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While machine learning techniques have been transformative in solving a range of
problems, an important challenge is to understand why they arrive at the decisions
they output. Some have argued that this necessitates augmenting machine intelligence
with understanding such that, when queried, a machine is able to explain its behaviour
(i.e., explainable AI). In this article, we address the issue of machine understanding from
the perspective of active inference. This paradigm enables decision making based upon
a model of how data are generated. The generative model contains those variables
required to explain sensory data, and its inversion may be seen as an attempt to explain
the causes of these data. Here we are interested in explanations of one’s own actions.
This implies a deep generative model that includes a model of the world, used to infer
policies, and a higher-level model that attempts to predict which policies will be selected
based upon a space of hypothetical (i.e., counterfactual) explanations—and which can
subsequently be used to provide (retrospective) explanations about the policies pursued.
We illustrate the construct validity of this notion of understanding in relation to human
understanding by highlighting the similarities in computational architecture and the
consequences of its dysfunction.

Keywords: active inference, explainable AI, insight, decision making, generative model, understanding

INTRODUCTION

How would we know whether a machine had understood why it chose to do what it did?
Simplistically, we might expect that, when queried, it would be able to communicate an explanation
for its actions. In this article, we take this to be our operational definition ofmachine understanding
(Yufik, 2018). Based on this definition, we can break the problem down into two parts. The first is
that a machine must be able to infer why it has taken the actions it has. The second is that it must
be able to act to communicate this inference when queried. In thinking about the first—explaining
behaviour—it is useful to think about how we go about explaining anything. In the philosophy
of science, there is considerable debate about the notion of explanation (Craik, 1952; Bird, 1998;
Psillos, 2002), which is beyond the scope of this article. Our use of the term is largely coherent with
the idea of ‘‘inference to the best explanation’’ that is common in Bayesian treatments of perception
(Helmholtz, 1866; Gregory, 1980) and in philosophy (Lipton, 2017) and proceeds as follows.
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As scientists, we formulate a series of alternative hypothetical
explanations. Each hypothesis entails different predictions about
the data that we have measured. By comparing our predictions
with those data, we assess which hypothesis is most congruent
with our measurements. Translating this same process to
explaining behaviour, the implication is that we need a space of
hypotheses representing reasons1 for behaviour, each of which
predicts an alternative course of action. The process of explaining
our actions2—i.e., having insight into our decisions—then
becomes an inference problem. Given some observed sequence
of choices, which explanations best fit those data?

This inferential perspective on decision-making is central to
active inference (Friston et al., 2014; Parr et al., 2022), which
frames perception and action as dual mechanisms that jointly
improve our inferences about the causes of our sensory data.
While perception is the optimisation of our beliefs to better fit the
data we observe, action changes the world to better fit our beliefs.
When the internal models required to draw these inferences
are temporally deep (Friston et al., 2021), they must include
the consequences of the sequential decisions we make while
engaging with our environment. Active inference offers a set of
prior beliefs about these decisions that represent explanations
for behaviour. These explanations divide into three types (Da
Costa et al., 2020). First, we select decisions whose sensory
consequences cohere with the data anticipated under our model
(Åström, 1965; Pezzulo et al., 2018). Second, our choices provide
us with data that resolve our uncertainty about our environment
(Mirza et al., 2018). Third, the context in which we find ourselves
may bias us towards some actions and away from others (Pezzulo
et al., 2013; Maisto et al., 2019). The first of these prompts us to
head to a restaurant when our internal model predicts satiation
when we feel hungry. The second leads us to survey the menu, to
resolve our uncertainty about the food on offer. The third biases
us towards ordering the same meal as on previous visits to the
restaurant. Together, these account for exploitative (preference-
seeking), explorative (curiosity-driven), and (context-sensitive)
habitual behaviour. The last of these turns out to be particularly
important in what follows, as it allows us to construct a narrative
as to why we make the choices we do.

In what follows, we consider a simple, well-validated, task that
incorporates both explorative, exploitative, and context-sensitive
elements (Friston et al., 2015; Chen et al., 2020). It is based upon a
T-maze paradigm, in which we start in the centre of the maze. In
either the left or the right arm of the T-maze, there is a preferred
(i.e., rewarding) stimulus whose position is initially unknown.
In the final arm, there is a cue that indicates the location of
the rewarding stimulus. To solve this maze and find the reward,
we must decide whether to commit to one of the potentially
rewarding arms or to seek out information about which is most
likely to be profitable before exploiting this information. The
twist here is that, after exposure to the maze, we follow up with

1Note that not all hypotheses represent reasons for doing something, and the idea
of reason does not follow directly from the scientific analogy. Central to this article
is the idea that the hypotheses we are interested in can be translated into a verbal
explanation that can be recognised as a reason for behaviour.
2Or the process of a machine or artificial agent explaining its actions.

a query. This takes the form of an instruction to explain either
the first or the second move made. By communicating the reason
for the action taken, the agent demonstrates a primitive form of
insight into their own behaviour.

This touches upon questions about insight into our actions.
This concept is important in many fields, ranging from
metacognition (Fleming and Dolan, 2012) to cognitive neurology
(Ballard et al., 1997; Fotopoulou, 2012) and psychiatry (David,
1990), where some syndromes are characterised by a patient
exhibiting a lack of insight into their own behaviour. However,
the term ‘‘insight’’ is often used to mean subtly different things
and it is worth being clear upon the way in which we use the
word here. Note that this is distinct from insight in the sense of
the ‘‘aha moment’’—where a different way of thinking about a
problem leads to a clearer understanding of its solution (Kounios
and Beeman, 2014; Friston et al., 2017a). In this article, we refer
to insight of a different sort. Specifically, how do we come to
understand the reasons for our own decision making? To the
extent that veridicality is a useful concept here, insight can be
regarded as a veridical inference about the causes of behaviour.

The hypothesis implicit in this article is that insight is
confabulation, but that this confabulation may be constrained
by sensory data to a greater or lesser extent. This provides
a behavioural complement to the idea that perception is
constrained hallucination (Paolucci, 2021). More precisely, both
perception and explanation are inferences. In the extreme case
that they are not constrained by data, we call them hallucination
or confabulation, respectively. This perspective is endorsed by
the philosophical position that, just as we must draw inferences
about why other people behave the way they do, our explanations
for our own behaviour are also inferred (Carruthers, 2009,
2011). However, we can go further than this. Interestingly, our
retrospective (or confabulated) explanations are not innocuous
but can change our beliefs about what we did and why.
Specifically, hearing our own explanations provides further
evidence for the policies we reported, which therefore become
more plausible. This suggests an adaptive role for insight in
improving our decision making, in addition to the benefits of
being able to communicate explanations for behaviour to others.

In what follows, we briefly review the notion of a generative
model and active inference. We then outline the specific
generative model used throughout this and illustrate the
behaviour that results from its solution through numerical
simulations. Finally, we offer a summary of the results, in
addition to a discussion of the relationship between the structure
of these inferences in relation to the neuroanatomy of human
cognition.

THE GENERATIVE MODEL

Under active inference, the generative model plays a central
role in accounting for different sorts of behaviour. It is the
implicit model used by a brain (or synthetic analogue) to
explain the data presented by the environment. However, it is
more than this. It also represents beliefs about how the world
should be—from the perspective of some (biological or synthetic)
creature (Bruineberg et al., 2016; Tschantz et al., 2020). This
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means the generative model guides both a creature’s perception
and its actions. Formally, fulfilling these objectives requires
scoring the quality of the model as an explanation of data and
the quality of the data in relation to the model. The two qualities
may be scored using a single objective function: the marginal
likelihood or Bayesian model evidence. Simply put, the marginal
likelihood scores the probability of observing some measured
data given the model. That this depends upon both model and
data implies it can be maximised either by modifying the model
or by acting to change the data.

In practice, the marginal likelihood is often very difficult to
compute. However, it can be approximated by a negative free
energy functional (a.k.a., an evidence lower bound or ELBO).
This free energy is constructed in relation to a variational
(approximate posterior) distribution that maximises the free
energy when it is as close as possible to the posterior probability
of the hidden states in a model given measured data (Beal,
2003; Winn and Bishop, 2005; Dauwels, 2007). Some accounts
of neuronal dynamics rest upon the idea that the activity in
populations of neurons parameterises this variational density,
and that the evolution of this activity ensures the alignment
between the variational and exact posterior distributions (Friston
and Kiebel, 2009; Bogacz, 2017; Parr et al., 2019; Da Costa
et al., 2021). This means the role of a generative model in
active inference is as follows. It determines the dynamics internal
to some system (e.g., neuronal dynamics in the brain), and
actions that result from these dynamics, via a free energy
functional that approximates the marginal likelihood of the
model. The maximisation of a marginal likelihood is sometimes
characterised as ‘‘self-evidencing’’ (Hohwy, 2016).

We now turn to the specific generative model employed in
this article. This is depicted in Figure 1. It is a deep temporal
model (Friston et al., 2017b), in the sense that it evolves
over two distinct timescales. Each level factorises into a set of
factors [reminiscent of the idea of neuronal packets (Yufik and
Sheridan, 1996)] that simplify the model—in the sense that we
do not need to explicitly represent every possible combination
of states (Friston and Buzsaki, 2016). At the faster (first) level,
the model factorises into maze states and linguistic states. The
former describes a T-maze in terms of two state factors (Friston
et al., 2015). These are the agent’s location in the maze, and
the context—i.e., whether the reward is more likely to be in
the left arm or the right arm. The location is controllable by
the agent, in the sense that transitions between locations from
one timestep to the next depend upon the choices it selects.
These alternative transitions are indicated by the arrows in the
location panel. Note that the left and right arms are absorbing
states—meaning that once entered, the agent cannot leave these
locations. In contrast, the context stays the same over time
and cannot be changed through action. The allowable policies
that the agent can select between are characterised in terms of
sequences of actions (i.e., transitions). The first two moves across
all the policies cover every possible combination of two moves
(transitions to a given location), recalling that the absorbing
states ensure that if the first move is to go to the left or right
arm, the second move must be to stay there. The maze states
predict two outcomes. The first is an exteroceptive outcome,

that indicates where the agent is in the maze and, if at the cue
location, whether the reward is most likely in the left or the
right arm.

The second outcome modality pertains to the reward. Under
active inference, there is nothing special about a rewardmodality:
it is treated like any other observation. However, all outcome
modalities can be assigned prior probability distributions that
specify how likely we are to encounter the different outcomes
in that modality. For instance, the generative model employed
by a mouse might assign a relatively high prior probability to
encounter cheese, in virtue of the fact that mice will act in
such a way that they obtain cheese. For this reason, these prior
probabilities can be regarded as prior preferences. A rewarding
outcome is then simply a preferred or anticipated outcome. In
other words, an outcome is rendered rewarding by the agent’s
anticipation of encountering it—and its actions to fulfil this
expectation.

In our generative model, we include three levels of reward.
The first is the attractive outcome (the reward) which is assigned
a high relative prior probability. The second is an aversive
outcome, which is assigned a low prior probability such that
our agent believes it will act to avoid encountering it. The
final outcome is a neutral outcome, with an intermediate
prior preference. Depending upon the context, the attractive or
aversive outcomes are encountered in the left and right arms
of the maze, with the neutral outcome found elsewhere. The
construction of the maze states is identical to that presented in
previous articles, including (Friston et al., 2015, 2017; Chen et al.,
2020).

The linguistic states are involved in determining the sentences
that will be heard when the behaviour is queried or when
responding to the query (i.e., the heard word and spoken word
outcome modalities in Figure 1, respectively). As in previous
applications of active inference to linguistic communication,
these states factorise into syntactic structures and the semantics
that can be expressed through this syntax (Friston et al., 2020).
The syntactic states take the form of words and placeholder
words associated with a set of transition probabilities—which
determine which word (or placeholder) follows each other
word. For instance, the word ‘‘Please’’ is followed by the word
‘‘explain.’’ Depending upon the first word in the sequence,
different syntactic structures appear. If we start with the word
‘‘Please’’, the syntax is consistent with a query. If starting with the
word ‘‘I’’, it is an answer. In addition, there is a silent syntactic
state associated with solving the maze. When the syntactic state
is anything other than this silent state, the maze outcomes
are set to be in the central location with a neutral reward.
This precludes maze-solving (i.e., navigational) behaviour while
the agent is attempting to explain its behaviour; and can be
regarded as a form of sensory attenuation—as the maze states are
functionally disconnected from their associated outcomes during
the explanation. The semantic states are the words that can be
slotted into the placeholders in the syntactic sequences to provide
a meaningful sentence. The third semantic state doubles as the
contextual state for the maze.

The slower (second) level deals with the narrative structure
of the task, and the maintenance of the information required

Frontiers in Systems Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 772641

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Parr and Pezzulo Understanding and Inference

FIGURE 1 | The generative model. This schematic offers an overview of the internal model used by an agent to explain how hidden states conspire to generate
observable outcomes. This figure is displayed in four main parts. These are the second level hidden states, the first level linguistic states, the first level maze states,
and the observed outcomes. Each of these is further decomposed or factorised. The overall structure of the model means that second level states predict first level
states. Although not shown here explicitly, the second level states additionally predict the policy (or trajectory) of the location states at the first level, providing a
context sensitive bias for decision making. The first level states then combine to predict the observations. Arrows between states within each factor represent
allowable transitions. In the absence of arrows, the assumption is that there are no dynamics associated with that state—i.e., it stays the same over time. Prior
preferences are attributed to the outcomes such that the central location of the maze is mildly aversive. The reward outcome modality includes an attractive,
aversive, and neutral outcome. Please see the main text for more detail.

for its solution. This includes a set of narrative states indicating
whether the task is to solve the maze, listen to a query, or respond
to that query. These are associated with a prior belief that the
first thing to do is to solve the maze and that this is followed by
the query and then the response. The narrative states predict the
first syntactic state of the sequences at the first level. Specifically,
the silent syntax is predicted when the maze should be solved,
the syntax beginning ‘‘Please’’ when the query is offered, and the
syntax beginning ‘‘I’’ when the answer is required. In addition,
the policy is represented at the second level, decomposed into
the first and second moves. Each combination of these predicts
an alternative policy at the first level. The reward location state
predicts the first level context, and the query state predicts
whether the first level semantic state associated with the query
syntax is ‘‘first’’ or ‘‘second’’—i.e., whether the query is about the

first or the second move. Combinations of these states predict
different combinations of semantic states at the first level. For
instance, when the narrative state is ‘‘answer’’, the query state is
‘‘first’’, and the first move state is a move to the cue location,
the second semantic state is predicted to be ‘did not know’, the
fourth semantic state is predicted to be ‘‘explored’’, and the fifth
semantic state is predicted to be ‘‘the cue’’.

We will not unpack the details of the solution to this
form of the generative model here, as they have been detailed
in numerous other publications (Friston et al., 2017,b; Parr
et al., 2019; Da Costa et al., 2020; Sajid et al., 2021). However,
we provide a brief outline of the procedure. In short, the
generative model outlined above can be formulated in terms of
a joint probability distribution over the states (s(i)) at each level
(indicated by the superscript), the policy at the first level (π (1)),
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and the outcomes they generate (o). The marginal likelihood
of this model can be approximated by a negative free energy
functional (F) which can be recursively defined as follows:

F(2) (o) = DKL

[
Q
(
s(2)
)
||P
(
s(2)
)]

+ EQ
(
s(2)

) [F(1) (o, s(2))]
F(1)

(
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)
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[
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In Equation 1, theE symbol means ‘‘expectation’’ or average. The
Q distributions are the variational distributions that approximate
posterior probabilities and the symbol DKL represents a
Kullback-Leibler divergence—which quantifies how different
two probability distributions are from one another. Beliefs about
each set of states and policies in the model are computed as
follows:
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The second line depends upon the empirical (conditional) prior
probability for each policy. This is given as:

ln P
(
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)
∝ lnE
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)
G
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[
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(
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s(1)|π (1)

) [H [P (o|s(1))]] (3)

Here, E is a function that acts as a prior weight or
bias—conditioned upon the second level states, for the policies
(Parr et al., 2021). TheH in the second line is a Shannon entropy
and C parameterises the preferred outcomes. The function G is
referred to as expected free energy, and penalises those policies
associated with large deviations from preferred outcomes, and
policies in which the outcomes are uninformative about the
hidden states.

This generative model permits two different types of action.
These can be distinguished based upon how they influence the
outcomes. The first sort of action influences the hidden states,
which then cause changes in outcomes. Movement from one
location to another in the maze falls under this category. In
practice, these actions are chosen based upon the policy inferred
to be the most probable a posteriori. The second sort of action
directly influences the outcomes. This is the form of action

involved in generating the linguistic outcomes (specifically, the
spoken word). The latter are selected to minimise the free energy
given current beliefs:

oτ+1 = argmin
oτ+1

F(2)
(
oτ+1|ot≤τ

)
= argmax

oτ+1
EQ

(
s(1) ,π (1)

) [ln P (oτ+1|s(1)τ+1)] (4)

This is in the same spirit as formulations of active inference
in terms of predictive coding with reflexes. The idea is that by
predicting the data we would anticipate given our beliefs, low-
level reflexes of the sort found in the spinal cord or brainstem
can correct deviations between our predictions and measurable
data such that our predictions are fulfilled (Adams et al., 2013;
Shipp et al., 2013). Having outlined the generative model, and
the principles that underwrite its solution, we next turn to a
series of numerical simulations that demonstrate some of the key
behaviours of this model.

SIMULATIONS

In this section, we attempt to do three things. First, we illustrate
the behaviour of an agent who relies upon the generative
model outlined in the preceding section. We then attempt to
offer some intuition as to the belief updating that underwrites
this behaviour, and in doing so highlight the belief updating
that occurs over multiple timescales in deep temporal models
of this sort. In addition, we demonstrate the emergence of
replay phenomena—of the sort that might be measured in the
hippocampus of behaving rodents. Finally, we investigate what
happens when we violate the assumptions of the generative
model and the confabulatory explanations that result.

Figure 2 illustrates the behaviour and belief updating that
occurs during the maze task, followed by the query presented
to the agent and the response it offers. Two simulations are
presented to show the answers given to two different queries,
following the same behaviour. In both cases, the agent is initially
uncertain about the context, as shown by the faint green circles in
the left and right arms—indicating an equal posterior probability
assigned to the reward being on the left or right. The agent
starts in the central location and maintains veridical beliefs about
its location throughout. At the second timestep, we see that
the agent has elected to explore, seeking out the cue arm. On
observing a cue indicating the right context, it updates its beliefs
such that the reward is now anticipated in the right arm. At the
third timestep, it has moved to the right arm, finding the reward
there. When queried about the reasons for the first move, the
agent sensibly replies that it did not know where the reward
was (as we can verify from the plot of the maze at t = 1), so
it explored by going to the cue location (as we can verify from
the maze plot at t = 2). When queried about the second move, it
replies that it did know where the reward was (again, verifiable
from the maze plot at t = 2)—having already seen the cue by this
point—and that it consequently went to find the reward in the
right arm. This pair of simulations illustrates that the generative
model is sufficient for the agent to infer the actions it has taken,
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FIGURE 2 | Beliefs and behaviour. This figure reports the results of two simulations—one in which the first move is queried (left), and one in which the second
move is queried (right). Each is divided into the three stages of the task. The first row of plots shows the beliefs and behaviour as the maze is solved during the first
three time-steps. The small filled red circle shows the position of the agent in the maze. The larger unfilled circle shows the beliefs of the agent about its position.
When this is red, this indicates a posterior probability of one of being in that location. As the probability decreases, the red fades to nothing—i.e., a posterior
probability of zero of being in that location. In both simulations, the agent maintained confident and veridical beliefs about its location. The beliefs about the context
(i.e., reward-left and reward-right) are shown in green, with the intensity of the green colour in the left and right arms (and of the arrows in the cue location)
corresponds to the probability assigned to the associated context under the agent’s posterior beliefs. On solving the maze, the agent moves on to the query stage,
and the sentence presented to the agent is shown. Finally, the agent has the opportunity to answer the query, and the sentence it generates is shown below.

to come to a reasonable explanation of the motivations behind
these actions, and to explain this when queried. In accordance
with our definition in the introduction, this meets the criteria for
a (simple) form of understanding.

To delve into the mechanisms by which this understanding
is achieved, Figure 3 details the beliefs held by the agent about
the variables in the generative model throughout the simulation
from the right of Figure 2. The grey dashed lines indicate the
timesteps at the slower (second) level of the model, referred to
hereafter as ‘‘epochs’’, and illustrate their alignment with the
time-course of the faster) first level. During the first epoch, we see
the first level beliefs (lower panel) being updated in accordance
with the solution to the maze in Figure 2. The sequence here
is reminiscent of the sequential activation of hippocampal place
cells as rodents move through a series of locations (O’Keefe and
Dostrovsky, 1971; Foster andWilson, 2007). Inferences about the
semantic states (i.e., the words #1 to #5 shown at the bottom of
the bottom panel) remain uncertain during this time. Note the
update in beliefs about the context (see ‘‘Right context’’ in the
lower panel) on reaching the cue location, as the agent obtains
the cue and goes from believing both contexts to be equally likely
to believe that the right context is in play. The accompanying
belief-updating for the policy (centre panel) shows that initially,
the agent believes it will choose one of the many policies that
start by going to the cue location, which correspond to the
rows coloured in grey —consistent with the epistemic affordance
associated with this location. On reaching the cue location, all

uncertainty about the context is resolved, meaning the only
remaining motivational drive is to obtain the cue. This prompts
further belief updating about the policy, favouring the single
policy in which the first move was to go to the cue and the
second to the right arm. On enacting this policy and receiving
the associated sensory input (i.e., observing itself going to the cue
then right arm locations), the agent becomes confident that this
is the policy it has pursued.

The inferred policy and context now allow for updating of
beliefs about the first epoch at the second level. Practically, the
updating of beliefs at each level happens asynchronously in this
implementation, such that beliefs at the second level are updated
following the updates at the first level. This asynchronous
updating rests upon an adiabatic assumption, which means the
two timescales in question may be treated under a mean-field
assumption (i.e., approximately independently of one another).
Consistent with the first level inferences, the second level beliefs
over this epoch are updated such that the first and second
moves inferred are consistent with the selected policy, and the
reward location is consistent with the maze context. These
beliefs are then used to provide empirical priors for the first
level during the second epoch. Note the second epoch begins
with a veridical belief about the policy selected and the maze
context—ensuring these do not have to be re-inferred by the
first level.

During the second epoch at the first level, the query is
presented to the agent. Once the word ‘‘second’’ is heard, it is
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FIGURE 3 | Hierarchical belief updating. This figure shows the beliefs about states and policies over time in the temporally deep model. The main message of
this figure is that this updating occurs over distinct timescales, with the first level states being updated much faster than those of the second level. The layout of
these plots are as follows. Each row within each plot represents an alternative state or policy. The x-axis represents time; such that columns of the plot are discrete
time steps. The shading of each cell in the state (or policy) x time arrays indicates the posterior probability assigned to that state (or policy) at that time. Black is a
probability of one, white of zero, with intermediate shades representing intermediate probabilities. To avoid overcrowding, we have not labelled each row individually,
but have annotated the states (and policies) that are inferred to be most likely in red. The vertical dashed lines indicate the alignment of the three epochs at the
slowest (second level) with the inferences about the policies and states. Interpreted from a computational neuroscience point of view, each row of each plot can be
regarded as a raster plot, indicating the aggregated firing rates of a distinct population of neurons.

able to update its belief about the first semantic state. At the end
of the epoch, this is propagated to the second level, allowing for
belief updating so that the query is inferred to be about the second
move. This belief about the query is propagated through to the
third epoch by the second level, again providing an empirical
prior belief to the first level that the second query must now be
answered. In addition, beliefs about the reward location and the
moves selected at the second level combine with the belief about
the query to provide prior beliefs about the semantic states. These
beliefs lead the agent to generate the appropriate response to the
question.

An interesting feature of the belief updating shown in Figure 3
is the updates in beliefs about the maze location during the
second and third epochs. Recall that, when the syntactic states
are consistent with the query or answer, the maze states are
decoupled from the associated outcomes—which are set at the
central location and neutral reward. Despite this, the beliefs
about the location in the maze during the first few timesteps
of the second and third epoch appear to replay the beliefs that
were held when solving the maze. Figure 4 examines this more
closely, by plotting the beliefs about the maze for the first three
timesteps during each epoch. Note that, although the red dot
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FIGURE 4 | Maze beliefs and replay. This figure reports the beliefs of the
agent for the first three time-steps during each of the slower epochs at the
narrative level. Each column of images displays a single epoch, with each row
displaying the beliefs (and location) at each of the first three steps. The format
of each image is the same as in Figure 2. These can be regarded as visual
displays of the belief updates shown in Figure 3. The important things to
note are: (i) that maze-solving epoch is identical to that of Figure 2, (ii) that
the true location (i.e., red dot) is central in the query and answer epochs, (iii)
that the context is known from the start in the latter two epochs, and (iv) that
the beliefs about the location hidden states are consistent throughout all three
epochs.

remains in the centre during the query and answer epochs, the
red circle indicating the inferred location moves according to
the same sequence as in the maze-solving epoch—however, the
beliefs about the context are preserved from the end of the maze-
solving. Replay of this sort has been identified physiologically in
rodents in the same hippocampal cells that signal sequences of
locations while behaving (Louie and Wilson, 2001; Foster, 2017;
Pezzulo et al., 2017), hinting that the mechanisms that solve this
generative model may also be at work in biological brains. That
these mechanisms play a functional role is evidenced by the fact
that interrupting hippocampal sharp-wave ripple activity (during
which replays often occur) impairs memory-guided navigational
choices (Jadhav et al., 2012). Interestingly, models built with the
aim of simulating replay call upon a similar hierarchical structure
in which the highest (narrative) level of the model involves an
alternation between behaviour and replay sequences (Stoianov
et al., 2021). Although these models focus more upon the role of
replay in learning, our simulations suggest that such models can
be interpreted, loosely, as if the synthetic agents are attempting to
make sense of their previous actions during the replay sequences.

So why does replay occur when solving this model? The
answer to this has two parts. In Bayesian statistics, the inference
we draw depends upon a prior and a likelihood. In our model,
both contribute to the development of replay. Recall that, while
the query and answer syntactic states are in play, the maze
outcomes are fixed. This means that no matter which actions
the agent chooses, it will receive no sensory feedback coherent
with those choices. This means the likelihood distribution is

rendered uninformative and effectively uncouples the reality
of the agent’s position in the maze from the beliefs it has
about this location. While this ensures the agent remains—for
all practical purposes—fixed to the spot, it also liberates [or
detaches (Gärdenfors, 2005; Pezzulo and Castelfranchi, 2007)]
the inference process from the constraints of sensory input.
As such, it can be seen as a form of sensory attenuation of
the sort we might anticipate during dreaming (Windt et al.,
2014), imagination (Villena-González et al., 2016; Kilteni et al.,
2018), or episodic recall (Conway, 2001; Barron et al., 2020).
This accounts for the role of the likelihood. However, freeing
the agent from the constraints of sensation is not sufficient for
replay. We also need a prior that assigns greater plausibility to
the previous sequence of actions. This comes from the second
level inference about the actions taken during the first epoch
and their propagation to subsequent epochs as empirical priors.
In other words, when sensory input is attenuated, a generative
model simply recirculates prior information. In our example,
this information pertains to the previous sequence of actions,
but it could relate to other regularities learned during previous
exposure to sensory data (Fiser et al., 2010; Buesing et al., 2011;
Pezzulo et al., 2021). It is important to note that this construction
was not designed to simulate replay. It is an emergent feature
when beliefs about the policy must be propagated forwards in
time (i.e., held in working memory) to help answer questions
later.

Another feature of the belief updates from Figure 2 that is
worth unpacking is the increase in confidence about the context
during the answer epoch. This seems counterintuitive, as the
agent has had no new access to the maze outcomes. However,
new data has arisen that prompts this increase in confidence—the
agent has heard themself say that the reward was on the right.
In other words, the agent is using its own answer about reward
location as evidence about the context. To examine this further,
Figure 5 reports the results of a simulation in which we start
with the query phase and provide two opportunities to answer
the query. This means the maze is never solved (or, if it had
been, no memory of the solution remains), but the agent is still
asked about how they came to a (fictitious) solution, violating the
assumptions of the generative model. In other words, it starts the
query epoch with the same priors about policy and context as the
agent in Figures 3, 4 has at the beginning of the maze-solving
epoch. We see that, during the query epoch in Figure 5, the
agent is uncertain about the state of the maze and the actions
it took. It is confident that it started out in the first location
and ascribes a slightly higher probability to being away from
the central location by the third timestep, consistent with the
fact that most plausible policies involve moving away from here.
The probability of ending up in the left or right arm increases
over time, as these are absorbing states. This in turn lends those
policies leading to those states greater plausibility.

The beliefs about the left and right arms are similar during the
first answer epoch (see the lower image of the centre column of
Figure 5). This is because, by the third timestep of the first answer
epoch, the agent has heard itself say that it did not know the
reward location but has not yet heard its assertion that the reward
was on the left. Taken together, the agent’s first answer does not
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FIGURE 5 | Confabulation. This figure reports the behaviour of an agent
who confabulates an answer as to why it pursued the course of action that it
did, in virtue of never having pursued any course of action. It is given two
opportunities to explain itself. The first answer given is nonsensical, as the
generative model assumes that going straight to the reward.

make much sense. If going straight to the left on the first move,
the agent should have known it was on the left in advance. This is
evenmore puzzling when we note that the generativemodel takes
a move that results in the reward location as evidence that the
reward location was known. However, the apparent mismatch
between not knowing it was on the left, but going straight there to
find it anyway, is understandable when we consider that it is the
second level of themodel that enforces internal consistency in the
story told by the agent. In our previous simulations (Figure 2),
the agent already has a good idea as to which moves it made
and the context of the maze by the time of the query epoch. In
Figure 5, the agent is unable to formulate these beliefs until the
first time it hears itself giving the explanation. However, by the
second answer epoch, it has had a chance to synthesise what it has
heard itself saying, and to revise this to an internally consistent

explanation. Here, it has taken the fact that it did not know the
reward location, and that it was on the left, and inferred that
it must have guessed incorrectly given that it did not know the
location. The result is the inference that it guessed at the reward
location and got it wrong; a perfectly internally consistent, if
confabulated, story.

DISCUSSION

This article was designed to address the problem of machine
understanding and to show what this might look like using
an active inferential approach in a simple example setting.
The solution was based upon a deep temporal model, whose
separation into two timescales allowed for a narrative overview
of the task, and the propagation of information from one
epoch to the next. The separation of timescales inherent to
the model, and associated belief updating, in Figure 3 is a
generic feature of many deep temporal models. For example, in
Friston et al. (2017b) a similar construction was used to simulate
reading, where each word in a sentence provides information
about the letters in the next word. In (Heins et al., 2020),
a deep temporal model was employed for the purposes of a
visual search paradigm, where each fixation point was associated
with a dot-motion evidence accumulation task (Shadlen and
Newsome, 1996). Similar approaches have been employed for
working memory tasks (Parr and Friston, 2017), enabling the
maintenance of information ‘‘in mind’’ throughout a delay
period (Funahashi et al., 1989). These models have also found
application in the modelling of emotions (Smith et al., 2019) and
‘‘affective inference’’ (Hesp et al., 2021). They have additionally
been formulated through neural network models of the kind
found in machine learning (Ueltzhöffer, 2018).

Probably the closest functional homologue to the process
in this article was a deep temporal model of motor control
(Parr et al., 2021), in which sequences of small movements were
composed into longer trajectories via a higher (slower) level of
the model. As in this article, this called upon the propagation
not just of beliefs about states, but of beliefs about policies from
one epoch to the next. One of the contributions of the modelling
of motor control was to examine the consequences of a lesion
to the connection between the two levels. Interestingly, lesions
of the generative model for motor control produced a lack of
coherence in movement trajectories that is formally analogous
to the incoherent story confabulated during the first answer
in Figure 5 (later made consistent through the input from the
second level).

The functional architecture of the homologous processes in
the brain appears to involve the prefrontal cortices. Working
memory is a good example of this, as the neural populations
exhibiting persistent activity throughout delay-periods have been
identified in the prefrontal cortex (Funahashi et al., 1989;
Botvinick, 2008). However, these structures have also been
linked directly to metacognition—the ability to assess one’s own
cognition—via lesion studies (Fleming et al., 2014). The frontal
cortices interact directly—and via subcortical nuclei—with the
temporal cortices (Kier et al., 2004; Blankenship et al., 2016;
Rikhye et al., 2018), whose lateral surfaces are associated with
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language (Price, 2000; Hutsler, 2003), and whose medial surfaces
are associated with episodic memory and recall (Squire and
Zola, 1998; Eichenbaum et al., 2012). They also share dense
reciprocal connections with the basal ganglia (Naito and Kita,
1994)—the set of grey-matter nuclei most associated with the
adjudication between alternative actions (Nambu, 2004). This
hints at homology between the structure of the generative
model in this article and the anatomy of the associated
neuronal computation, providing a construct validation of our
formulation of action understanding in relation to human
understanding. It is also interesting to note that confabulatory
pathologies in humans (Korsakoff, 1887) arise when the
connectivity between the frontal, temporal, and subcortical
nuclei are disrupted (Korsakoff, 1887; Benson et al., 1996; Turner
et al., 2008), further endorsing the computational anatomy.
Conceptually, starting from the query epoch in Figure 5 may
be analogous to a disconnection that precludes a memory of the
maze-solving epoch from being propagated to the query epoch,
such that we arrive at the query epoch as if it were the first
epoch.

Given that the primary aim of this article was to address
understanding of actions, it is interesting to note that some
phenomena that feature in living machines (like us) emerge on
solving this problem. The emergence of replay is of particular
interest in the context of theories about the emergence of episodic
memory. This form of memory has two defining features. The
first is that it is declarative, in the sense that its contents can
in principle be ‘‘declared’’ (Anderson, 1976; Squire and Zola,
1998). This contrasts with, for example, procedural memories.
The second defining feature of episodic memory is that it
is associated with a spatiotemporal context—in contrast to
semantic memories of facts that may be divorced from such
contexts. The replay phenomena shown in Figures 3, 4 meets
both these criteria.We know it can be declared, as this is precisely
what happens when the query is answered. It is spatiotemporal,
in the sense that it is a memory of a sequence of locations in time.
As such, one could view this as a simulation of a primitive sort
of episodic memory. The reason this is interesting is that one
explanation for episodic memory in biological creatures suggests
that it developed alongside the ability to communicate past
experiences (Mahr and Csibra, 2018). The simulations presented
here lend some weight to these ideas, given that we set out
to develop a model capable of explaining past actions, and
found physiological hallmarks of episodic memory (i.e., replay)
in the resulting belief updating. This is not in conflict with the
conception of episodic memory as supporting a form of mental
time-travel in the past and the future, enabling recall of the past
and imagination of the future. As demonstrated in Figure 5,
the agent is perfectly capable of using the same machinery for
imagination of events that have not yet happened.

The central theme of this article is an inference about
‘‘what caused me to do that?’’ However, the status of Bayesian
methods in establishing causation of this sort is controversial.
The reason for this is that Bayes’ theorem is symmetrical. It
says that the product of a prior and likelihood is the product
of a marginal likelihood and posterior probability. However,
the labels ‘‘prior’’ and ‘‘marginal likelihood’’ can be swapped

(provided ‘‘likelihood’’ and ‘‘posterior’’ are also swapped)
without compromising the formal integrity of the theorem.
This cautions against interpreting a conditional probability as
a causal statement. This is less worrying in our context, as we
know by construction that sensory data are caused by hidden
states—i.e., we have implicitly built in a causal assumption to the
model. However, the role of policies as causes of behaviour is a
little more nuanced.

An influential formalism designed to address causality (Pearl,
2009, 2010) rests upon the idea of interventions. Under this
formalism, an important notation is the ‘‘do’’ notation, in which
P(y| do(x)) is the distribution of y once x is fixed through some
intervention. This breaks the symmetry of Bayes’ theorem as, if x
causes y, P(y| do(x)) will be equal to P(y| x), but P(x| do(y)) will be
equal to P(x). The concept of intervention helps to contextualise
the notion of a causal hierarchy—sometimes referred to as
‘‘Pearl’s hierarchy’’ (Bareinboim et al., 2020). This hierarchy
distinguishes between the three levels of the generative model.
In ascending order, these are associational, interventional, and
counterfactual. This provides a useful framework in which to
situate the generative model outlined in this article. Given that
the relationship between policies and the sequence of states is
articulated in terms of conditional probabilities, our generative
model must be at least at the associative level of Pearl’s hierarchy.
Implicitly, the interventional level criteria are also met, in that
the inversion of the model employs a structured variational
distribution (Dauwels, 2007) in which the marginals for the first
level are evaluated as being independent of the second level
states. This means the model is treated as if P(s(1)|π(1)) is equal
to P(s(1)| do(π(1))) and P(π (1)) is equal to P(π (1)| do(s(1))).
However, it is worth noting that this applies only to the location
states at the first level—the other states being conditionally
independent of the policy given the second level states (i.e., the
first level explanation is not caused by the policy pursued in an
interventional sense, although there is an associational form of
causality linking the two). In addition, the second level states do
play a causative role, ensuring that the explanation at this level
also causes the policy it attempts to account for. The third level
of the Pearl hierarchy is more interesting from our perspective,
given the emergence of a simple form of imagination as we saw
in Figure 5. The criteria for counterfactual causation are met by
noting that, initially, beliefs about all policies are evaluated for
each policy. For each policy, this means there are a set of beliefs
about states as if that policy were pursued. It is this counterfactual
inference that facilitates the confabulation observed on asking for
an explanation for a policy never pursued.

In this article, we elaborated on an operational notion
of understanding as ‘‘inference to the best explanation’’ and
described an active inference agent that is able to infer
and communicate an explanation for its actions. However,
the nature of understanding is a longstanding problem in
philosophy—which we make no claims as to having solved. An
interesting question is whether our agent (or more broadly, any
artificial system) really understands anything. While addressing
this question is clearly beyond the scope of this article, we hope
that providing an example of an artificial system that appears to
understand its actions helps advance the theoretical debate—and
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assists in the identification of what is still missing from current
operational definitions of understanding.

An interesting extension to this work would be to incorporate
the response ‘‘I don’t know’’ as an alternative to the explanations
available to the agent. We have assumed this is unavailable
to the agent in our simulations, as it is reasonable to assume
that if we behave a particular way, we believe we know why
we did. However, this prompts attempts at explanation despite
not having engaged in the task. While it is interesting that
these explanations enable the agent to convince itself of what
has happened, we might anticipate that an agent could spare
itself spurious explanations if able to infer that it is not sure
of the answer. This might then point to the mechanisms for
confabulation and loss of insight in psychopathology—framing it
as a failure of inference about what is and is not known. However,
this is not a straightforward problem to solve. This is evidenced
by the (metacognitive) difficulties people have in assessing their
own ability at performing even the simplest of tasks (Fleming
et al., 2010; Fleming, 2021). Another interesting avenue would
be to consider the role of two agents communicating with one
another on task performance (Bahrami et al., 2012; Shea et al.,
2014). For instance, it would be interesting to see whether, on
receiving the explanation from an agent who has just completed
the task, a second agent may perform the task more efficiently.
Furthermore, the choice of question by the second agent may be
more interesting, as they may wish to resolve uncertainty not just
about the actions of the first agent, but of the structure of the
task itself. For an example of this sort of diachronic inference,
please see Friston et al. (2020). Diachronic inference refers to
inferences drawn when two agents engage in a form of turn-
taking, as is common in conversation, giving a periodic switching
between speaking and listening. The current article dealt with
only a single switch (from listening to speaking), which could
usefully be expanded into a more extended conversation.

CONCLUSION

A key challenge for machine learning and artificial intelligence
is to overcome the problem of understanding. While these
approaches have been successful in making a range of decisions,
the explanations for these decisions is often opaque. This article
has sought to set out what a system capable of understanding
and providing explanations for its decisions might look like.
We took as our operational definition of understanding the
ability to disambiguate between alternative hypotheses as to

the reasons for behaving in a particular way and the ability to
communicate the inferred reason for this behaviour, on being
queried. To this aim, we constructed a generative model that
predicts both behaviour and its (linguistic) explanation. This
called upon a deep model that propagates information about
choices through multiple epochs, enabling the presentation of
a task (a simple T-maze), a query epoch, and an answer epoch.
We demonstrated that inversion of this model under active
inference allows for convincing explanations for the decisions
made when solving the task. Interestingly, these explanations
can also change our beliefs about what somebody did and
why. Furthermore, biological phenomena such as replay emerge
from this inversion—affording evidence for theories of episodic
memory based upon a need to communicate past events. Finally,
we saw that the pathologies of inference—on violation of
the assumptions of the model—are similar to those seen in
human behaviour in the context of some psychopathologies.
The pathological explanations we encountered highlight that
understanding can be thought of as constrained confabulation,
but that it is constrained to a greater or lesser degree by the
quality of the data used to form explanations.
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