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DrugMetab: An Integrated Machine Learning and Lexicon 
Mapping Named Entity Recognition Method for Drug 
Metabolite

Heng-Yi Wu1, Deshun Lu2, Mustafa Hyder3, Shijun Zhang1, Sara K. Quinney3, Zeruesenay Desta3 and Lang Li1,*

Drug metabolites (DMs) are critical in pharmacology research areas, such as drug metabolism pathways and drug-drug in-
teractions. However, there is no terminology dictionary containing comprehensive drug metabolite names, and there is no 
named entity recognition (NER) algorithm focusing on drug metabolite identification. In this article, we developed a novel NER 
system, DrugMetab, to identify DMs from the PubMed abstracts. DrugMetab utilizes the features characterized from the Part-
of-Speech, drug index, and pre/suffix, and determines DMs within context. To evaluate the performance, a gold-standard 
corpus was manually constructed. In this task, DrugMetab with sequential minimal optimization (SMO) classifier achieves 
0.89 precision, 0.77 recall, and 0.83 F-measure in the internal testing set; and 0.86 precision, 0.85 recall, and 0.86 F-measure 
in the external validation set. We further compared the performance between DrugMetab and whatizitChemical, which was 
designed for identifying small molecules or chemical entities. DrugMetab outperformed whatizitChemical, which had a lower 
recall rate of 0.65.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 709–717; doi:10.1002/psp4.12340; published online on 
29 September 2018.

A drug’s pharmacokinetics (PKs) involves not only the parent 
compound, but also its metabolites.1 For instances, codeine 
drugs have active metabolites (morphine) that possess 
more therapeutic activity against the targeted protein than 
its parent drug.2 In addition, drug metabolites (DMs) play 
prominent roles in drug interactions. A notable example is 
itraconazole. Itraconazole itself is a potent cytochrome P450 
(CYP)3A inhibitor, so are its metabolites, such as hydroxy-
itraconazole.3 Pharmacogenetics also has a major impact 
on the drug metabolism products. The tamoxifen active 
metabolite, endoxifen, is generated through the CYP2D6 

enzyme. Among patients with breast cancer with CYP2D6 
loss functional variants (e.g., *4, *5, and *10), the patients 
usually have very limited tamoxifen metabolite, endoxifen. 
Hence, these patients have much reduced endoxifen con-
centration such that the efficacy of tamoxifen treatment 
declined.4 All these above examples demonstrate that DMs 
and their parent drugs are equally important in PK research.

Although there are several well-established dictionar-
ies for drug and metabolome, the resource for DMs is still 
limited. The Human Metabolome Database (HMDB) reports 
data on >29,000 endogenous metabolites, but there are only 
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WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔   There is no terminology dictionary containing compre-
hensive DM names, and there is no NER algorithm focus-
ing on DM identification.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   First, four different DM presentation patterns were de-
fined. Second, a gold-standard corpus was constructed 
to annotate DMs with the relationship between parent 
drugs and their metabolites within the abstracts. Third, a 
new DM, the NER algorithm, was developed to identify 
DMs in the scientific literature. Fourth, different from all 

the other NER systems, DrugMetab can not only annotate 
metabolite terms but also recognize metabolism reactions 
related to their parent drugs.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   It facilitates the exploration of relationships between 
drugs and their metabolites.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔   It facilitates the exploration of drug-drug interaction in 
scientific literature.
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2,485 drugs, and 948 DMs.5 Similarly, DrugBank 4.06 and 
ChEBI7 have 1,912 and 112 DMs, respectively, which are 
much less than the total number of generic drugs (8,184). 
Those numbers represent the gaps between drugs and their 
metabolites. For instance, two metabolites, desmethylfl-
unitrazepam and 3-hydroxyflunitrazepam, can be found in 
PMID: 11259331. However, they are not available in either 
DrugBank or ChEBI. To solve this problem, biomedical lit-
erature is a good data resource to deliver high-quality in-
formation and text mining is the technology to transfer the 
information into a system. Among those works, named entity 
recognition (NER) is an initial and crucial processing step.

There are many NERs that annotate text with biomedical 
terminologies.8–25 Some were designed to identify general 
terms, like proteins, DNA, RNA, cells, cell lines, etc.,8–10,16,26 
and some can annotate drugs, chemicals, or metabo-
lome.11–13,17 However, only a few using the dictionary lookup 
approach can annotate DMs. For instance, whatizitChemical 
is an NER system that can annotate DMs, if it selects dic-
tionaries, like ChEBI or OSCAR3, containing DM names.22

To conquer the challenges above, first, four different DM 
presentation patterns were defined, and a gold-standard cor-
pus was constructed. This annotated corpus facilitates the 
next step in DrugMetab development. Second, DrugMetab 
was proposed to identify DMs in biomedical literature.

METHODS
Define drug metabolite and reaction
The annotations for drug metabolism products (i.e., DMs), 
on the other hand, are not well investigated or integrated 
yet. To demonstrate the challenges in annotating DMs, we 
illustrated four patterns how DMs are presented in literature. 
Tamoxifen metabolites are used as the primary example 
for the demonstration in Figure 1. The first two catego-
ries (Single_Word_Drug_Metabolite type I and type II) are 
DM names in a single entity. Type I contains a substring 
of a drug name as well as a chemical prefix or suffix that 
represents its drug metabolism chemical reactions (e.g., 
4-OH-N-desmethyltamoxifen in PMID: 15685451). Type II, 
however, does not contain either a substring of its parent 
drug or chemical reaction. It can be either an abbrevia-
tion or an unrelated name. For instance, endoxifen (PMID: 

20400308) is the primary active metabolite of tamoxifen 
via CYP2D6 enzyme, which has an alternative name of 
4-OH-N-desmethyltamoxifen. The other two patterns are 
represented with the form of multi-word entities containing 
either a preposition (type I) or conjunction for describing 
the DM chemical reaction (type II). The examples of Multi_
Word_Drug_Metabolite type I and type II are tamoxifen 
N-demethylation in PMID: 24737844 and N-demethylation 
of tamoxifen in PMID: 8104124, respectively. Therefore, to 
characterize and extract DM names from biomedical lit-
erature, we will need two different but highly connected 
informatics tools: a DM annotation scheme and its NER 
algorithm. The DM annotation scheme shall characterize 
the substrings for the DM chemical reactions in annotating 
DMs and the relationship to its parent drug. Utilizing the 
annotations in the corpus, the NER can learn from annota-
tions how DMs are presented in literature and facilitate the 
recognition in the unread text.

Corpus construction
Annotation material
DM corpus was constructed with 210 in vitro PK abstracts 
and 45 drug-drug interaction (DDI) abstracts. A detail of 
how to collect those documents can be found in ref. 27. To 
annotate DMs, a web-based tool, called Brat available in 
(http://brat.nlplab.org/index.html), was utilized.28 Brat is an 
annotation tool, which is popular for annotations in many 
aspects, including term, relationship, event annotation, etc.

Annotation guideline
The guideline was generated to provide annotators a stan-
dard for annotation. It focused solely on the annotation for 
DM entities. The cognitive process is based on the context 
of an abstract. The annotated entity must be referred as if 
it was either a product or a reaction activity of a drug via 
the metabolism process. As we described in “Define drug 
metabolite and reaction,” four entity types were proposed 
to annotate DMs.

Annotation process
The corpus construction is a manual process (Figure 2).  
Three annotators with different training backgrounds, 

Figure 1  Patterns of drug metabolites. There are four patterns that show how the drug metabolites are presented. Tamoxifen 
metabolites are used as the primary example for the demonstration. Type I contains a substring of a drug name as well as a chemical 
prefix or suffix that represents its drug metabolism chemical reactions. Type II, however, does not contain either a substring of its 
parent drug or chemical reaction. It can be either an abbreviation or an unrelated name. The other two patterns are represented with 
the form of multiword entities containing either a preposition (type I) or conjunction for describing the drug metabolism chemical 
reaction (type II). ML, Machine Learning; POS, Part-Of-Speech.

http://brat.nlplab.org/index.html
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including informatics, biochemistry, and pharmacology, 
conducted the annotation tasks independently. An agreed 
annotation was defined when its offset information is iden-
tical among three annotators. The offset information con-
tains start-offset and end-offset. The start-offset is the 
index of the first character of the annotated span and the 
end-offset is the index of the last character of the anno-
tated span in the text. If spans for a tag are overlapping 
but its start or end offset locations are different, it means 
three annotators agreed with this tag but disagreed with 
its offset location. In this case, it was solved among three 
annotators. If there exists two or less spans for a tag, in 
this case, the disagreed annotations are first discussed 
among three annotators for consensus. If the consensus 
is still not achieved, the disagreed annotations are further 
judged by pharmacological research experts (Professors 
in the Department of Pharmacology) for the final decision.

Gold-standard corpus
Once the gold-standard corpuses were created from the 
annotation procedure, then annotated text files were con-
verted into GENIA format, invented by Tsujii Laboratory of 
University of Tokyo.29 This corpus format was initially cre-
ated to support the development and evaluation of infor-
mation extraction and text mining system for the domain of 
molecular biology. Within corpus, the annotation for DMs 
was made with start-tag and end-tag and the names of 

their parent drugs were also embedded within the start-tag. 
In this way, the relationship between the parent drugs and 
their metabolites can be built. The data is available in the 
Data S1.

Annotation evaluation
To evaluate the consistency and quality of the annotation 
task, two types of measurements were calculated. First, 
pairwise percent agreement was used to measure the 
agreements between two annotators. Second, the results 
from three annotators are compared to the gold-standard 
corpus. Precision (P), recall (R), and F-measure (F) are ad-
opted to assess the performance of an individual annotator.

Drug and drug metabolism reaction lexicon
Two lexica are built up, including the drug name lexicon 
and the DM reaction lexicon. The drug name lexicon is built 
upon the drug names in Drugbank 4.030 and the medical 
subject heading term.31 In total, there are 70,712 unique 
drug names in the drug name lexicon, which is available in 
the Data S2.

The DM reaction lexicon are composed of 65 metabolites’ 
prefix and suffix terms collected from the literature32,33 and 
our previous work.27 They are further evaluated by two do-
main experts. Within the lexicon, DM reactions are catego-
rized into two groups: modification (phase I) and conjugation 
(phase II) reactions. The DM reaction lexicon is available in 
the Data S3.

DrugMetab: An integrated drug metabolite NER 
algorithm
DrugMetab has three phases, and the workflow is shown 
in Figure 3. In the first phase, drug names, their prefix/ 
suffix, and their abbreviations are tagged and indexed in 
each abstract. In addition, Part-of-Speech (PoS) infor-
mation was provided to illustrate the sentence structure 
grammatically. In the second phase, a searching window is 
created centering at a drug name entity. In the third phase, a 
machine-learning algorithm will be trained using the feature 
matrix created in the second phase. It predicts whether the 
candidate entities in the searching window are DMs or not.

Phase I: Part-of-Speech tagging
The Part-of-Speech Tagger in OpenNLP34 was imple-
mented for creating PoS features for entities. With the Penn 
Treebank tag set,35 the English maxent PoS model in PoS 
Tagger read a tokenized sentence each time and echoed 
the sentence with PoS tags. In this step, some erroneous 
tags for drug names and reaction terms were manually 
modified.

Phase I: Lexicon-based tagging
A dictionary-based tagging is applied to identify whether 
an entity is a drug name, and whether a drug name and 
a metabolite’s reaction term are the substring of that en-
tity. Technically, drug names in lexicon are sorted based 
on the length of string in the hash table. Then, if an entity 
can be partially mapped against a drug name or a reaction 
term in the lexicon table, a drug name or pre/suffix name for 
that entity is annotated. However, some entities might be 

Figure 2  Drug metabolite annotation flow chart. The corpus 
construction is a manual process by three annotators. The result 
was created based on the consensus. The disagreed annotations 
among three annotators were judged by pharmacological 
research experts for the final decision.
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erroneously tagged because of some special brand names. 
For instance, “Control” is a brand name of chlordiazepox-
ide. To eliminate such false-positive results, these tags will 
be removed if the term was recognized as a verb with the 
PoS tagger.

Phase I: Detect drug abbreviations
In PK studies, a drug abbreviation is usually annotated in 
a parenthesis after its full name is presented the first time 
in an abstract. This algorithm for detecting drug abbrevia-
tions first searches for the existence of parentheses after 
the tagged drug names in a range of five words. However, 
not all terms within parentheses are drug abbreviations. 
They might be an enzyme name (e.g., CYP3A4), drug dos-
age, or drug serum concentration in a PK experiment (e.g., 
10 μM), PK parameters measured in a PK experiment (e.g., 
half-maximal inhibitory concentration), and statistical re-
sults (i.e., P value or confidence interval). These terms are 
then filtered using the technologies of regular expression. 
The regular expressions of these terms are well defined in 
our previously PK corpus.27 Once the abbreviations of drug 
names were recognized, they were tagged as drug names.

Phase II: Construct window around a drug name
First, a window size of 2*n + 1 (n is one-sided word span) is 
placed centering on the tagged drug name. To optimize DM 
identification, different window sizes were evaluated using 
our gold-standard corpus. Here, we have investigated the 
span size n = 2, 3, 4, 5, and 6. The best coverage (optimal 
recall rate ~100%) was obtained using the window of size 

11 (span size n = 5). Second, the window is further trimmed 
according to the following rules: the window meets the start 
or end of a sentence; the window overlaps with another 
drug name; and the window meets the entity ending with 
a comma.

Phase III: Create the input feature matrix for the 
machine-learning algorithms
Three types of input features (PoS tags, drug indices, and 
metabolism reaction indices) from phase I were used to 
build a feature matrix for a searching window. Figure 4 
shows an example of a feature matrix created for the ma-
chine learning. In the rows of this matrix, there are 11 words 
(W1–W11) within a window. For those words assigned with 
“NA” (W1 and W2 in Figure 4), they are removed during 
the window size adjustment (see phase II: Construct win-
dow around a drug name). For the machine-learning pre-
diction, 9 features (2nd to 10th columns) were created for 
each word. First, the Part-of-Speech tag (second column) 
represents the grammatical category for each word. Drug 
index (third column) means the availability of a drug name 
in each word. Midazolam (W6) in the center of the search-
ing window is indexed as 1 because midazolam was rec-
ognized as a drug name. Metabolism reaction index (fourth 
column) represents the availability of a reaction term in each 
word. For two instances in Figure 4, both 4′-hydroxylation 
(W3) and 1′-hydroxylation (W7) are indexed with 1 because 
they contain a predefined reaction term (hydroxyl). PoS 
tags for the surrounding entities (±N words) of the current 
word were created to represent the syntactic environment 

Figure 3  Workflow of drug metabolite annotation. DrugMetab has three phases in workflow. In the first phase, drug names, their 
prefix/suffix, and their abbreviations are tagged and indexed in each abstract. In the second phase, a searching window is created 
centering at a drug name entity. In the third phase, a machine learning algorithm will be trained using the feature matrix created in the 
second phase.
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around the target word. In this experiment, N = 3 was de-
termined based on the histogram of suffix or prefix terms in 
the training dataset, which covers 95% of drug and suffix/
prefix terms combinations. Taking 1′-hydroxylation (W7) as 
the example in Figure 4, P1_POS, P2_POS, and P3_POS 
(5th to 7th columns) represent the PoS tags of one, two, 
and three words before 1′-hydroxylation (W7), respectively. 
On the other hand, A1_POS, A2_POS, and A3_POS (8th 
to 10th columns) represent the PoS tags of one, two, and 
three words after 1′-hydroxylation (W7), respectively. Final 
column (Tag) is used to identify whether the words (W3 or 
W7) containing reaction terms are part of metabolism re-
actions for a DM name; and in which “1” means yes, and 
“0” means no. It is the outcome variable that the machine-
learning algorithms are either trained with or tested against.

Phase III: Machine-learning algorithms
The aim of this work is to predict whether the candidate en-
tities (words with metabolism reaction terms) in the search-
ing window are part of a DM or not. With the feature matrix 
generated from phase II, sequential minimal optimization 
(SMO),36 J48,37 and logistic model tree (LMT)38 with the de-
fault parameter setting in Weka 3.8 was utilized to accom-
plish this task.39 For the experimental setting, among 210 in 
vitro PK abstracts,27 168 abstracts were used to build the 
training model, 42 abstracts were used as internal valida-
tion, and 45 DDI abstracts were used for external valida-
tion.40 Tenfold cross-validation was used in building up the 
training mode.

Phase III: Prediction performance evaluation
To evaluate DrugMetab’s performance, the predicted DMs 
that matches both start and end positions in gold-standard 
corpus constitute true-positive results. The predicted DMs 
that do not match fully are false-positive results; and DM 

terms in the corpus that are not be predicted are false-
negative results. Finally, the information-retrieval metrics: 
precision, recall, and F-measure are used for evaluation.

Comparison DrugMetab with whatizitChemical
To discover exiting NER systems for performance com-
parison, there is no one focusing on the annotation for 
DMs. One similar work done by Nobata et al.17 proposed 
an NER tool to extract yeast metabolites using ChEBI and 
HMDB terms. This work compared their performance with 
whatizitChemical and demonstrated that whatizitChem-
ical achieved lower precision and F-measure compared 
to their NER tool. Therefore, we recognize whatizitChem-
ical can be a baseline for evaluation. WhatizitChemical is 
one of the modules in the Whatizit pipeline that analyzes 
text data based on TreeTagger.22 By integrating both drug 
(WhatizitChebiDict) and chemical (whatizitOSCAR3) dictio-
naries, whatizitChemical can identify chemical and drugs 
names because whatizitChebiDict annotates DMs in the 
ChEBI. In this analysis, we compared the performance of 
DrugMetab with that of whatizitChemical.

Online materials
The gold-standard corpus for DMs is available in the  
Data S1. For the drug dictionary, metabolism reaction 
terms, and codes, they can be found in the Data S2, S3, 
and S4, respectively.

RESULTS
Performance of corpus construction
The measurement of inter-annotator agreement between 
two annotators was quantified using pairwise percent 
agreement (Table 1). The pairwise percent agreement sug-
gests that a high level of agreement (87.6–89.8%) among 
three annotators was achieved. In addition, annotations 

Figure 4  Feature matrix of entities in a searching window for machine learning. An example of a feature matrix was created for 
machine learning. CC, Coordinating Conjunction; CD, Cardinal number; IN, Preposition; JJ, Adjective; NA, Not Available; NN, Noun; 
POS, Part-Of-Speech.
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are compared between annotators and the gold-standards 
using precision, recall, and F-measure in Table 1. The eval-
uation suggested that three annotators have comparable 
curating performance, where the F-values are 0.95, 0.964, 
and 0.978, respectively.

There are some disagreements due to the lack of clarity of 
the annotation guideline. For example, when an abbreviation 
was mentioned right behind its DM name, one annotator an-
notated both DM and its abbreviation as a tag, but another 
annotator only annotated DMs and ignored the abbreviation 
part. Consequently, two annotators consistently differed in the 
Single_Word_Drug_Metabolite type II. In this analysis, most 
disagreements between annotator 1 and annotator 2 oc-
curred in this category. For instance, in PMID: 10859153, both 
annotator 1 and annotator 2 omitted “NORCIS,” which is the 
abbreviation of norcisapride. In addition, many DMs written 
in the mixture form of drug abbreviation and a reaction term 
were missed (e.g., 3-hydroxyNVP (a metabolite of Nevirapine) 
in PMID: 10570031). Another frequent error is the unique drug 
metabolite names. For example, dihydroqinqhaosu in PMID: 
10456689 is an active metabolite of artelinic acid. However, 
it is challenging to find clues to connect it to its parent drug.

Performance of the entity tagging
In the gold-standard corpus, there are 3,789 annotated 
drug entities. Only three drug entities (two unique drugs) 
were not tagged by our tagging algorithm because their 
drug names were not available in our dictionary. These two 
drug names are RPR-106541 and cholantene. There are 
1,582 entities containing the metabolite reaction terms in 
our corpus, and only 7 were erroneously tagged by our tag-
ging algorithm. This is because some drug names or their 
synonyms have our proposed pre/suffix terms. In tagging 
drug abbreviations, 138 true drug abbreviations are cap-
tured, and we have only 9 false positives. Overall, the tag-
ging performance of drug entities and pre/suffix terms is 
very good. It minimizes the effect of error propagation due 
to the erroneous entity tagging.

Performance of DrugMetab on the internal validation 
in vitro PK abstracts
From 210 abstracts, 168 abstracts are selected for training, 
and the remaining 42 abstracts (internal validation) are used 
for testing. Using 10-fold cross-validation, three different 

algorithms in Weka pipeline39 were trained: SMO, J48, and 
LMT. Their performances on the testing dataset were evalu-
ated. The best precision (0.89), recall (0.77), and F-measure 
(0.83) are achieved by the SMO. The J48 tree has com-
parable precision (0.88) but much lower recall (0.62) and  
F-measure (0.73). The LMT obtained the worst performance 
with precision (0.85), recall (0.57), and F-measure (0.68).

Performance of DrugMetab on the external validation 
DDI abstracts
To further evaluate DrugMetab, 45 DDI abstracts con-
taining DMs were used as an external validation data.40 
In this dataset, there are 233 drug metabolites, including 
100 Single_Word_Drug_Metabolite type I, 95 Multiple_
Word_Drug_Metabolite type I, and 38 Multiple_Word 
Drug_Metabolite type II. The overall performance of 
DrugMetab F-measure is 0.86. The precision and recall for 
Single_Word_Drug_Metabolite type I, Multi_Word_Drug_
Metabolite type I, and Multi_Word_Drug_Metabolite type 
II are (92.6%/88%), (81.6%/84.2%), and (79.5%/81.6%; 
Table 3), respectively.

Compare with whatizitChemical
WhatizitChemical was designed to identify chemical enti-
ties, drugs, and protein names for EBIMed individually, but 
was not designed to identify DMs. For example, in PMID: 
10460803, “dextromethorphan o-demethylation” is a me-
tabolite of dextromethorphan. Using whatizitChemical, 
dextromethorphan and o-demethylation were tagged as 
a drug and a chemical, respectively. Thus, it is difficult to 
compare whatizitChemical to DrugMetab directly because 
they have different annotation criteria. Here, we assume 
whenever whatizitChemical correctly annotates both drug 
term and its metabolism reaction term, we treat it as a 
true-positive result. Otherwise, it is a false-negative result. 
To make a fair comparison, we only count the number of 
true-positive results and false-negative results of terms 
in gold-standard corpus, and calculate their recall rates. 
Overall, our result shows that DrugMetab has a recall of 
0.77, whereas whatizitChemical has a recall of 0.65. In ad-
dition, Table 2 compares their recall rates in each type 
of DM. Except for Single_Word_Drug_Metabolite type I, 
DrugMetab with SOM can outperform whatizitChemical in 
the rest of the categories.

Table 1  Annotation performance evaluation

Evaluation type 1 Pairwise percent agreement (%)

 Annotator 1–2 87.6

 Annotator 1–3 88.8

 Annotator 2–3 89.8

Evaluation type 2

Comparison between gold-standard corpus and the result of each annotator

Precision = TP

TP+FP
Recall = TP

TP+FN
F-measure = 2∗TP

2∗TP+FP+FN

 Annotator 1 0.989 0.913 0.950

 Annotator 2 0.994 0.936 0.964

 Annotator 3 0.986 0.97 0.978

FN, false negative; FP, false positive; TP, true positive.
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DISCUSSION
Error analysis
In the error analysis, a manual check was performed to 
investigate the causes of errors on internal validation 
dataset. In Table 2, we recognize five major reasons of 
errors for each type of DM, including unidentified drug ab-
breviations, misclassifications from the machine learning, 
metabolite-like names, unique DM names, and drug names 
are not in the dictionary. Unidentified drug abbreviations 
account for about 44% of errors. Misclassifications by the 
machine learning have the second highest error annota-
tions (32%). False-positive results occurred when their 
PoS patterns are similar to that of true DMs. For example, 
“hydroxylation in vitro by nelfinavir” in PMID: 11159797 has 
a similar PoS pattern (NN_reaction + IN_by + NN_drug) to 
that of drug reaction type II (NN_reaction + IN_of + NN_
drug). False-negative results occurred when using a long 
phrase to represent Multi_Word_Drug_Metabolite type II 
(e.g., “N-demethylation of rac-, (R)- and (S)-methadone” 
in PMID: 10233205 and “N-dealkylation of the antipsy-
chotic drug perphenazine” in PMID: 11136295). The third 
reason is metabolite-like names, which accounts for 10% 
of errors. For instance, “dihydroergotamine” is recognized 
as the metabolite of a drug name (“ergotamine”), but it is 
a generic drug name. The fourth reason is a unique DM 
name, which accounts for 8% of errors. For example, 
UK-103 320 in PMID: 11298070 (the main metabolite of 
sildenafil) and cycloguanil in PMID: 9923577 (the metab-
olite of proguanil) are not identified because they are not 
named based on their parent drug and do not exist in our 
dictionary.

We further investigated DrugMetab performance in four 
different patterns of DMs. Table 2 shows the recall and pre-
cision rates of the DrugMetab using SMO. The SMO per-
forms the best in Multi_Word_Drug_Metabolite type I with R: 
93.8% and P: 96.3%. Single_Word_Drug_Metabolite type II 
and Multi_Word_Drug_Metabolite type II have slightly worse 
performance with R: 92.7%/P: 91.3% and R: 77.27%/P: 
89.47%, respectively. However, for Single_Word_Drug_
Metabolite type II, a poor recall rate of 32.3% was obtained. 
Based on our observation, the best performance of pre-
dicting Multi_Word_Drug_Metabolite type I is its simpler 

structure. Both drug entity and reaction entity in this cate-
gory are assigned to a grammatical category of noun (NN), 
and they are laid side by side (i.e., NN_drug + NN reaction). 
On the other hand, the unfavorable DrugMetab result of 
Single_Word_Drug_Metabolite type II is primarily due to the 
unidentifiable drug or metabolite names or their abbrevia-
tions. It can probably be solved by manual curation.

Performance of DrugMetab without single word DM 
type II
For Single_Word_Drug_Metabolite type II, the major reason 
of this poor prediction is that there is no standard naming 
clue. First, it is caused by the abbreviation of DM itself. For 
example, DQHS is the abbreviation of dihydroqinghaosu, 
which is the active metabolite of artelinic acid. The second 
error type is rare reaction terms. For example, cycloguanil 
is the metabolite of proguanil. Although they have the same 
six letters (guanil) within the name, cyclo and pro are hard 
to identify as a suffix or prefix string in our dictionary. The 
third error type is a unique name for the DM. For instance, 
UK-103 320, which is the metabolite of sildenafil, has no 
suffix/prefix string for representing its pathway. Thus, there 
is no clue to connect it to its parent drug.

Due to these challenges, we decided to rebuild a training 
model and study whether the performance can be improved 
without Single_Word_Drug_Metabolite type II. Comparing 
Table 3 to Table 2, DrugMetab has improved precision and 
recall rates in all three DM types.

Practical usage
In our work,40 DrugMetab were applied to improve DDI 
identification from biomedical literature. In reality, many DDI 
signals can be identified indirectly via DMs. For instance, 
endoxifen but not tamoxifen interacts with estrogen recep-
tor alpha literally in a sentence.

In addition, a new tool can be innovative in improving the 
performance of DM NER in two aspects. First, many DMs 
are related with their parent drugs through chemical reac-
tions via drug metabolism enzymes. DrugMetab can build 
the relationship between a parent drug and their metabo-
lites, which is valuable in enriching some existing databases, 
such as Drugbank. In addition, utilizing such a relationship 

Table 2  The comparison of DrugMetab using SMO algorithm with whatizitChemical on in vitro PK test data and reasons of errors in each type of drug 
metabolites

Recall = TP

TP+FN
/Precision = 

TP

TP+FP

DrugMetab with SOM (recall/
precision)

whatizitChemical (Recall 
= TP

TP+FN
) Reasons of errors

Single word drug metabolite 
type I

92.7%/91.3% 98.5% •	 Drug name is not in dictionary
•	 Error from machine learning

Single word drug metabolite 
type II

32.3%/87.5% 15.4% •	 Unidentified drug abbreviations
•	 Metabolite-like names
•	 Unique drug metabolite names

Multiword drug metabolite 
type I

93.8%/96.3% 70.5% •	 Unidentified drug abbreviations
•	 Error from machine learning
•	 Drug name is not in dictionaries

Multiword drug metabolite 
type II

77.3%/89.5% 65.1% •	 Unidentified drug abbreviations
•	 Error from machine learning
•	 Drug name is not in dictionaries

FP, false positive; PK, pharmacokinetic; SMO, sequential minimal optimization; TP, true positive.
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can enable the normalization of DMs if they are representing 
in different ways.

Second, abbreviations are frequently used in the biomedi-
cal literature to cite drugs and metabolites. If these abbrevia-
tions can be integrated in the DM lexicons and the follow-up 
NER algorithm, it shall have a much better performance in 
recognizing not only drug names but also their metabolites. 
For instance, in HMDB, 4-Hydroxymidazolam has 4-OH-MDZ 
in synonyms. However, 4OH-tamoxifen does not have 4OH-
TAM in synonyms. DrugMetab can also enrich abbreviation 
terminologies in existing databases, such as HMDB.

CONCLUSION

In this article, we propose a new DM NER tool, namely 
DrugMetab. We make major contributions in developing 
this innovative NER tool. First, four different DM presen-
tation patterns are defined, and a gold-standard corpus is 
constructed. This annotated corpus facilitates the next step 
DrugMetab development. Second, DrugMetab can identify 
DMs and outperform whatizitChemical. Through our analy-
sis, we discover that Single_Word_Drug_Metabolite type II 
is still challenging.
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