells. A tetrazolium dye (MTT) assay was first used to explore parental and paclitaxel-
resistant HeLa, CaSki and ME180 cell lines for sensitivity to the two aforementioned PI3K inhibitors.
It was found that parental ME180 cells with PIK3CA mutations exhibited greater sensitivity to BYL
than PIK3CA wild-type cell lines (HeLa and SiHa). CaSki showed a modest sensitivity to BYL, while
C33A was insensitive to BYL (IC50 42.707 µM, Figure 2C). In comparison, the IC50 for LY in these
five cervical cell lines were at a similar level of between 17.19 to 23.98 µM (Figure 2C). Both the RI of
BYL and LY exhibited no more than a two-fold change in PTX-R HeLa and PTX-R ME180 cell lines
compared to parental cells. Finally, HeLa, and ME180 cell lines as well as their resistant sublines were
selected for further study.
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Figure 1. High frequency alteration events of the PIK3CA gene in cervical cancer based on TCGA and
GEO databases. (A) Overview of phosphatidylinositol 3-kinase (PI3K) isoforms. In cervical cancer
PIK3CA, the gene encoding p110α alterations, occupied the highest level among the whole family of
genes. The PI3K family consists of eight isoforms that are mainly grouped into three classes (I, II, III)
based on protein homology and enzyme affinity for specific phosphoinositide substrates. The class I
isoforms are further subdivided into class IA and class IB isoforms, referring to their mechanism of
activation, with each isoform composed retrieved d of a regulatory and catalytic subunit. (B) Cross-cancer
alteration summary for phosphoinositide-3-kinase, catalytic, alpha (PIK3CA) polypeptide according
to The Cancer Genome Atlas (TCGA) database (retrieved from the cBioPortal for Cancer Genomics).
Mutations are represented in yellow, deletions in green, amplification in rose red, and multiple alterations
in violet blue. Abbreviations: Lung squ: lung squamous cell carcinoma; DLBC: lymphoid neoplasm
diffuse large B-cell lymphoma; AML: acute myeloid leukemia; GBM: glioblastoma multiforme; uterine
CS: uterine carcinosarcoma; CcRCC: kidney renal clear cell carcinoma; ACC: adrenocortical carcinoma;
VSC(CUK): squamous cell carcinoma of the vulva (CUK, Exp Mol Med 2018).(C) PIK3CA is one of the
most frequently mutated genes in cervical cancer (cBioPortal). (D) PIK3CA alterations in different types
of cervical cancer based on the TCGA database (retrieved from cBioPortal). (E) Representative graphical
summary of PIK3CA mutations mapped across the gene in 191 cervical cancer TCGA samples (from
cBioPortal, which provides visualization, analysis and downloads of large-scale cancer genomic datasets,
http://www.cbioportal.org/). Green circles represent missense mutations. A “hotspot” mutation, mapped
to two sites, E545 and E542, in the helical domain (exon 9) of p110α. (F) Increased mRNA expression of
PIK3CA in cervical cancer shows a significant positive relationship with the stage of advanced cervical
cancer, compared to early stage cancer, based on two platforms consisting of multiple Gene Expression
Omnibus (GEO) series datasets. *p < 0.05, ***p < 0.001.

http://www.cbioportal.org/
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based on The Cancer Cell Line Encyclopedia (CCLE) project. (B) The protein expression of PIK3CA in 
five common cervical cancer cell lines, with or without high-risk human papilloma virus (HPV)-type 
infections, that were initiated from different pathological types were studied by western blot assay. 
The representative bands are shown on the left. (C) The half-maximal inhibitory concentration (IC50) 
values for paclitaxel, BYL-719, and LY294002 were calculated for five cervical cancer cell lines as well 
as three paired paclitaxel-resistant cell lines after 48 h. *p < 0.05, **p < 0.01. ***p < 0.01. (D) Cell viability 
for paclitaxel chemosensitivity was tested and a resistance index (RI) was calculated in cells with 
acquired resistance (paclitaxel-resistant [PTX-R] HeLa, PTX-R ME180) after 48 h using a tetrazolium 
dye(MTT) assay. The two PTX-R cell lines were more resistant to paclitaxel compared to the parental 
cell lines (HeLa, ME180). (E–F) Alterations in PIK3CA mRNA and protein expression were 
investigated after the establishment of resistant HeLa or ME180 cells. Semi-quantitative reverse 
transcriptase (sqRT–PCR) analysis (E) and western blot assays (F) confirmed that the level of PIK3CA 
was significantly up-regulated in paclitaxel-resistant cells compared to parental cells. *p < 0.05. 
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reagent alone or in combination. CI values were calculated using CalcuSyn software (version 2.11; 
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Figure 2. PIK3CA mutational status, expression in cervical cell lines, and its alterations and chemo-
sensitivity to paclitaxel and BYL-719 or LY294002 after the induction of paclitaxel-resistant cells. (A)
Hotspot mutation analysis for PIK3CA is summarized in a panel of human cervical cancer cell lines
based on The Cancer Cell Line Encyclopedia (CCLE) project. (B) The protein expression of PIK3CA in
five common cervical cancer cell lines, with or without high-risk human papilloma virus (HPV)-type
infections, that were initiated from different pathological types were studied by western blot assay.
The representative bands are shown on the left. (C) The half-maximal inhibitory concentration (IC50)
values for paclitaxel, BYL-719, and LY294002 were calculated for five cervical cancer cell lines as well
as three paired paclitaxel-resistant cell lines after 48 h. *p < 0.05, **p < 0.01. ***p < 0.01. (D) Cell
viability for paclitaxel chemosensitivity was tested and a resistance index (RI) was calculated in
cells with acquired resistance (paclitaxel-resistant [PTX-R] HeLa, PTX-R ME180) after 48 h using a
tetrazolium dye(MTT) assay. The two PTX-R cell lines were more resistant to paclitaxel compared
to the parental cell lines (HeLa, ME180). (E,F) Alterations in PIK3CA mRNA and protein expression
were investigated after the establishment of resistant HeLa or ME180 cells. Semi-quantitative reverse
transcriptase (sqRT–PCR) analysis (E) and western blot assays (F) confirmed that the level of PIK3CA
was significantly up-regulated in paclitaxel-resistant cells compared to parental cells. *p < 0.05.

2.3. Therapeutic Synergistic Effect of PI3K Inhibitors (BYL-719 and LY294002) and Paclitaxel Can Increase
Sensitivity to Paclitaxel Cytotoxicity and Inhibit the PI3K/AKT Pathway in Paclitaxel-Resistant Cells

To test the combined effect of BYL or LY plus paclitaxel by MTT assay, fixed drug ratios were
selected on the basis of each single drug concentration that led to a 50% growth inhibition in parental
HeLa and ME180 cells (Table 1). A combination index (CI) was used after 48 h treatment with each
reagent alone or in combination. CI values were calculated using CalcuSyn software (version 2.11;
Biosoft, Cambridge, UK), at fraction affected (Fa) values of 0.50, 0.75, 0.90, and 0.95, meanwhile
ED50-95 was calculated with average value of ED50, ED75, ED90 and ED95 as previously reported [31].
The representative effect curves and isobolograms were drawn in Figure 3A–D. A synergistic effect
was found in half the cell population when treating parental HeLa and PTX-R HeLa cells with a
combination of PTX and BYL (ratio at 1:5), while stronger synergistic effects at ED75, ED90, and ED95
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were noted compared to the effects at ED50 when treating parental HeLa and PTX-R HeLa cells with a
combination of PTX and LY (ratio at 1:5; Figure 3E). More enhanced synergistic effects at ED75, ED90
and ED95 were exhibited by parental ME180 and derived paclitaxel-resistant cells when adding a
combination of PTX and BYL (ratio at 4:1; Figure 3E) or a combination of PTX and LY (ratio at 1:2.5;
Figure 3E) than those at ED50. Generally, as shown in Figure 3E, a synergistic effect (CI < 0.9) under the
dose at ED50-95 was observed in both PTX-R HeLa and PTX-R ME180 cells when treated with either
BYL or LY in combination with paclitaxel. The synergistic effect, to some extent, varies in different cells
due to varying sensitivities to different compounds under an accumulated dose exposure. Based on the
CI for experimental values data generated by CalcuSyn, the concentration at each Fa value ≥0.5 with a
synergistic effect and a lower concentration than the IC50 of each single reagent alone was selected for
further experimental combinations. As shown in Table 1, doses of PTX combined with BYL for both
parental HeLa and PTX-R HeLa cells, and parental ME180 and PTX-R ME180 cells were 2 nM:10 µM,
4 nM:20 µM, 5 nM:1.25 µM, and 10 nM:2.5 µM, respectively, showing a strong synergistic effect (except
for parental ME180 cells, where a slight synergism was shown). The treatment of parental and PTX-R
HeLa cells with PTX combined with LY at 2 nM:10 µM and 4 nM:20 µM showed a strong synergistic
effect, while in the parental cell lines, ME180 and PTX-R ME180, combination concentrations were
5 nM:12.5 µM and 10 nM:25 µM, with slight synergism noted. This synergistic effect remained for 72 h
at least after drugs were washed out after an intervention with combination therapy was conducted at
48 h (data not shown) [32].

Further, to confirm whether the PI3K pathway was blocked when using PI3K inhibitors in
the paclitaxel combination, western blotting was conducted. PI3K-110α, p-phosphatase and tensin
homolog (PTEN), and p–3-phosphoinositide–dependent protein kinase 1 (PDK1) expression were
not downregulated in parental HeLa cells when treated with 2 nM PTX +10 µM BYL for 48 h.
PI3K-110α/p-PTEN/p-PDK1/p-glycogen synthase kinase 3 (GSK)-3β was not inhibited by combined
PTX (5 nM) and LY (10 µM) in parental ME180 cells. However, a synergistic blocking of the
PI3K-110α/p-PTEN/p-PDK1/p-GSK-3βsignaling pathway occurred as well as the decreased expression
of PTX-induced p-AKTSer473 activation in PTX-HeLa and PTX-R ME180 cells when BYL or LY were
combined with PTX, compared to each reagent alone. The same synergistic p-AKTSer473 inhibitory
effect was exerted on parental HeLa and ME180 cells after combined PTX and BYL or LY. It was also
found that p-AKTSer473/p–GSK-3β was a more effective response marker when treating with PTX and
BYL instead of LY in PTX-HeLa and PTX-R ME180 cells (Figure 4).

These results suggested that inhibition of the PI3K pathway could synergistically enhance
paclitaxel-induced cytotoxicity in paclitaxel-resistant HeLa and ME180 cells.

Table 1. Experimental CI Values for BYL-719 or LY294002 Combination with Paclitaxel.

Combineation Cell lines PTX
(nM)

BYL-719
(µM)

LY294002
(µM) Fa CI Mode

PTX+
BYL-719

Parental HeLa 2 10 0.55 0.699 +++
PTX-R HeLa 4 20 0.55 0.53 +++

Parental ME180 5 1.25 0.58 0.856 +
PTX-R ME180 10 2.5 0.6 0.65 +++

PTX+
LY294002

Parental HeLa 2 10 0.65 0.658 +++
PTX-R HeLa 4 20 0.7 0.629 +++

Parental ME180 5 12.5 0.6 0.898 +
PTX-R ME180 10 25 0.6 0.856 +

1The combination index (CI) is based on that those described by Chou and Talalay [33]: A quantitative measure
of the degree of drug interaction in terms of additive effect (CI = 1), synergism (CI < 1), or antagonism (CI > 1)
for a given endpoint of the effect measurement. The ranges of CI and the symbols (+++, ++, +) were defined as
synergism, moderate, slight synergism effects based on Chou’s earlier report. Fa: the fraction affected by the dose.
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treatment of parental and paclitaxel-resistant HeLa and ME180 cervical cells and its effects on the
phosphatidylinositol 3-kinase (PIK3)/p-Akt/p-phosphatase and tensin homolog (PTEN) signaling
pathway. Both parental and paclitaxel-resistant (PTX-R) HeLa cells were exposed to either BYL-719
(BYL, 1.56–100µM) or LY294002 (LY, 1.56–100µM) alone or in combination with a fixed molar ratio
of PTX (PTX:BYL=1:5, PTX:LY=1:5 ), while parental ME180 and PTX-R ME180 cells were exposed
to either BYL (0.078–5µM) or LY294002 (1.56–100µM) alone or in combination with PTX at a fixed
molar ratio (PTX:BYL=4:1, PTX:LY =1:2.5). The dose–effect curves for PTX alone (green), PTX alone
(blue) and combination (red) are shown in (A) and (C) panels for parental and PTX-R HeLa/ME180
cells, respectively. A multiple effect–level isobologram analysis is shown in (B) and (D) panels for
a 90% effective dose (ED90) (�), ED75 (+) and ED50 (х) in both parental and PTX-R HeLa/ME180
cells. Experimental data points, represented by dots located below, on, or above the line, indicate
synergism, additivity, and antagonism, respectively. (E) The combination index (CI) values for BYL
or LY in combination with paclitaxel at ED50, ED75, ED90, ED95 and ED50 -95 (average of CI values
at ED50, ED75, ED90, and ED95) for parental and paclitaxel-resistant HeLa and ME180 cell lines.
(F) PI3K-110α, p-AKTS473, p-PTEN, p–3-phosphoinositide-dependent protein kinase 1 (PDK1), and
p–glycogen synthase kinase (GSK)-3βwere analyzed by western blots in parental and paclitaxel-resistant
HeLa and ME180 cell lines after 48 h treatment with BYL-719 (BYL) or LY294002 (LY) and paclitaxel,
either alone or in combination. GAPDH was used as an internal control.
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HeLa and PTX-R HeLa cells, as well as parental ME180 cells. After co-treatment with BYL or LY, a 
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Figure 4. The combination BYL-719 or LY294002 with a low dose of paclitaxel arrests the cell-cycle
in S-G2M phases in parental and paclitaxel-resistant HeLa and ME180 cells following 48 h treatment.
The representative images (A) and column graphs (B) show that BYL-719 or LY294002 significantly
enhanced low-dose paclitaxel–induced S phase arrest in both parental and paclitaxel-resistant HeLa
and ME180 cells. Statistical evaluations were performed using Tukey’s one-way ANOVA to obtain
significant differences, with normalization based on the untreated group. “&” and “&&” represent
p < 0.05 and p < 0.01, untreated versus paclitaxel in S and G2M phase, respectively. “#” and “##”
represent p < 0.05 and p < 0.01, paclitaxel vs. paclitaxel+BYL-719, in S and G2M phases, respectively.
“$” and “$$” represent p < 0.05 and p < 0.01, paclitaxel vs. paclitaxel+LY294002, in S and G2M phases,
respectively. Red, yellow, green, and blue indicate G0/G1, S, G2M, and sub-G1 phases (apoptotic cells),
respectively. (C) The representative western blots (the mean value is presented below the bands from
three independent experiments) showing that a combination of BYL-719 or LY294002 with a low dose
of paclitaxel caused a significant reduction in cyclin A1, cyclin B1, and cyclin E levels, and induced
p-Cdc2/Cdc2 expression. The phosphorylation of p21 in combination-treated groups was enhanced for
BYL-719 and paclitaxel, while it was restored for LY294002 and paclitaxel compared to each drug alone.
The quantification of bands was performed by densitometric analysis. The ratio values in a western
blot (WB) panel represent the ratio of phosphorylated and total proteins, while others are compared
with GAPDH.

2.4. PI3K Inhibitors Synergize Paclitaxel-Induced Cell-Cycle S-G2M Phase Arrest And Potentiate
Pro-Apoptotic Effects in Paclitaxel-Resistant HeLa and ME180 Cells

As it can be difficult to distinguish between cytotoxicity and an absence of proliferation in the
MTT assay [34], cell-cycle and cell apoptosis assays by flow cytometry were performed, respectively.
When PTX-R HeLa or PTX-R ME180 cells were treated with BYL (or LY) + PTX, a significantly increased
percentage of cells in the S–G2M phase was found compared to using each reagent alone. The result
of a typical experiment is shown (Figure 4A). Paclitaxel induced S arrest in both parental HeLa and
PTX-R HeLa cells, as well as parental ME180 cells. After co-treatment with BYL or LY, a significant
increase in the number of cells in the S phase was observed in PTX-R HeLa cells (33.96% and 49.48%,
Figure 4A), compared to PTX treatment alone (29.80%, ##p<0.01, $p<0.05, Figure 4B). G2M phase arrest
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was significantly increased by both BYL or LY with PTX combination therapy in PTX-R HeLa cells, but
not in parental cells. The G0/G1 phase for combination-treated PTX-R ME180 cells decreased to 39.81%
(P+B) and 40.28% (P+L) in comparison with the PTX only–treated group (44.66%). The number of
G2M cells with a proportion of 23.20% and 16.72% was significantly increased in PTX-R ME180 cells,
compared with the paclitaxel-treated group (14.94%, #p<0.05, $p<0.05, Figure 4B), resulting in S–G2M
arrest. The enhancement of S–G2M arrest was also detected when using a combination of PTX with
BYL or LY in parental ME180 cells compared to PTX treatment alone. Further, western blots were
used to analyze alterations in the cell-cycle–related proteins, cyclin A1 (CCNA1), cyclin B1 (CCNB1),
CCNE, Cdc2, and p21. Typical images are shown in Figure 4C: Cyclin A1, which takes part in the
rate-limiting step for DNA replication; cyclin E, which controls cell entry from late G1 to S phase;
and cyclin B1 and Cdc2 complex, which control cell-cycle progression from the G2 to M phase, were
reduced with PI3K inhibitor and PTX treatment. A combination of LY, but not BYL, with PTX, induced
p21 dephosphorylation that suppressed Cdc2 kinase activation in the G2/M transition in both PTX-R
HeLa and PTX-R ME180 cells.

To explore the effects of PI3K inhibitor and PTX on apoptosis in paclitaxel-resistant cells, apoptosis
assays were performed by flow cytometry. As shown in Figure 5D, the apoptotic cell population
was significantly increased after both parental, PTX-R HeLa and ME180 cells were co-treated with
PTX and BYL or LY compared to untreated and PTX-treated groups (*p < 0.05, **p < 0.01, ***p < 0.01,
Figure 5E). To investigate the regulatory mechanism of the sensitization of BYL or LY on PTX-R HeLa
and PTX-R ME180 cells to paclitaxel, the expression of pro-apoptosis family proteins, such as Bax,
cleaved caspase-9 and cleaved poly ADP ribose polymerase (PARP), in PTX-R ME180 and PTX-R
HeLa cells was detected by western blot. As shown in Figure 5F, Bax, cleaved caspase-9 and cleaved
PARP were markedly activated after PTX-R HeLa cells were treated with a combination of a PI3K
inhibitor and paclitaxel rather than treated with paclitaxel alone. Based on these observations, the
authors concluded that the PI3K inhibitor could enhance the anti-proliferative activity of paclitaxel in
paclitaxel-resistant HeLa and ME180 cells by blocking cell-cycle progression and increasing apoptosis.

2.5. PI3K Inhibitors Synergitically Potentiate Paclitaxel Induced DNA Damage and Pro-Apoptotic Effects in
Paclitaxel-Resistant HeLa and ME180 Cells

It is commonly thought that S phase arrest is associated with DNA replication and synthesis to
promote cell-cycle transition. However, there were unexpected results which showed that both PTX-R
HeLa and PTX-R ME180 cells were arrested at S phase after combination treatment according to our
flow cytometric data (Figure 4). The authors wondered whether, rather than entering into S-phase,
arrest in this phase was controlled by checkpoint proteins that were meant to slow down the cell
cycle in order for the cells to overcome the applied replication stress (provoking replication block
and/or DNA damage) [35]. To address this question, a well-known DNA damage marker, γ-H2AX
was monitored using confocal laser scanning microscopy (CLSM) to further clarify what the cells
experienced during S-G2M phase arrest. A flow cytometric assay was also utilized to evaluate the
apoptotic status after combination treatment. As shown in Figure 5A, for both PTX-R HeLa and
PTX-R ME180 cell lines examined, a remarkable increase in green dots which are distinguishable from
apoptotic bodies(Figure S1A), indicating elevation of γH2AX, was seen after exposure to paclitaxel in
combination with BYL-719 or LY294002 than paclitaxel alone or the untreated group (Figure 5A and
Figure S1B,*p < 0.01, **p < 0.01). This led to DNA replication fork arrest and exacerbated DNA damage,
which ultimately resulted in cell apoptosis (Figure S1B). The apoptotic cell population was significantly
increased after both parental, PTX-R HeLa and ME180 cells were co-treated with PTX and BYL or LY
compared to the untreated and PTX-treated groups (*p < 0.05, **p < 0.01, ***p < 0.01, Figure 5B,C).
To investigate the regulatory mechanism of the sensitization of PTX-R HeLa and PTX-R ME180 cells by
BYL or LY to paclitaxel, the expression of pro-apoptosis family proteins, such as Bax, cleaved caspase-9
and cleaved poly-(ADP -ribose) polymerase (PARP), in PTX-R ME180 and PTX-R HeLa cells was
detected by western blot. As shown in Figure 5D, Bax, cleaved caspase-9 and cleaved PARP were
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markedly activated after PTX-R HeLa cells were treated with a combination of a PI3K inhibitor and
paclitaxel rather than treated with paclitaxel alone. It is noted that BRCA1 was significantly deregulated
in combination treatment groups compared to paclitaxel treatment alone or the untreated groups
(Figure 5D). This may indicate that loss of BRCA1 leads to tumor cells undergoing replication stress
with inefficient DNA [36]. Based on these observations, it was concluded that the PI3K inhibitor could
enhance the paclitaxel-mediated mitotic block as well as enable cells bear more DNA replication stress,
leading to DNA damage and apoptosis in paclitaxel-resistant HeLa and ME180 cells.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 22 
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It is commonly thought that S phase arrest is associated with DNA replication and synthesis to 
promote cell-cycle transition. However, there were unexpected results which showed that both PTX-

Figure 5. The effect of a combination BYL-719 or LY294002 with a low dose of paclitaxel on DNA
damage and cell apoptotic effects on parental and paclitaxel-resistant HeLa and ME180 cells following
48 h treatment. (A) The representative images formation of γ-H2AX foci (green) counterstained with
DAPI (blue) to distinguish nuclear morphology after paclitaxel treatment alone or in combination with
BYL-719 or LY294002 in both PTX-R HeLa and ME180 cell lines at 48h. The scale bar=10 µm. At least
100 cells were counted in each experiment. The cells with ≥5 γ-H2AX discrete foci/nucleus were scored
as positive. (B) The representative flow cytometry profiles of a comparison of combined BYL-719 (or
LY294002) and paclitaxel treatment of parental and paclitaxel-resistant HeLa and ME180 cells as well
as column graphs (C) showed that BYL-719 or LY294002 significantly potentiated the pro-apoptotic
effects of paclitaxel in both parental and paclitaxel-resistant HeLa and ME180 cells compared to each
drug alone. The data are presented as the mean ± standard deviation (SD) of three experiments;
*p < 0.05; **p < 0.01; ***p < 0.001. (D) The representative bands (the mean value from three independent
experiments is presented below the bands) related to the apoptosis markers, cleaved-poly-(ADP -ribose)
polymerase (PARP), Bax, and cleaved caspase-9, and BRCA1 were detected by western blot (WB) after
the exposure of cells to BYL-719 or LY294002 and paclitaxel, either alone or in combination, for 48 h.
The ratio values in the WB panel represent the ratio of phosphorylated and total proteins. Others use
GAPDH as a loading control.
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2.6. Combination of Paclitaxel with PI3K Inhibitors Decreased Paclitaxel-Resistant HeLa and ME180 Cell
Migration and Invasion

Tumor migration and invasion are major obstacles for successful chemotherapy. To evaluate
the anti-metastatic potential of PI3K inhibitors in cervical cancer, the authors performed a wound
healing assay to measure the speed of cell migration. The representative microscopic images taken at
×100 magnification are shown in Figure 6A. It was found that compared with either the untreated
control or paclitaxel alone–treated group, paclitaxel combined with a PI3K inhibitor significantly
decreased the speed of migration. The authors also found that the combination of a PI3K inhibitor
with paclitaxel decreased cells invading through Matrigel and migrating through the membrane into
the bottom chamber (Figure 6B). This indicated that paclitaxel combined with a PI3K inhibitor could
reduce the invasion and migration by the two paclitaxel-resistant cervical cancer cell lines rather
than paclitaxel treatment alone (*p < 0.05; **p < 0.01; ***p < 0.01; Figure 6A,B). Additionally, our data
showed that BYL or LY combined with PTX synergistically enhanced PTX anti-metastatic ability in
both parental HeLa and ME180 cell lines (*p < 0.05; **p < 0.01; ***p < 0.01; Figure 6A,B). Further,
western blotting revealed that expression of the epithelial–mesenchymal transition–related proteins,
β-catenin, p–c-raf, and matrix metalloproteinase (MMP)-2, was highly elevated in paclitaxel-resistant
cells (Figure 6C). MMP-2/9 and vascular endothelial cell growth factor (VEGF; angiogenesis-related
factor) were abolished when treating cells with BYL (or LY) and PTX for both PTX-R HeLa and PTX-R
ME180 cell lines compared to paclitaxel alone. No significant inhibition of p-ERK1/2 was observed in
either BYL and PTX–treated PTX-R HeLa cells, nor in LY and PTX–treated PTX-R ME180 cells. Taken
together, these results indicated that a combination of PTX with PI3K inhibitors does not only decrease
migration ability, but also the invasive properties of paclitaxel-resistant HeLa and ME180 cells.

3. Discussion

In this study, the authors attempted to characterize paclitaxel resistance in association with the
PI3K pathway by performing apoptosis and migration/invasion assays in cervical cancer cell lines.
First, TCGA and GEO databases were used to illustrate the important role of PI3KCA in cervical
carcinoma. Next, paclitaxel-resistant cervical cancer cell lines (PTX-R ME180 and PTX-R HeLa) were
established. This study observed that paclitaxel resistance was acquired through PI3K activation.
Third, it was found that treating paclitaxel-resistant cervical cancer cell lines with a combination of
paclitaxel and PI3K inhibitors led to anti-tumorigenic effects, such as arresting the cell cycle in the
S–G2M phase, inducing accumulation of γ-H2AX foci to respond DNA damage and apoptosis and
causing decreased migration/invasion. Altogether, our data suggested that a combination of paclitaxel
and a PI3K inhibitor can overcome paclitaxel resistance in cervical cancer.

Signaling through the PI3K/Akt pathway in cancer contributes to a tumorigenic phenotype
through effects on multiple cellular processes. The induction of mutations and/or the amplification
of PIK3CA are frequent events found in advanced cervical cancers [37] (Figure 1C,F). Paclitaxel can
activate Akt, a serine/threonine protein kinase and a downstream target of PI3K. This was consistent
with our finding of the increased activation of PI3K-110α/p-PTEN/p-AktSer473/p–c-raf (Figure 3E,F;
Figures 4 and 6C, 1st Lane versus 4th lane versus 7th lane) during the acquisition of paclitaxel resistance.
This may indicate that activation of the PI3K pathway is involved in the progression and prognosis
of multiple cancers [38,39]. Enhanced downregulation of the phosphorylation-induced activation of
Akt, PTEN, and PDK1was also observed in combination with a PI3K inhibitor, showing a synergistic
anti-tumor efficacy compared to paclitaxel alone in paclitaxel resistance cells (Figure 3). Notably,
p-GSK-3β was a sensitive marker when treating PTX-R cells with PI3K inhibitor +PTX combination.
Dephosphorylation GSK-3β was observed showing a consistency in that the induction of GSK-3β
activity may lead to a reduction tumorigenicity as previously described [40].
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Figure 6. The effects of combined BYL-719 or LY294002 and paclitaxel on migration and invasion in
parental and paclitaxel-resistant HeLa and ME180 cells after 48 h. (A) Cell migration was observed using
a wounding healing migration assay that was quantified by Image J, measuring the wound area at both
0 h and 48 h time points with a mean value of four different fields per scratch. The data are representative
images of three independent experiments. Original magnification, ×100. Column graphs for the
quantification of cell migration after various treatments is presented as the mean± standard deviation
(SD); *p < 0.05; **p < 0.01; ***p < 0.001. (B) Cell invasion was determined using a transwell invasion assay.
Original magnification, ×200.Quantification of the number of invading cells is presented as the mean±
SD of three experiments; *p < 0.05; **p < 0.01; ***p < 0.001. (C) The representative western blots (mean
value is presented below the bands from three independent experiments) of migration and invasion
molecular pathways related to β-catenin, p–c-raf, p-extracellular signal regulated kinase (ERK)1/2,
metalloproteinase (MMP)-9, MMP-2 and vascular endothelial growth factor (VEGF) expression after
treatment with a combination of BYL-719 (or LY294002) with paclitaxel or paclitaxel alone in parental
and paclitaxel-resistant HeLa and ME180 cells for 48 h.

Several studies have reported that cell replication could be inhibited by paclitaxel by blocking
progression beyond the late G2 and/or M phases of the cell cycle in various types of cancer [41,42].
Inhibition of Cdc2/cyclin B1 kinase activity in mammalian cells has been shown to result in G2 phase
arrest [43]. Consistent with this notion in the present study, it was demonstrated that PI3K inhibitor
and paclitaxel combination therapy hampered cell-cycle progression by arresting cells in G2–M phases
in both PTX-R cell lines through the inhibition of CCNB1 and cdc2 (Figure 4A–C). However, it was
unexpectedly shown that the cell cycle was also arrested in S phase (Figure 4A). One of the reasons
might be due to DNA repair deficiencies and DNA damage acceleration rather than DNA synthesis
with the depression of BRCA1 expression (Figure 5D) and the accumulation of γ-H2AX foci in nuclear
(Figure 5A, Figure S1) when using PI3K inhibitor and paclitaxel combination therapy. This DNA
damage has been reported in several studies previously [35,44,45]. A recent study revealed that
PI3K inhibitor enhanced DNA damage and impaired DNA synthesis during the S phase in mouse
models of breast cancer [46]. DNA repair deficiency has also been induced by the S arrest as Ashish
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Juvekar et al. previously reported [36]. BRCA1-deficient mouse embryonic fibroblasts exhibited a
marked time-dependent accumulation of cells arrested in the S phase and a prolonged increase in the
G2/M population, followed by extensive cell death. Moreover, Ibrahim et al. highlighted that using
a PI3K inhibitor, BKM120 could induce accumulation of γH2AX-positive foci in response to DNA
damage in BRCA-proficient triple-negative breast cancer (TNBC) cells. This enables γ-H2AX to be a
newcomer and sensitive biomarker to investigate the efficacy of drug combinations in clinical trials.
The depressed expression of BRCA1/2 and the increase of poly-ADP-ribosylation mediated by BKM120
could subsequently sensitize PARP inhibition in patient-derived primary tumor xenografts [47]. These
findings are consistency with our results, and the addition of PARP inhibitor may be useful for those
patients lacking a complete response to a PI3K inhibitor plus paclitaxel combination strategy. However,
this remains to be further explored in cervical cancer. Moreover, cyclin A appears in the S phase with the
onset of DNA synthesis and associates initially with Cdk2 and later with Cdc2 [48], which are essential
for progression from S to G2 phases. A decreased cyclin A expression may be a reason for the blockage
of the S phase in manganese-treated A549 cells [49] and docosahexaenoic acid-treated Jurkat leukemic
cells [50]. The increased phosphorylation (Tyr15) of Cdc2 that coincided with the downregulation
of Cdc2 in a feedback loop was also observed in both PTX-R cell lines following PTX and PI3K
inhibitor treatment, resulting in the accumulation of DNA damage [51,52]. In addition, it is known
that p21WAF1/CIP1, which is associated with DNA damage and the cell cycle, inhibits the endogenous
inhibitor protein cyclin/CDK complex [53,54]. The authors did not observe an elevated expression of
cyclin A1 after paclitaxel resistance was induced in HeLa and ME180 cells (Figure 4C). This has been
reported as a chemoresistance-associated biomarker in ovarian cancer [45]. Interestingly, markedly
increased p-21 phosphorylation leading to p21Waf1/Cip1 inactivation was noted when combining BYL
with PTX. However, this needs further investigation.

A previous study showed that a combination of paclitaxel and a mitogen-activated protein kinase
inhibitor down-regulated PI3K activity, more so than either agent alone [55]. Moreover, Zhang et al. [56]
used a novel dual PI3K/mTOR inhibitor, NVP-BEZ235 (BEZ235), with paclitaxel and observed additive
anti-proliferative and pro-apoptotic effects to enhance the nanoparticle albumin–bound (nab)–paclitaxel
response in gastric cancer cells. In a recent clinical trial, BYL719 with nab–paclitaxel showed promising
evidence for less toxicity and increased anti-tumor efficacy in HER2 negative metastatic breast
cancer [57]. Taken together, this supports our data showing that a combination of paclitaxel with
targeted therapy may enhance the therapeutic effect to overcome paclitaxel resistance in cervical cancer.
Mechanically, cell death by PARP cleavage, activation of caspases and cytochrome c release, which was
induced by paclitaxel [58] or additional LY294002 treatment [59], has been reported previously. In this
study, it was found that Bax and cleaved PARP were significantly increased when treating PTX-R HeLa
and ME180 cells with a PI3K inhibitor and paclitaxel compared with paclitaxel alone. The failure of the
induction of caspase-9 activation in both parental ME180 and PTX-R ME180 cells, but not HeLa and
its PTX-R sublines, may be due to a higher cellular threshold for the paclitaxel-mediated induction
of apoptosis in PTX-R ME180 cells. This indicates that a PI3K inhibitor and paclitaxel combination
may initiate the intrinsic pathway, which can be independent of Bax-independent mitochondrial
depolarization (Figure 5B–D).

A previous study has shown that VEGF is one of the mediators that transmits PI3K-induced
oncogenic signals for tumor growth and angiogenesis [60]. The silencing of PI3K p110alpha greatly
decreased VEGF expression, an angiogenesis marker, impeding ovarian tumor growth and angiogenesis
by targeting hypoxia-inducible factor 1 alpha in both ovarian cancer cells and tumor tissues [60,61].
In our study, it was found that VEGF was inhibited in cervical cancer cells after treatment with PI3K
inhibition and paclitaxel compared to paclitaxel alone. This indicated that inhibiting the PI3K pathway
in paclitaxel-resistant cervical cells may overcome tumor metastasis and growth by reducing VEGF
and its receptors. A reduction in metastases by the flavonoid, apigenin, was due to its ability to inhibit
Akt phosphorylation and subsequently cause a decrease in MMP-9, though not MMP-2, activity [62].
However, a disaffinity was revealed in that when treating ovarian cancer cell lines with a PI3K inhibitor,
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LY294002, a reduction in gonadotropin-induced MMP-2 activity but with little change in MMP-9
activity was noted [63]. A PI3K/mTOR inhibitor, GSK2126458A, given in combination with dabrafenib
efficiently counteracted the stimulating effects of a BRAF inhibitor on invasiveness, and VEGF-A
and MMP-9 secretion in A375R melanoma cells resistant to darafenib [4]. In our study, both MMP-2
and MMP-9, as well as β-catenin, and p–c-raf, decreased when a combination of two PI3K inhibitors
(BYL-719, LY294002) and PTX was added to PTX-R HeLa and PTX-R ME180 cells, compared to PTX
treatment alone (Figure 6C). This indicates that the combination of PI3K inhibitors and PTX showed
anti-metastatic potential by suppressing the β-catenin/p–c-raf/MMP-2/MMP-9 axis. Additionally, the
lack of efficient inhibition of p-ERK1/2 in PTX-R HeLa cells when treated with BYL and PTX, or in
PTX-R ME180 cells when treated with LY and PTX, may due to the use of low doses.

In summary, this study suggests that a PI3K inhibitor has a synergistic effect through multiple
pathways when combined with paclitaxel in cervical cancer (graphical abstract). Chemotherapeutic
agents, including paclitaxel, generally induce tumor regression through apoptosis, which is modulated
through a series of proto-oncogenes and tumor suppressor genes. The relationship between alterations
in the PI3K pathway and targeted biologic therapy has also been investigated in metastatic or
recurrent cervical carcinoma. However, to the authors’ knowledge, this is the first time that BYL-719 in
combination therapy with paclitaxel in paclitaxel resistant cervical cancer in an integrative analysis
in vitro has been undertaken. Alterations in the regulation of such apoptotic processes may potentially
lead to the increased expression of such PI3K-inducible factors and result in the failure of therapy.
A concerted effort to distinguish different PI3K inhibitors in combination with other agents, both
in the laboratory and clinic, is also warranted. Additionally, an orthotopic paclitaxel resistant TC-1
tumor model is currently under investigation and the safety and efficacy of this strategy remains to be
pursued before clinical trials can be undertaken. In all, although the detailed mechanisms underlying
paclitaxel resistance and the PI3K pathway are still under investigation, therapeutic strategies targeting
these PI3K activation molecules may represent a new paradigm that restores the chemosensitivity of
cervical cancer cells to paclitaxel and provide attractive prospects for the treatment of cervical cancer.

4. Materials and Methods

4.1. TCGA and GEO Dataset Analysis

The top 10 candidates for frequency (false discovery rate [FDR] <0.1) of genetic and expression
alterations were conducted with an open access database publicly available online (http://www.
cbioportal.org) using a Mutation Significance (MutSig) algorithm [64] from 308 patients from The TCGA
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma provisional dataset [65,66].
PI3K family member classifications and alterations in cervical cancer were summarized and a tutorial
edited using Adobe Illustrator CC software (San Francisco, CA, USA) (https://www.adobe.com/

products/illustrator.html).
Raw CEL files from GSE6791, GSE5787, GSE26511, GSE2109, GSE7803, and GSE9750 series were

downloaded from the GEO (https://www.ncbi.nlm.nih.gov/gds/; Table S1) repository. A PIK3CA gene
mRNA expression matrix was quantile normalized and analyzed with GraphPad Prism software
(version 8.0.2, San Diego, CA, USA). Further details can be found in the Supplementary Methods.

4.2. Cell Lines and Cell Culture

Five human cervical cancer cell lines (HeLa, SiHa, CaSki, C33A and ME180) from the Korean Cell
Line Bank (Seoul, Korea) were cultured in Minimum Essential Medium, Dulbecco’s modified Eagle’s
Minimum, RPMI-1640 Medium, Eagle’s Minimum Essential Medium, and McCoy’s 5a (Gibco/Thermo
Fisher Scientific, Waltham, MA, USA), respectively, with 10% fetal bovine serum (FBS, Gibco) and 1%
penicillin–streptomycin (HyClone, Logan, UT, USA) at 37 ◦C in a humidified atmosphere of 5% CO2.
The original and PIK3CA mutation status, including genomic DNA regions containing mutation sites,

http://www.cbioportal.org
http://www.cbioportal.org
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://www.ncbi.nlm.nih.gov/gds/
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of the cells were obtained from supplier data sheets from American Type Culture Collection and the
Broad Institute project, Cancer Cell Line Encyclopedia (CCLE) (https://portals.broadinstitute.org/ccle).

4.3. Reagents and Primary Antibodies

Two PI3Kα-selective (p110α) inhibitors, BYL-719 (BYL; Alpelisib, #HY-15244) and LY294002 (LY;
#HY-10108), were purchased from MedChem Express (Monmouth Junction, NJ, USA) and dissolved
in dimethylsulfoxide (DMSO) at 100 mM as a stock solution. Paclitaxel (#T7191) and DMSO were
purchased from Sigma–Aldrich (St Louis, MO, USA). Primary antibodies for western blots are listed in
Table S2.

4.4. Establishment of PTX-Resistant Cell Lines

Paclitaxel-resistant (PTX-R) HeLa, PTX-R CaSki and PTX-R ME180 cell lines were established as
Tang et al. have previously described [67]. Parental HeLa and ME180 cells were treated with a dose
escalation of paclitaxel from 1 to 20 nM (parental CaSki cells were treated with paclitaxel from 1 to
10 nM) until surviving cells recovered and showed a normal exponential growth rate. Surviving cells
were harvested and propagated in drug-free medium. Seven months later, HeLa, CaSki and ME180
cells became stably resistant to paclitaxel under 10, 7, and 20 nM, respectively, and all were passaged in
paclitaxel-free medium for at least two more months. The 40th PTX-R passage of ME180, 35th PTX-R
passage of CaSki and 156th passage of PTX-R HeLa cells were used in the present study.

4.5. Cell Viability Assay

Cells (4000–10,000/100 µL/well) were seeded into 96-well plates and incubated for 24 h to achieve
80% confluency in complete medium. The cells were then exposed to different concentrations of PTX,
BYL, LY alone and each of two PI3K inhibitors in combination with PTX for 48 h. Later, 5 mg/mL
MTT(Sigma–Aldrich) diluted with complete medium was added to each well and incubated for 2 h.
DMSO (150 µL/well) was added to solubilize the formazan and plates shaken for 10 min in the dark.
The absorbance was measured at 595 nm using a spectrophotometer. The assays were performed in
quadruplicate. IC50 values were calculated based on concentration–effect relationships generated
by Graph Pad Prism software (Version 8.0.2). The resistance index (RI) was calculated utilizing the
following formula: RI = IC50 of drug resistant cells/IC50 of parental cells.

4.6. Assessment of Combination Drug Effects

The cells were seeded at a density of 4000~6500/100 µL/well in 96-well plates and different
treatments added after 24 h. PTX was used at concentrations of between 1.25–80 nM, while BYL and
LY were used at concentrations of between 1.25–80 µM. The PTX and BYL or LY combination ratio for
parental HeLa and PTX-R HeLa cells were fixed at the same molar ratio of 1:5, while for parental ME180
and PTX-R ME180 cells, this was fixed at the molar ratios of 4:1 and 1:2.5, respectively. Cytotoxicity
was assessed after a 48-h drug exposure for both parental, and PTX-R HeLa and ME180 cells using an
MTT assay as described previously. The combined effects of PTX with each of two PI3K inhibitors
were analyzed using CalcuSyn software (Version 2.1, Biosoft, Cambridge, UK), based on the median
effect principle given by Chou and Talalay(32). CI< 1, = 1 and > 1 demonstrate synergism, an additive
effect, and antagonism, respectively.

4.7. Semi-Quantitative Reverse Transcriptase-Polymerase Chain Reaction

Total RNA was extracted with TRIzol reagent according to the manufacturer’s instructions. Total
RNA (1 µg) in the final 20 µL cDNA system was synthesized by reverse transcription synthesis kit
(#04897030001; Roche Diagnostics, Mannheim, Germany). A semi-quantitative reverse transcriptase–
polymerase chain reaction (sqRT–PCR) was performed using an AccuPower HotStart PCR PreMix
kit according to the manufacturer’s instructions (K-5051; Bioneer, Daejeon, Korea) in a MyGenie
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96 Thermal Block (Bioneer, Daejeon, Korea). The cycle sequence of each PCR reaction was performed
using an initial denaturation at 94 ◦C for 5 min, followed by 28 cycles at 94 ◦C for 30 s, 52 ◦C for 30 s,
and 72 ◦C for 30 s. After 28 cycles, an additional elongation step was performed at 72 ◦C for 7 min.
PCR products were identified by electrophoresis with 1.0% agarose gels and recorded using a Gel Doc
1000 imaging system (Bio-Rad, Carlsbad, CA, USA). GAPDH RNA served as a housekeeping gene
relative to the control.

4.8. Apoptosis Analysis

The cells were harvested after 48-h drug treatment and washed twice with ice-cold phosphate-
buffered saline (PBS). The cells were then re-suspended in 1× Binding Buffer (1 × 106 cells/mL),
stained with Annexin V-FITC and propidium iodide (PI) Apoptosis Detection Kit I (BD Pharmingen,
La Jolla, CA, USA) in the dark at room temperature and then analyzed using a BD FACSCanto™ flow
cytometry system within 1 h (FACSCanto™ II; Becton Dickinson, Franklin Lakes, NJ, USA). The data
was compensated and analyzed by FlowJo software (version 10, Tree Star, Ashland, Oregon, USA).

4.9. Cell Cycle (DNA Distribution Analysis)

The cells were seeded at a density of 2.6~4 × 105 cells in 6-cm plates overnight and then starved
with serum-free medium for 6 h. After synchronized cell cycling, the cells were exposed to different
treatments for another 48 h and collected by trypsinization, washed twice in pre-cold PBS and finally
fixed in 1 mL 70% ice-cold absolute alcohol overnight. The cell pellets were washed twice with pre-cold
PBS after centrifugation at 2000 rpm for 5 min and then stained with 500 µL FxCycle™ PI/RNase
Staining Solution Kit (#1983513, BD Biosciences, San Jose, CA, USA). The cell-cycle distribution was
determined using a BD FACSCanto flow cytometry system (FACSCanto™; Becton Dickinson, San Jose,
CA, USA). The data was subsequently analyzed with ModFit LT cell-cycle analysis software (Verity
Software House, Topsham, ME, USA).

4.10. Indirect Immunofluorescence

PTX-R HeLa and PTX-R ME180 cells were grown on glass coverslips in 48 wells at the density of
1~2×105 cells per well for 24 h prior to treatment. After 6h starvation with serum-free medium, the
cells were exposed to different treatments for 48 h. The cells were then fixed in 4% paraformaldehyde
solution (P2031; Biosesang, Seongnam, Korea) for 20 min and washed with PBS three times. After 15 min
transparent in 0.1% Triton X-100 and 30 min blocking in 5% BSA, the cells were washed and incubated
with anti-γH2A.X Ser139 (1:100, #9718; Cell Signaling, Danvers, MA, USA) primary antibody in blocking
buffer overnight at 4 ◦C. The next day, the cells were incubated with goat anti-rabbit (1:500, Alexa-488,
#111-545-144; Jackson ImmunoResearch, West Grove, PA, USA) secondary antibody conjugated for 1 h
at room temperature. The coverslips were stained with DAPI in VECTASHIELD Mounting Medium
(H-1200; Vector Laboratories, Burlingame, CA, USA) for 10 min at RT. The three-dimensional distribution
of γ-H2AX foci images were captured under a 63x magnification objective with oil immersion and
analyzed with a Zeiss LSM 800 confocal laser scanning microscope with ZEN 2.3 software (Carl Zeiss,
Jena, Germany). The quantification of γ-H2AX foci was conducted manually with a minimum of
100 cells per sample randomly selected. The cells with ≥5 γ-H2AX foci/nucleus were considered to be
γ-H2AX foci-positive as previously described [68,69].

4.11. Western Blotting

The cells were seeded at a density of 0.7~1.2 × 106 cells per 10-cm petri dish and collected after
48 h drug treatment. Whole-cell protein lysates (25ng) were resolved by SDS–polyacrylamide gel
electrophoresis (PAGE), transferred to nitrocellulose membranes, and blocked in 5% non-fat dry milk
in tris-buffered saline/0.05% Tween-20. Then, the membranes were incubated with primary antibodies
overnight at 4◦C, followed by incubation with horse radish peroxidase–coupled secondary mouse
antibody (1:5000, #213111-01, GeneTex, Irvine, CA, USA) or rabbit (1:5000, #31460, Invitrogen, Carlsbad,
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CA, USA) at room temperature. The blots were visualized using enhanced chemiluminescence detection
reagents (#198506/1859598, Thermo Scientific, Rockland, IL, USA) and exposed to hyper X-ray film
(GE Healthcare, Chicago, IL, USA). The band intensities were analyzed using Image J 1.52 software
(National Institutes of Health, Bethesda, MD, USA).

4.12. Cell Migration (Wound Healing Assay)

The cells (1.2~2 × 105 per well) were grown in 6-well plates overnight. The monolayer was
artificially injured by scratching across the plate with a pipette tip (approximately 1 mm in width)
when cell confluence reached 70–80%. The wells were washed with PBS twice to remove detached cells
or cell debris and the medium changed to one with or without different drugs. After 48 h, scratched
wound areas were photographed under each condition and cell migration was quantitatively analyzed
by Image J (NIH, Bethesda, MD, USA) to determine areas (A) of the initial (0 h) and healing scratches
(48 h). The migration ratio was calculated using the following formula: Cell migration ability = (1 –
A48h/A0h) × 100%.

4.13. Cell Invasion (Transwell Assay)

The cells (0.3 ~1 × 104 per well) in the medium containing low serum (1%) were seeded into
24-well plates by adding the cell suspension to 6.5-mm upper chambers of transwells with 8-mm pores
(BD Biosciences, Franklin Lakes, NJ, USA) that had been pre-coated for 2 h with Matrigel (BD Biosciences,
Bedford, MA, USA) in a 37 ◦C incubator. Meanwhile, 0.65 mL of 20% FBS complete medium, with or
without different concentrations of compounds, was added to the lower chamber as a chemoattractant.
After 48 h, the invading cells that had not migrated through the filter in the transwell inserts (on the
upper surface) were removed with a cotton swab, and the cells that had migrated to the lower chamber
were fixed in paraformaldehyde and stained with a 0.1% crystal violet solution. Four random fields
were selected and photographed under an EVOS XL digital inverted microscope (Life Technologies,
Carlsbad, CA, USA) at a magnification of 200×.

4.14. Statistical Analysis

The assays were performed in at least three independent experiments. The student’s t test and
one-way ANOVA were used to assess the differences between the two groups. All results were analyzed
and presented as the mean ± standard deviation (SD) with GraphPad Prism (Version 8.0.2). p < 0.05
was considered statistically.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/
3383/s1.

Author Contributions: J.J.L., Y.J.C. and S.Y.H. designed the whole research. H.W.L established paclitaxel resistant
cell lines. J.J.L., J.Y.H. and H.W.L. participated in the experimental procedures and performed data analysis.
H.W.L, M.W.B. and O.K. provided antibodies and Matrigel. J.Y.H., O.K., M.W.B. and Y.J.C. involved in data
curation, J.J.L. wrote the original draft. Y.J.C. and S.Y.H. reviewed and edited the manuscript. Y.J.C. and S.Y.H.
conceived the study and supervised the project. All authors read and approved the final manuscript.

Funding: This study was supported by grants from the National Research Foundation of Korea
(2016R1D1A1B04932862] and the Bio & Medical Technology Development Program of the National Research
Foundation (NRF) funded by the Ministry of Science & ICT [2018M3A9E8021512].

Acknowledgments: This manuscript has been copyedited by native English speakers with a related biomedical
background in BioMed Proofreading®LLC.

Conflicts of Interest: The authors declare that they have no competing interests.

http://www.mdpi.com/1422-0067/20/14/3383/s1
http://www.mdpi.com/1422-0067/20/14/3383/s1


Int. J. Mol. Sci. 2019, 20, 3383 18 of 21

Abbreviations

PI3K phosphatidylinositol 3-kinase
PTX paclitaxel
PTX-R PTX-resistant
BYL, BYL-719;
LY LY294002
CI combination index
MTT tetrazolium dye
Fa fraction affected
sqRT-PCR semi-quantitative reverse transcriptase–polymerase chain reaction
mean ± SD mean ± standard deviation
RI resistance index
EMT epithelial–mesenchymal transition
PDK1 3-phosphoinositide–dependent protein kinase 1
GSK-3β glycogen synthase kinase 3 beta
PARP poly (ADP-ribose) polymerase
VEGF vascular endothelial growth factor
MMP-2/9 matrix metalloproteinase-2/9
WB western blot
CCNA1 cyclin A1
CCNB1 cyclin B1
CCNE cyclin E
Cdk1/Cdc2 cyclin-dependent protein kinase
CLSM confocal laser scanning microscopy
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