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A B S T R A C T   

The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small 
molecules’ has paved an ingenious pathway in drug discovery in recent years. We extracted this idea for the 
investigation of drugs for COVID-19. Perceiving the importance of organosulfur compounds, seventy-six known 
organosulfur compounds were screened and studied for the interaction with multiple SARS-CoV-2 target proteins 
by molecular dynamics simulation. Lurasidone and its derivatives displayed substantial binding affinity against 
five proteins (Mpro, PLpro, Spro, helicase and RdRp). The pharmacokinetics, ADMET properties and target 
prediction studies performed in this work further potentiates the effectiveness against SARS-CoV-2.   

1. Introduction 

The deplorable situation of the present world aroused by the dreadful 
behavior of an RNA virus named the Severe Acute Respiratory Syndrome 
Corona Virus-2 (SARS-CoV-2) is originated in China in late 2019. The 
Corona Virus Disease (COVID-19) pandemic caused by SARS-CoV-2 
massacred about one million lives leaving more than thirty-six million 
people in infection across 216 countries. Similar infections were re
ported in 2012 by the Middle East Respiratory Syndrome Corona Virus 
(MERS-CoV) and the Severe Acute Respiratory Syndrome Corona Virus 
(SARS-CoV) in 2003 but they were less contagious [1]. According to the 
World Health Organization (WHO), there are no approved medicines or 
vaccines for COVID-19 and the leading approach for the development of 
curative medication is drug repurposing as it allows for the rapid 
acceptance, known and optimized synthetic route and often facile to 
leapfrog the preliminary stages of clinical trial [2]. 

SARS-CoV-2 is an RNA virus which consists mainly of four structural 
proteins (spike protein, envelope protein, membrane protein and 
nucleocapsid protein) and sixteen non-structural proteins which are 

responsible for the viral multiplication and other specific purposes for 
infection. As the mutation rate and thus evolution rate is more for RNA 
viruses [3], multiple target binding increases the efficiency of the drug 
by reducing the effect of viral resistance against one protein [4]. The five 
targets which play a pivotal role in the viral action are Chymotrypsin 
Like Protease (3CLpro) otherwise called Main Protease (Mpro), Papain 
Like Protease (PLpro) which help in virus replication, Spike protein 
(Spro), promotes the entry of the virus into the human cell by binding 
with the type 1 transmembrane metallocarboxypeptidase known as 
Angiotensin Converting Enzyme-2 (ACE-2), RNA-dependent RNA poly
merase (RdRp) which helps in RNA synthesis and also helicase which 
plays a vital role in replication and the central dogma of the virus. 

Organosulfur compounds are an important class of molecules with 
the sulfur-containing functional groups such as sulfones, sulfonamides, 
disulfides, sulfoxides, thiophene, thiazole etc. and its impact in the 
pharmaceutical sector is impeccable right from the example of penicillin 
[5]. Organosulfur compounds are known to have exceptional properties 
as free radical scavengers, thus antioxidant along with anti- 
inflammatory and anti-microbial properties. Now, about 25% of all 

* Corresponding authors. 
E-mail addresses: sushabhan@iitpkd.ac.in (S. Sadhukhan), mintu@iitpkd.ac.in (M. Porel).   

1 Both authors contributed equally. 

Contents lists available at ScienceDirect 

Chemical Physics Letters 

journal homepage: www.elsevier.com/locate/cplett 

https://doi.org/10.1016/j.cplett.2020.138193 
Received 2 August 2020; Received in revised form 18 October 2020; Accepted 11 November 2020   

mailto:sushabhan@iitpkd.ac.in
mailto:mintu@iitpkd.ac.in
www.sciencedirect.com/science/journal/00092614
https://www.elsevier.com/locate/cplett
https://doi.org/10.1016/j.cplett.2020.138193
https://doi.org/10.1016/j.cplett.2020.138193
https://doi.org/10.1016/j.cplett.2020.138193
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2020.138193&domain=pdf


Chemical Physics Letters 763 (2021) 138193

2

the pharmaceutical drugs are organosulfur compounds and sulfur is the 
most appeared heteroatom in the drugs after nitrogen and oxygen. 
Clinical trial of a range of organosulfur compounds such as ritonavir, 
arbidol [6], baricitinib [7] etc. is currently underway against SARS-CoV- 
2. We have selected a library of organosulfur compounds which includes 
FDA approved drug, drug candidates for various diseases and also the 
reported drugs for SARS-CoV which has 89.1% genomic similarity to 
that of SARS-CoV-2. The inhibitory action against the druggable targets 
of SARS-CoV-2 is studied to investigate the possibility of multiple targets 
binding. Therefore, molecular docking study of the library is carried out 
with five different target proteins and the molecular dynamics simula
tion is performed with the hit compounds. The ADMET properties, target 
prediction and Lipinski’s rule are also predicted to explore about the 
pharmacokinetics and druggability. 

2. Materials and methods 

2.1. Ligand preparation 

The structure of the approved organosulfur drug compounds was 
generated in UCSF Chimera [8] through their PubChem ID. The com
pounds whose structures are not appeared in PubChem are drawn in 
ChemDraw and the 3D structure was generated in UCSF Chimera from 
the SMILE string. All the structures were energy minimized through the 
same software and converted the PDB structure to PDBQT format by 
using AutoDock Tools. 

2.2. Molecular docking by virtual screening 

Molecular docking study was carried out through virtual screening 
by using AutoDock Vina [9] with Perl script for the integration exe
cutables to explore the binding affinity and the involved interactions in 
between all organosulfur compounds in the library and the five drug
gable protein targets of SARS-CoV-2 namely Main proteases (Mpro, 
Chain A), Papain-like proteases (PLpro, Chain A), Spike-protein (Spro, 
Chain B), Helicase protein (Chain A) and RNA-dependent RNA poly
merase (RdRp, Chain A). The crystal structure of Mpro (PDB ID: 6Y84), 
PLpro (PDB ID: 6W9C), Spro (PDB ID: 6LZG), RdRp (PDB ID: 6M71) and 
helicase (PDB ID: 6ZSL) were retrieved from the protein databank 
(http://www.rcsb.org). The hydrogen atoms and gasteiger charges were 
added to each protein, subsequently, all the proteins were saved in 
PDBQT format by using the AutoDock v4.2 program [10]. For Mpro 
protein grid box (30 Å × 30 Å × 30 Å) centered at (X12, Y-8, Z20 Å), for 
PLpro grid box (30 Å × 30 Å × 30 Å) centered at (X-42, Y29, Z30 Å), 
Spro grid box (30 Å × 30 Å × 30 Å) centered at (X-36, Y33, Z12 Å), RdRp 
grid box (30 Å × 30 Å × 30 Å) centered at (X120, Y122, Z127 Å at 0.375 
Å spacing) and for helicase protein grid box (46 Å x 46 Å x 46 Å) 
centered at (X-29, Y27, Z-73 Å at 0.375 Å spacing) were prepared and 
saved the output grid file in txt format. A docking run was given from the 
command prompt. Best docked conformation and minimum binding 
energy were considered for further analysis. UCSF chimera was used for 
the visualization of the docked conformation and results. PyMol was 
used to get the pdb format of the docked structures. 

2.3. Molecular dynamics simulation 

Herein, top-ranked five compounds complexed with each target 
protein were subjected to 50 ns molecular dynamics (MD) simulation 
using the pmemd.cuda module of AMBER18 suite [11]. Top five com
pounds i.e. lurasidone, lurasidone sulfoxide, lurasidone endo, lurasidone 
exo and fananserin complexed with Mpro, PLpro, Spro, RdRp and 
Helicase resulting 25 complexes were simulated for 50 ns to check the 
stability of the protein-drug complexes. For the validation of our dock
ing results, we also choose 5 different ligands i.e. indinavir for Mpro, 
darunavir for PLpro, arbidol for Spro, remdesivir for RdRp and iver
mectin for Helicase. Configuration files for all set of complexes were 

generated using leap module of Ambertool19 [12]. Amber ff14SB [13] 
and updated generalized amber force field (GAFF2) were used in the 
case of receptor and ligand respectively. AM1-BCC [14] charge scheme 
was assigned for the ligands using antechamber [15] module of the 
AMBER 18. Each complex were solvated into octahedron TIP3P water 
box [16] along with adequate amount Na+ ions to neutralize the sys
tems. Bond lengths involving hydrogen atoms were kept constant using 
SHAKE algorithm [17]. A non-bonded cut-off of 10 Å was used for 
calculating the long-range interaction by the particle mesh Ewald 
method [18]. The temperature of all systems kept constant at 300 K 
using Langevin thermostat with a collision frequency of 2 ps− 1. Simi
larly, the pressure of the systems was also controlled using Berendsen’s 
Barostat. All systems were subjected to two-step minimizations followed 
by a stepwise heating phase and equilibrium simulation before the 
production run. A detailed description of the simulation protocol was 
already discussed in our previous work on COVID 19 [19]. Finally, we 
performed 50 ns production run for all 30 complexes under NPT 
ensemble. All these trajectories were used to calculate root mean 
squared deviation (RMSD) to check the binding stability using the 
cpptraj module of the Ambertool19 [12]. Last 20 ns data were used for 
the binding free energy calculation which is discussed in the next 
section. 

2.4. Binding free energy (MM-PBSA scheme) calculation 

The molecular mechanics/Poisson-Boltzmann surface area (MM/ 
PBSA) scheme is widely used for estimating binding free energies of 
receptor-inhibitor complexes [20]. The binding free energy (ΔGbind) 
comprises internal energy (ΔEinternal), desolvation free energy (ΔGsolv), 
and configurational entropy (TΔS) which are related by the following 
equation [21], 

ΔGbind = ΔH − TΔS ≈ ΔEinternal +ΔGsolv − TΔS (1)  

ΔEinternal = ΔEcovalent +ΔEelec +ΔEvdW (2)  

ΔGsolv = ΔGpol +ΔGnp (3)  

ΔEinternal is further composed of ΔEcovalent (bond, dihedral, and angle), 
ΔEelec (electrostatic) and ΔEvdW (van der Waals) terms. The desolvation 
part of the free energy is composed of polar (ΔGpol) and non-polar sol
vation energy (ΔGnp). A detailed description of the MM-PBSA method is 
already discussed in our earlier work [22,23]. We have used 2000 
configurations obtained from the final 20 ns trajectory for the MM-PBSA 
calculation. Due to high computational cost, configurational entropy 
calculation is avoided in our work. The estimated binding free energy is 
mostly used for the relative comparison rather than the absolute value. 

2.5. Physicochemical properties 

The physicochemical properties according to Lipinski’s rule were 
calculated for all the selected organosulfur compounds to predict the 
pharmacokinetics property. SwissADME tool was used to calculate the 
properties from the SMILES structures of each compound. (http://www. 
swissadme.ch/). 

2.6. ADMET studies 

Predicting in-silico pharmacokinetic properties of a new drug is very 
crucial for further studies. ADMET (Absorption, Distribution, Meta
bolism, Excretion and Toxicity) prediction provides some important 
information for new compounds. ADMET studies have been carried out 
by using the computational pkCSM tool (http://biosig.unimelb.edu. 
au/pkcsm/prediction). 
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2.7. Molecular target prediction 

For the validation of targets, we used molecular target studies by 
using the Swiss Target Prediction tool (http://www.swisstargetpredicti 
on.ch/) which is a web server that predicts the putative targets of the 
given molecule by utilizing 2D and 3D similarity index with known li
gands. The smile formats of the compounds were entered to obtain the 
targets. 

3. Results and discussion 

3.1. Molecular docking study 

In the current study, a set of organosulfur compounds were selected 
to carry out the studies to assess their potential against SARS-CoV-2. To 
examine the possibility of binding with multiple targets, we have 
selected five SARS-CoV-2 proteins namely Mpro, PLpro, Spro, RdRp and 
helicase (Fig. 1), and screened the compounds by molecular docking 
method along with their known inhibitors as the reference compounds 
such as indinavir for Mpro, darunavir for PLpro, arbidol for Spro, 
remdesivir for RdRp and ivermectin for helicase. 

The binding energy obtained for the compound library is depicted as 
the heat map (Fig. 2) and we obtained five hit compounds which can 
potentially inhibit the five targets of the SARS-CoV-2 (Table 1). 

The results obtained from the molecular docking studies are 
compared with the already reported drug candidates that inhibit the 
same target protein of SARS-CoV-2 (Table 2). There are potential can
didates that act against a single protein but the compounds which can 
inhibit multi targets effectively are minimal. Famotidine was found to be 
a candidate which inhibits Mpro, PLpro, RdRp and helicase while 
dutasteride and dihydroergotamine could inhibit both Mpro and RdRp. 
In this framework, the compounds mentioned in the Table 1 can be a 
better consideration as they inhibit five target proteins of SARS-CoV-2. 

3.1.1. Docking studies of the organosulfur compounds with the SARS-CoV- 
2 Mpro 

SARS-CoV-2 Mpro, also known as 3C-like proteins is a 33.8 kDa 
cysteine protease consists of three domains (domain I-III) [29]. Mpro 
involved in the cleavage of polyprotein at eleven conserved sites 
yielding mature and intermediate non-structural proteins [30]. SARS- 
CoV-2 Mpro exhibits noncanonical dyad of Cys145-His41 in between 
domain I and II, connected via a loop with domain III [31]. Cys145 and 
His41 plays crucial role for substrate recognition [32]. Docking grid was 
made around these amino acid residues for virtual screening of the 
selected organosulfur compounds with the Mpro of SARS-CoV-2 (6Y84). 
Indinavir, a well-known drug that has already been reported to inhibit 
Mpro of the SARS-CoV-2 [23] was studied as a reference compound. 
Docking score of the organosulfur compounds along with the reference 
compound is tabulated in Table 1. The docking result reveals that among 
seventy-six organosulfur compounds, the lurasidone sulfoxide has a 
highest binding affinity with − 9.0 kcal/mol against Mpro. Based on 
virtual screening results of SARS-CoV-2 Mpro, lurasidone (− 8.4 kcal/ 

mol), lurasidone endo (− 8.2 kcal/mol), lurasidone exo (− 8.2 kcal/mol), 
ziprasidone (− 8.2 kcal/mol), enzalutamide (− 8.0 kcal/mol) and 
fananserin (− 7.9 kcal/mol) were predicted to be the best organosulfur 
compounds. 

3.1.2. Docking studies of the organosulfur compounds with the SARS-CoV- 
2 PLpro 

Papain-like protease or PLpro of SARS-CoV-2 shares 83% sequence 
similarity with SARS-CoV but distant from MERS-CoV PLpro [33]. PLpro 
is a multifunctional cysteine protease that process viral polyproteins to a 
functional replicase complex leading to viral spread [34]. PLpro also 
involved in deubiquitination, de-ISGylation which obstruct the impor
tant signaling pathways causing viral invasion of the innate immune 
response by the expression of type I interferon [35]. All this evidence 
strongly suggests that inhibition of PLpro activity can block the viral 
replication which makes it a vital anti-viral drug target. The molecular 
docking study of organosulfur compounds with the SARS-CoV-2 PLpro 
showed that the lurasidone sulfoxide and lurasidone endo generates 
highest binding energy − 7.4 kcal/mol. Whereas, lurasidone (− 7.3 kcal/ 
mol), lurasidone exo (− 6.8 kcal/mol), ziprasidone (− 6.6 kcal/mol), and 
fananserin (− 6.6 kcal/mol) showed the higher binding affinity towards 
SARS-CoV-2 PLpro protein. 

3.1.3. Docking studies of the organosulfur compounds with the SARS-CoV- 
2 spike protein (Spro) 

In order to investigate the potential antiviral drugs targeting spike 
protein of SARS-CoV-2, virtual screening assisted molecular docking was 
carried out with seventy-six organosulfur compounds on the binding 
pocket of spike proteins. It is very well reported that viral entry into the 
cellular system of host with the assistance of ACE-2 receptor [36]. 
Glycosylated spike 1 (S1) binds to the ACE-2 receptor of the human host 
cell surface and mediate entry of virions [37]. The docking scores of 
organosulfur compounds selected for the study of inhibition of Spro of 
the SARS-CoV-2 are shown in Table 1. Antiviral organosulfur drug for 
Influenza virus, arbidol, which has been repurposed against the SARS- 
CoV-2, is taken as the reference compound and is already in the clin
ical trial [38]. The docking score of arbidol with Spro is − 6.1 kcal/mol. 
However, lurasidone, lurasidone sulfoxide, lurasidone exo, all three 
compounds exhibited the best docked score (− 8.1 kcal/mol) with SARS- 
CoV-2 spike proteins. While lurasidone endo (− 7.7 kcal/mol), fanan
serin (− 7.7 kcal/mol) and ziprasidone (− 7.4 kcal/mol) also showed the 
higher binding affinity. Analyzing these results, it can be observed that 
organosulfur compounds exhibited considerably low binding energy 
with Spro of the SARS-CoV-2 warranting further in vitro and in vivo 
investigation to consider them as potential drugs for COVID-19. 

3.1.4. Docking studies of the organosulfur compounds with the SARS-CoV- 
2 RdRp 

RNA-dependent RNA polymerase (RdRp) also known as nsp12 is 
composed of two additional subunits, nsp7 and nsp8 [39]. Looking to
wards the structural insight of RdRp is consisting of N-terminal nido
virus RdRp-associated nucleotidyltransferase (NiRAN) domain, an 

Fig. 1. Structure of (A) Mpro, (B) PLpro, (C) Spro, (D) RdRp and (E) Helicase with the active sites marked.  
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Fig. 2. Binding energy of the selected organosulfur compounds against various proteins of SARS-CoV-2 by molecular docking study.  
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interface domain and a C-terminal end domain [40]. The central func
tion of RdRp is to catalyzing the viral replication, starting from 3′-poly-A 
end RdRp catalyzes the copy of RNA genome by utilizing (+) RNA strand 
as template to synthesize a complementary (− ) RNA strand [31]. The 
active site of RdRp composed of α-helices, antiparallel β-strand and 
catalytic aspartate [40]. Due to its important role in replication cycle of 
coronaviruses, RdRp considered as important antiviral drug target [41]. 
We performed molecular docking studies of organosulfur compound li
brary against the RdRp protein of the SARS-CoV-2 revealed that lur
asidone endo exhibited lowest binding energy with − 8.4 kcal/mol 
binding energy whereas lurasidone sulfoxide (− 8.3 kcal/mol), lur
asidone (− 8.2 kcal/mol), fananserin (− 8.1 kcal/mol), lurasidone exo 
(− 8.0 kcal/mol), enzalutamide (− 7.7 kcal/mol) and ziprasidone (− 7.6 
kcal/mol), also showed promising binding affinity. Based on these ob
servations, the above-mentioned organosulfur compounds can be po
tential RdRp inhibitors to combat the SARS-CoV-2 infection 

3.1.5. Docking studies of the organosulfur compound with the SARS-CoV 
helicase 

Helicase protein of coronavirus carries out NTP dependent unwind
ing of double-stranded DNA and RNA in a 5′-3′ direction[42]. Moreover, 

helicase protein shown to be conserved among the species such as SARS- 
CoV helicase protein which shares almost 99.83% similarity over the 
complete length of sequences with the helicase protein of SARS-CoV-2 
virus [31]. Several binding domain of the helicase protein have been 
known such as zinc-binding domain, 1A domain 1B domain and 2A 
domain [31]. However, domain 1A has been known to involve in the 
unwinding process. Targeting helicase protein offers potential thera
peutic strategy to combat COVID-19 [43]. We took recently solved 
crystal structure of helicase protein of SARS-CoV-2 (6ZSL) for the mo
lecular docking studies. The docking scores of the selected organosulfur 
compounds and the reference compound are represented in Table 1. 
Lurasidone sulfoxide and lurasidone endo showed the highest binding 
affinity against SARS-CoV-2 helicase protein with − 9.3 kcal/mol bind
ing energy. While, lurasidone (− 9.0 kcal/mol), lurasidone exo (− 8.9 
kcal/mol), ziprasidone (− 8.8 kcal/mol), enzalutamide (− 8.4 kcal/mol) 
and fananserin (− 8.3 kcal/mol) also showed good binding affinity. 

3.2. Molecular dynamics simulation 

All the MD trajectories of 30 complexes were found to be stable in 
terms of potential and total energy (data not shown) throughout the 50 
ns production simulation. To investigate each protein-ligand complex’s 
stability, we have calculated the root means squared deviation (RMSD) 
of the backbone atoms of proteins relative to their respective energy 
minimized conformation. The time evolution of RMSD is displayed in 
Fig. 3(A)–(E). It is evident from Fig. 3(A)–(E) that each system has 
reached equilibrium within the first 10 ns. The average RMSD value was 
estimated for all cases using the last 30 ns of the trajectory and listed in 
Table 3. For all cases, the average RMSD value was found to vary be
tween 1.28 Å and 2.90 Å (see Table 3). The highest deviation was 
observed for helicase/lurasidone endo, while the lowest RMSD was 
obtained for Spro/fananserin. Overall, a relatively higher degree of 
stability was observed for all Spro/ligand complexes. On the other hand, 
RdRp and helicase showed an overall higher RMSD than the other three 
receptors because of their large structure, including various flexible 
loops and domains. 

Table 1 
Binding energy in kcal/mol for the top hit compounds along with the reference 
compounds against each protein target of SARS-CoV-2.  

Sl. No. Compound name Binding energy (kcal/mol) against SARS-CoV-2 
proteins 

Mpro PLpro Spro RdRp Helicase 

1 Lurasidone − 8.4 − 7.3 − 8.1 − 8.2 − 9 
2 Lurasidone sulfoxide − 9 − 7.4 − 8.1 − 8.3 − 9.3 
3 Lurasidone endo − 8.2 − 7.4 − 7.7 − 8.4 − 9.3 
4 Fananserin − 7.9 − 6.6 − 7.7 − 8.1 − 8.3 
5 Lurasidone exo − 8.2 − 6.8 − 8.1 − 8 − 8.9 
Ref Indinavir − 7.7     
Ref Darunavir  − 6.6    
Ref Arbidol   − 6.1   
Ref Remdesivir    − 7.4  
Ref Ivermectin     − 9.5  

Table 2 
Binding energy (kcal/mol) of the recently published drug candidates against various proteins of SARS-CoV-2 by molecular docking study.  

Sl. No. Compound name Binding energy (kcal/mol) against SARS-CoV-2 proteins 

Mpro[24] (6Y84) PLpro[25] (6W9C) Spro[26] (6LZG) RdRp[27] (6 M71) Helicase*[28] (6JYT/6ZSL) 

1 Metacycline − 9.1     
2 Dutasteride − 8.9   − 9.9#  

3 Dihydroergotamine − 8.6   − 9.3#  

4 Nelfinavir − 8.6     
5 Tetracycline − 8.1     
6 Cryptophycin 1  − 7.7    
7 Cryptophycin 52 − 8.3** − 7.6    
8 Deoxycylindrospermopsin − 8.6** − 7.9    
9 Famotidine − 6.0## − 7.9  − 6.8## − 5.9## 

10 Tegobuvir   − 8.1   
11 Bromocriptin   − 7.7   
12 Baicalin   − 7.6   
13 Deleobuvir   − 7.6   
14 Dantrolene   − 7.6   
15 VXR    − 8.2  
16 Streptolydigin    − 8.1  
17 Rifabutin    − 7.4  
18 Rifapentine    − 6.9  
19 VRX    − 6.5  
20 Vapreotide     − 11.5 
21 Saquinavir     − 7.6 
22 Colistin     − 7.4 
23 Glecaprevir     − 7.4 
24 Aprepitant     − 6.8  

* The previous works have been carried out with the helicase of SARS-CoV (6JYT) and the current results are based on SARS-CoV-2 protein (6ZSL), #6NUR is the 
protein PDB ID used for the work, **6M03 is the protein PDB ID used, ##PDB ID not mentioned. 
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3.3. Binding free energy analysis 

The binding free energy for each complex was calculated using the 
MM-PBSA scheme and shown in Fig. 4. The total binding free energy, 
along with various interactions contributing to the binding free energy, 
was recorded in Table 4. It is evident from Table 4 that for all complexes, 
ΔEelec and ΔEvdW contributed favorably to the complexation, whereas 
ΔGpol was found to disfavor the complex formation. Further, Table 4 
revealed that ΔEelec was overcompensated by ΔGpol. In all cases, the 
binding was mainly driven by the intermolecular van der Waals 
interactions. 

In the case of Mpro, the estimated binding free energy for indinavir, 
Lurasidone (Lu), Lurasidone exo (Lu_exo), Lurasidone endo (Lu_endo), 
Lurasidone sulfoxide (Lu_s), and Fananserin (Fa) was − 24.71, − 28.37, 
− 18.22, − 17.25, − 10.07, and − 15.30 kcal/mol, respectively. Lu dis
played a better binding affinity compared to the reference compound 
(indinavir) as well as other inhibitors. In all cases, the contribution of 
ΔEvdW was found to be nearly 2–3 times more favorable than ΔEelec, 
indicating a crucial role of the hydrophobic interaction in the binding. 
Overall, in the case of Mpro, Lu was found to be the most suitable 

candidate for the binding, followed by Lu_exo. 
Similarly, for the target protein PLpro, these two inhibitors (Lu and 

Lu_exo) also showed the highest binding. Both Lu and Lu_exo bind PLpro 
with similar free energy, − 16.31 kcal/mol and − 16.93 kcal/mol, 
respectively. It was revealed from Table 4 that although both ΔEvdW and 
ΔEelec interactions were more favorable for Lu_exo than Lu; both ligands 
displayed similar affinity to PLpro. This was because of an increased 
contribution of unfavorable ΔGpol for Lu_exo compared to Lu. In the case 
of Spro, Lu_exo displayed binding free energy of –22.37 kcal/mol, which 
is lower than the binding free energy of the reference inhibitor, arbidol 
(− 18.56 kcal/mol). Both the van der Waals and electrostatic in
teractions were more favorable for Lu_exo than arbidol, resulting in 
stronger binding of Lu_exo than arbidol. The other four inhibitors bind 
with Spro weakly. 

Along with Lu, the sulfur derivative of lurasidone (Lu_s) was the top 
compound in the case of RdRp. The estimated binding free energies were 
− 19.53 and − 19.94 kcal/mol for Lu and Lu_s, respectively, while the 
reference compound (remdesivir) displayed binding free energy of 
− 21.92 kcal/mol. Interestingly, in the helicase case, all five inhibitors 
showed a higher binding affinity than ivermectin (reference). The 

Fig. 3. Time evolution of root mean squared deviation (RMSD) of backbone atoms for (A) Mpro, (B) PLpro, (C) Spro, (D) RdRp, and (E) helicase complexed with 
Lurasidone (Lu), Lurasidone Exo (Lu_exo), Lurasidone Endo (Lu_endo), Lurasidone sulfoxide (Lu_s) and Fananserin (Fa) along with the respective refer
ence compounds. 

Table 3 
Average backbone RMSD (in Å) of all complexes. The standard errors of the mean (SEM) are listed in the parentheses. The average and SEM values were determined 
using the block average method.  

System Reference Lurasidone Lurasidone exo Lurasidone endo Lurasidone sulfoxide Fananserin 

Mpro 2.08 (0.03) 1.54 (0.04) 1.59 (0.03) 2.11 (0.07) 2.28 (0.03) 2.50 (0.06) 
PLpro 1.75 (0.07) 1.58 (0.03) 1.79 (0.3) 1.48 (0.02) 2.15 (0.04) 1.62 (0.02) 
Spro 1.33 (0.02) 1.45 (0.02) 1.60 (0.03) 1.45 (0.02) 1.70 (0.02) 1.28 (0.02) 
RdRp 2.37 (0.04) 2.31 (0.05) 1.99 (0.02) 2.55 (0.04) 2.11 (0.02) 1.86 (0.02) 
Helicase 1.74 (0.03) 2.78 (0.12) 2.71 (0.06) 2.90 (0.07) 2.07 (0.06) 2.55 (0.06)  
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predicted binding free energy for Lu, Lu_exo, Lu_endo, and Lu_s was 
− 34.60 kcal/mol, − 29.47 kcal/mol, − 31.47 kcal/mol, and − 31.37, 
respectively. For the top compound in the case of helicase, i.e. Lu, the net 
solvation energy disfavored the binding to a lesser extent (− 37.71 kcal/ 
mol) than others, making it the best hit. Overall, among all the 

inhibitors, lurasidone (Lu) was found to have a strong binding affinity 
against most of the target proteins and come out as the lead molecule in 
cases of all but Spro. 

Fig. 4. Relative binding free energy (kcal/mol) all 30 complexes. Each inhibitor is shown in a different color.  

Table 4 
Component of binding free energy for all complexes in kcal/mol. The standard error of the mean (SEM) is listed in the parenthesis.  

Inhibitors ΔEvdW ΔEelec ΔGpol ΔGnp ΔEMM
a ΔGsolv

b ΔGTotal
c 

Mpro 
Reference − 34.90 (0.25) − 17.02 (0.24) 31.16 (0.26) − 3.95 (0.02) − 51.92 (0.45) 27.21 (0.25) − 24.71 (0.22) 
Lurasidone − 41.38 (0.08) − 16.15 (0.14) 33.23 (0.10) − 4.07 (0.01) − 57.53 (0.14) 29.16 (0.10) − 28.37 (0.10) 
Lurasidone exo − 30.14 (0.18) − 7.05 (0.12) 22.30 (0.18) − 3.32 (0.02) − 37.19 (0.25) 18.97 (0.17) − 18.22 (0.12) 
Lurasidone endo − 28.14 (0.13) − 10.06 (0.17) 24.13 (0.23) − 3.17 (0.01) − 38.21 (0.24) 20.96 (0.22) − 17.25 (0.10) 
Lurasidone sulfoxide − 35.34 (0.08) − 25.15 (0.16) 54.24 (0.18) − 3.82 (0.01) − 60.50 (0.20) 50.42 (0.17) − 10.07 (0.11) 
Fananserin − 20.08 (0.10) − 9.93 (0.11) 17.12 (0.13) − 2.40 (0.01) − 30.02 (0.17) 14.72 (0.12) − 15.30 (0.08) 
PLpro 
Reference –32.73 (0.11) –32.89 (0.24) 42.68 (0.18) − 3.68 (0.01) − 65.62 (0.27) 38.99 (0.18) − 26.62 (0.13) 
Lurasidone − 24.87 (0.20) − 5.61 (0.16) 16.67 (0.18) − 2.58 (0.02) − 30.48 (0.30) 14.09 (0.17) − 16.31 (0.15) 
Lurasidone exo − 34.41 (0.07) − 11.35 (0.13) 32,09 (0.13) − 3.26 (0.01) − 45.75 (0.14) 28.83 (0.13) − 16.93 (0.08) 
Lurasidone endo –22.56 (0.13) − 6.36 (0.18) 16.74 (0.18) − 2.51 (0.01) − 28.92 (0.24) 14.23 (0.17) − 14.69 (0.10) 
Lurasidone sulfoxide − 14.97 (0.16) − 10.03 (0.28) 18.16 (0.30) − 1.66 (0.01) − 25.00 (0.35) 16.50 (0.29) − 8.50 (0.11) 
Fananserin − 24.90 (0.09) − 5.78 (0.14) 20.35 (0.17) − 2.71 (0.01) − 30.68 (0.16) 17.64 (0.17) − 13.04 (0.09) 
Spro 
Reference –32.58 (0.08) − 6.59 (0.12) 23.62 (0.10) − 3.00 (0.01) − 39.18 (0.15) 20.62 (0.10) − 18.56 (0.09) 
Lurasidone − 15.97 (0.13) − 7.39 (0.18) 14.30 (0.15) − 1.87 (0.01) –23.37 (0.23) 12.43 (0.14) − 10.94 (0.11) 
Lurasidone exo − 42.25 (0.08) − 20.47 (0.19) 44.49 (0.13) − 4.14 (0.00) − 62.72 (0.18) 40.35 (0.13) –22.37 (0.11) 
Lurasidone endo − 21.83 (0.12) − 11.36 (0.21) 22.87 (0.25) − 2.33 (0.01) –33.19 (0.29) 20.54 (0.24) − 12.66 (0.10) 
Lurasidone sulfoxide –23.97 (0.16) − 7.92 (0.25) 20.06 (0.27) − 2.77 (0.01) − 31.88 (0.30) 17.59 (0.23) − 14.30 (0.13) 
Fananserin –22.49 (0.12) − 10.51 (0.24) 22.71 (0.29) − 2.47 (0.01) –33.00 (0.32) 20.24 (0.27) − 12.76 (0.10) 
RdRp 
Reference − 36.84 (0.09) − 80.50 (0.31) 100.55 (0.27) − 5.14 (0.01) − 117.33 (0.31) 95.41 (0.27) − 21.92 (0.16) 
Lurasidone − 36.84 (0.15) − 17.43 (0.26) 38.78 (0.23) − 4.04 (0.01) − 54.27 (0.24) 34.74 (0.23) − 19.53 (0.10) 
Lurasidone exo − 29.47 (0.09) − 16.42 (0.16) 34.92 (0.16) − 3.74 (0.01) − 45.89 (0.20) 31.17 (0.16) − 14.72 (0.11) 
Lurasidone endo − 28.80 (0.08) − 24.83 (0.17) 42.76 (0.17) − 3.68 (0.01) − 53.63 (0.19) 39.08 (0.16) − 14.55 (0.11) 
Lurasidone sulfoxide − 42.27 (0.12) − 8.94 (0.16) 35.72 (0.22) − 4.43 (0.01) − 51.21 (0.24) 31.28 (0.22) − 19.94 (0.09) 
Fananserin − 18.26 (0.17) − 2.59 (0.16) 12.21 (0.20) − 2.05 (0.02) − 20.85 (0.26) 10.17 (0.19) − 10.69 (0.11) 
Helicase 
Reference − 50.31 (0.15) − 14.77 (0.13) 45.41 (0.19) − 5.59 (0.01) − 65.09 (0.21) 39.08 (0.21) − 25.26 (0.11) 
Lurasidone − 53.22 (0.10) − 19.08 (0.14) 43.24 (0.13) − 5.53 (0.01) − 72.30 (0.19) 37.71 (0.13) − 34.60 (0.11) 
Lurasidone exo − 47.74 (0.12) − 20.82 (0.19) 44.06 (0.12) − 4.97 (0.01) − 68.56 (0.27) 39.09 (0.23) − 29.47 (0.12) 
Lurasidone endo − 55.62 (0.09) –33.73 (0.14) 63.20 (0.15) − 5.32 (0.00) − 89.34 (0.18) 57.88 (0.15) − 31.47 (0.12) 
Lurasidone sulfoxide − 53.61 (0.13) − 29.68 (0.13) 57.21 (0.15) − 5.29 (0.01) − 83.29 (0.18) 51.92 (0.15) − 31.37 (0.09) 
Fananserin − 50.86 (0.07) − 27.82 (0.13) 55.44 (0.13) − 4.64 (0.00) − 78.69 (0.15) 50.80 (0.13) − 27.89 (0.10)  

a ΔEvdW + ΔEelec. 
b ΔGnp + ΔGpol. 
c ΔEvdW + ΔEelec + ΔGnp + ΔGpol. 
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3.4. Physicochemical properties study based on the Lipinski’s rule 

The physicochemical properties of the compounds were studied to 
predict the pharmacokinetics of the drug by the Lipinski’s rule. The 
guidelines for an orally active drug according to the Lipinski’s rule are 
(i) molecular weight (MW) < 500 Daltons, (ii) octanol-water partition 
coefficient (clogP) < 5, (iii) polar surface area (PSA) < 150 Å2, (iv) 
number of hydrogen bond donors (HBD) < 5, (v) number of hydrogen 
bond acceptors (HBA) < 5 and (vi) Number of rotatable bonds (RB) < 10 
[44]. The calculated values for the same for the organosulfur compounds 
that are shown to possess high activity after simulation studies are 
tabulated in Table 5 and the result showed that both the compounds 
follow Lipinski’s rule with only one violation in lurasidone exo where 
lurasidone showed zero violation. This indicates that the compounds 
have the potential for drug-like activities. 

3.5. Prediction of the absorption, distribution, metabolism, excretion, and 
toxicity (ADMET) profile 

We carried out ADMET property profiling to explore the drug like
liness of the organosulfur compounds. Lurasidone and lurasidone exo 
exhibited efficient binding energy among the all selected organosulfur 
compounds against RdRp, PLpro, Mpro, Spro and helicase proteins of 
SARS-CoV-2 in the molecular docking and MD-simulation study. In-silico 
pharmacological prediction of lurasidone and lurasidone exo were 
performed using the pkCSM server to assess the overall ADMET prop
erties (see Table 6). A favorable ADMET profile is necessary for the 
molecules in drug discovery. Lurasidone and lurasidone exo showed 
water solubility and high Caco-2 permeability, which indicate that these 
drugs can be absorbed orally. Both the compounds showed good human 
intestinal absorption and skin permeability. However, lurasidone and 
lurasidone exo were predicted to be substrate of P-glycoprotein as well 
as P-glycoprotein I and II inhibitor 

The Volume of distribution at steady state (VDss) prediction in
dicates low theoretical dose of lurasidone and lurasidone exo will be 
required to get it uniformly distributed in blood plasma. Blood brain 
barrier (BBB) permeability prediction showed that lurasidone and lur
asidone exo readily cross the BBB and drug can penetrate the central 
nervous system. 

It is well known that cytochrome P450s can regulate the metabolism 
of various drugs. In that respect, it is worth to note that inhibitors of 
CYP2D6/CYP3A4 can hamper the pharmacological properties of drugs. 
Lurasidone inhibits CYP2D6 and CYP3A4, whereas it is predicted to be a 
substrate of CYP2D6 and CYP3A4. Whereas, lurasidone exo predicted to 
be substrate and it inhibits CYP3A4. Further, it was observed that lur
asidone and lurasidone exo are substrate of ROCT-2 which means that 
these drugs excreted through urine. 

We have also assessed the toxicity index of the organosulfur com
pounds. The toxicity prediction from the Ames test (Salmonella typhi
murium reverse mutation assay) revealed that lurasidone and lurasidone 
exo cannot be considered as a mutagenic agent. Low toxicity was pre
dicted for both the compounds in Tetrahymena pyriformis. Lurasidone 
and lurasidone exo were shown to inhibit the human ether-a-go-go- 
related gene II (hERG II). However, both the drugs were found to be 

associated with hepatotoxicity. The maximum recommended tolerated 
dose (MRTD) in human prediction shows that both the drugs were not 
violating MRTD. Lurasidone and lurasidone exo are predicted to be low 
acute toxic compound as it does not fall under minnow toxicity. Addi
tionally, none of the compounds are associated with skin sensitivity. 

3.6. Identification of target class for lurasidone and lurasidone exo via 
target prediction studies 

Most of the drug performs their mechanism of action by interacting 
with the proteins, enzymes and other biomacromolecules. However, 
many drugs have more than one target. In-silico predictions of drug 
targets based on resemblance with known drugs are very useful to find 
out the number of targets. Here we observed that lurasidone has 8% 
enzyme and protease as a target, whereas lurasidone exo has 8% pro
tease and 4% enzyme as target. As shown in Fig. 5, lurasidone and 
lurasidone exo interacts with broad range of proteins and enzymes. The 
detailed information on the target, common name, UniProt ID, ChEMBL 
ID, target class, probability and known actives in 2D/3D are shown in 
the Tables S1 and S2 in the Supplementary Information. 

From all the above studies, we projected that the organosulfur 
compounds are potential class of molecules to inhibit various proteins of 
SARS-CoV-2 and thus can be potential drugs against the menace. The 
other types of organic molecules which are capable to serve as drugs 
against the COVID-19 are plant derived polyphenols [45], 

Table 5 
Physicochemical properties of the lurasidone and lurasidone exo.  

Property Lurasidone Lurasidone exo 

MW (Daltons) 492.68 508.68 
clogP 4.13 3.22 
PSA (Å2) 84.99 105.22 
No. of HBD 0 1 
No. of HBA 4 5 
No. of RB 5 5  

Violations Zero 1 (MW > 500)  

Table 6 
Predicted ADMET properties of the lurasidone and lurasidone exo.  

Properties Model name Predicted values Unit 

Lurasidone Lurasidone 
exo 

Absorption Water solubility − 3.924 − 3.449 log mol/L 
Caco2 permeability 1.327 0.857 Log Papp in 

10-6 cm/s 
Human intestinal 
absorption 

89.166 90.502 % Absorbed 

Skin permeability − 2.833 − 3.039 log Kp 
P-glycoprotein 
substrate 

Yes Yes Yes/No 

P-glycoprotein I 
inhibitor 

Yes Yes Yes/No 

P-glycoprotein II 
inhibitor 

Yes Yes Yes/No 

Distribution VDss 0.808 0.781 log L/kg 
Fraction unbound 
(human) 

0.072 0.14 Fu 

BBB permeability 0.134 − 0.621 log BB 
CNS permeability − 2.014 − 2.732 log PS 

Metabolism CYP2D6 substrate Yes Yes Yes/No 
CYP3A4 substrate Yes Yes Yes/No 
CYP1A2 inhibitor No No Yes/No 
CYP2C19 inhibitor No No Yes/No 
CYP2C9 inhibitor No No Yes/No 
CYP2D6 inhibitor Yes No Yes/No 
CYP3A4 inhibitor Yes Yes Yes/No 

Excretion Total clearance 0.44 0.4 log ml/min/ 
kg 

Renal OCT2 
substrate 

Yes Yes Yes/No 

Toxicity AMES toxicity No No Yes/No 
Maximum tolerated 
dose (Human) 

− 0.325 − 0.526 log mg/kg/ 
day 

hERG I inhibitor No No Yes/No 
hERG II inhibitor Yes Yes Yes/No 
Oral rat acute 
toxicity (LD50) 

3.562 3.529 mol/kg 

Oral rat chronic 
toxicity (LOAEL) 

1.548 1.911 log mg/ 
kg_bw/day 

Hepatotoxicity Yes Yes Yes/No 
Skin sensitivity No No Yes/No 
T. pyriformis toxicity 0.298 0.295 µg/L 
Minnow toxicity 1.471 1.851 log mM  
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corticosteroids [46], flavonoids [47], peptidyl analogues [48] etc. along 
with other biologicals such as antibodies and therapeutic RNA [49]. 

4. Conclusion 

As viral drug targets are susceptible to mutations at higher rates, our 
aim was to investigate compounds which could bind multiple-targets of 
SARS-CoV-2. From the selected list of organosulfur compounds, we 
identified compounds that interacted with multiple-targets and inter
estingly lurasidone and lurasidone exo were found to be very effective 
on inhibiting all five SARS-CoV-2 targets (Mpro, PLpro, Spro, RdRp and 
helicase) with significant binding affinities. Hence, this compound can 
be a potential candidate against SARS-CoV-2 for long-term as it is 
capable of binding with multiple-targets and inhibiting their activity, 
thus reducing the effect of drug-resistance. We also found that all the 
compounds are druggable with negligible violations from the Lipinski’s 
rule. The ADMET profile and target prediction studies suggest that lur
asidone and lurasidone exo has promising pharmacokinetic properties as 
well. Taken together, we believe that these two organosulfur compounds 
can potentially inhibit SARS-CoV-2 via binding multiple drug-targets 
and warrants further in vitro and in vivo investigations. 
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