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Abstract: Previously, it has been reported that hypoalphalipoproteinemia (HA) is associated with
rs17574 DDP4 polymorphism. Considering that in diabetic patients, HA is often present and is a risk
factor for premature coronary artery disease (pCAD), the study aimed to evaluate the association of
this polymorphism with pCAD in diabetic individuals. We genotyped the rs17574 polymorphism in
405 pCAD patients with T2DM, 736 without T2DM, and 852 normoglycemic individuals without
pCAD and T2DM as controls. Serum DPP4 concentration was available in 818 controls, 669 pCAD
without T2DM, and 339 pCAD with T2DM. The rs17574 polymorphism was associated with lower
risk of pCAD (padditive = 0.007; pdominant = 0.003, pheterozygote = 0.003, pcodominant1 = 0.003). In pCAD
with T2DM patients, DPP4 levels were lower when compared with controls (p < 0.001). In the whole
sample, individuals with the rs17574 GG genotype have the lowest protein levels compared with
AG and AA (p = 0.039) carriers. However, when the same analysis was repeated separately in all
groups, a significant difference was observed in the pCAD with T2DM patients; carriers of the GG
genotype had the lowest protein levels compared with AG and AA (p = 0.037) genotypes. Our results
suggest that in diabetic patients, the rs17574G DPP4 allele could be considered as a protective genetic
marker for pCAD. DPP4 concentrations were lower in the diabetic pCAD patients, and the rs17574GG
carriers had the lowest protein levels.

Keywords: dipeptidyl peptidase-4; premature coronary artery disease; type 2 diabetes mellitus;
polymorphism; DPP4 concentrations

1. Introduction

Worldwide, cardiovascular disease (CVD) is the primary cause of death. Atherosclero-
sis is the leading cause of CVD. Smoking, obesity, high total cholesterol, high blood pleasure,
and type two diabetes mellitus (T2DM) are some of the most significant risk factors for
cardiovascular disease [1]. T2DM is a main, independent, established risk factor for coro-
nary artery disease (CAD). T2DM patients have a two- to four-fold higher CAD risk than
non-diabetic patients [2]. Moreover, in CAD patients, T2DM predicts adverse outcomes and
mortality independently of other risk factors [3,4]. Hypoalphalipoproteinemia is a common
feature of T2DM [5] and the most common dyslipidemia found in members of families with
premature CAD (pCAD) [6]. The serin protease dipeptidyl peptidase-4 (DPP4) or CD26 is a
membrane-bound exopeptidase expressed on various tissues [7]. DPP4 degrades numerous
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substrates by cleaving the N-terminal X-proline dipeptides from various substrates. These
include regulatory peptides, chemokines, growth factors, and incretins [8]. Through a
shedding process, DPP4 is released into the circulation [9]. Membrane-anchored-form and
soluble DPP4 have similar enzymatic activity [10]. Due to its broad enzymatic activity,
DPP4 is not only involved in the pathogenesis of T2DM but also participates in insulin
resistance, fatty liver, hypertension, and oxidative stress [11–14]. DPP4 also acts as a co-
stimulatory molecule that participates in T-cell biology [15]. Its assistance as a modulator
of inflammation and glucose and lipid metabolism may contribute to the development
of atherosclerosis [16,17]. Increased DPP4 activity and/or concentration is considered to
be a manager of several metabolic abnormalities, including obesity, non-alcoholic fatty
liver, T2DM, and CAD [18–21]. Enhanced expression and shedding of DPP4 from cells
of diverse metabolically active tissues, including endothelium, liver, smooth muscle, and
adipose tissue, may increase plasma DPP4 concentrations [18]. DPP4 gene is located in
region 2q24.3 and is highly polymorphic. Some polymorphisms have been associated with
DPP4 and apolipoprotein B concentration [22,23], T2DM [23], and myocardial infarction in
CAD patients [24]. In consideration, hypoalphalipoproteinemia is a common dyslipidemia
found in both T2DM and premature CAD patients, and we recently reported that the
rs17574 DPP4 polymorphism was associated with a low risk of hypoalphalipoproteine-
mia [25]; this study aimed to investigate the association of pCAD with the rs17574 DPP4
polymorphism and with the protein concentration in diabetic patients belonging to the
GEA Mexican study.

2. Materials and Methods
2.1. Description of the Studied Population and Determination of DPP4 Polymorphisms
and Concentrations

The GEA Mexican study is a cross-sectional study to evaluate the genomic basis of
pCAD and determine the association of pCAD with emerging and traditional cardiovas-
cular risk factors in a sample of Mexican-mestizo individuals from Mexico City area. The
definition of pCAD was the presence of stenosis >50% demonstrated by angiography,
history of percutaneous coronary intervention, coronary artery bypass grafting surgery,
acute myocardial infarction, and unstable or stable or angina pectoris with at least three
months before enrollment and diagnosed before 55 and 65 years of age in men and women,
respectively. Controls were healthy individuals without a personal or family history of
pCAD. We do not include individuals with thyroid, hepatic, chronic kidney, or malignant
diseases or with current use of corticosteroids. Of the 2740 participants included in the
GEA Mexican study cohort (1240 pCAD patients and 1500 healthy controls), for the present
analysis, we selected 1993 individuals with complete genotype data of the rs17574 DPP4
polymorphism: 405 were patients with pCAD and T2DM, 736 patients with pCAD without
T2DM, and 852 were healthy, non-diabetic, normoglycemic, and without personal or family
history of pCAD and coronary artery calcification (CAC) score equal to zero. Before their
inclusion in the study, all participants provided written informed consent. The study fol-
lowed the Declaration of Helsinki. The Institutional Review Board of the Instituto Nacional
de Cardiología Ignacio Chávez approved the project (number 18–1082).

The evaluation and definition of anthropometric, biochemical, and clinical variables;
physical activity, family, and personal medical history; smoking habits; and cardiovascular
risk factors have been previously described [26–28]. Briefly, to calculate body mass index,
we measured weight in kilograms divided by height in square meters. We used a glass fiber
measuring tape to measure waist circumference in the middle point of the distance between
the iliac crest and the lower side of the waist. We considered an individual as current
smoking with self-reported ongoing use of cigarettes. We defined T2DM when participants
reported a physician diagnosis of diabetes, treatment for glucose-lowering, or when fasting
glucose was ≥ 126 mg/dL, according to the American Diabetes Association criteria.

To have a group of healthy individuals without pCAD, in all the participants of
the GEA Mexican study, we decided to perform a computed tomography of the chest
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and abdomen and evaluate the presence of coronary artery calcium (CAC). We used the
Agatston method to quantify CAC [29]. Of all the healthy individuals without pCAD
with CAC scores equal to zero, we selected 852 non-diabetic individuals as a healthy
control group for the present study. Physical activity was measured using the Baecke
questionnaire [30]. The validated Baecke questionnaire was used to evaluate the physical
activity, where the sum of the work exercise and leisure time activities was considered as
the total activity.

The DPP4 concentrations were determined using a Bioplex system (R&D Systems,
Minneapolis, MN, USA). DPP4 serum concentration was expressed in ng/mL. Of the
1993 individuals included in the present study, serum samples to quantify DPP4 levels
were available in 1826: 818 non-diabetic normoglycemic controls, 669 pCAD non-diabetic
patients, and 339 pCAD diabetic patients. We used the QIAamp DNA Blood Mini kit
(QIAGEN, Hilden, Germany) for the extraction of genomic DNA from peripheral blood.
The rs17574 DPP4 polymorphism was genotyped using 5′-exonuclease TaqMan genotyping
assays on an ABI Prism 7900HT Fast Real-Time PCR system (Applied Biosystems, Foster
City, CA, USA).

2.2. Statistical Analysis

By direct counting, we determined the frequencies of genotypes and alleles. Data are
shown as median (interquartile range), frequencies, or mean ± standard deviation. For the
continuous variable comparisons, we use Kruskal–Wallis or ANOVA test as appropriate.
For categorical variable comparisons and to determine Hardy–Weinberg’s equilibrium, we
employed the chi-square test. Kruskal–Wallis test or Mann–Whitney U test was used to
evaluate the differences in DPP4 serum concentration. To test for the association of rs17574
polymorphism with pCAD in diabetic patients, we used logistic regression analysis. We
adjusted each model for appropriate confounding variables. The association analyses were
made under the additive, dominant, recessive, heterozygous, and co-dominant models.
For the analysis of each logistic regression model, a Hosmer–Lemeshow goodness of fit
test was performed. We use SPSS software v15.0 (SPSS, Chicago, IL, USA) to conduct all
statistical analyses and considered a statistically significant difference when the p-value
was <0.05.

3. Results
3.1. General Characteristics of the Population Stratified by Group

Table 1 shows the characteristics of the study population and genotypes. Age, male
percentage, BMI, waist circumference, abdominal visceral tissue (AVT), and triglycerides
levels were significantly higher in pCAD patients with and without T2DM when compared
with healthy subjects. As expected, the high-density lipoprotein-cholesterol (HDL-C)
and apolipoprotein A1 concentration and physical activity were significantly lower in
pCAD groups than in control individuals. Due to lipid-lowering treatment and the advice
of changes in lifestyle, low-density lipoprotein cholesterol (LDL-C) and apolipoprotein
B levels and current smoking were also lower in patients with pCAD (Table 1).
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Table 1. General characteristics of the population stratified by groups.

Premature Coronary Artery Disease

No (n = 852) Yes (n = 1141) * p

Control Group Non-T2DM (n = 736) T2DM (n = 405)

Age (years) 51 ± 9 53 ± 8 a,b 56 ± 8 a <0.001
Sex (% male) 40.5 85.4 a,b 73.6 a <0.001

Body mass index (kg/m2) 27.3 (24.9–30.29) 28.1 (26.0–31.0) a 28.8 (26.1–31.4) a <0.001
Waist circumference (cm) 92.2 ± 11.1 97.4 ± 10.4 a,b 98.9 ± 10.5 a <0.001

Abdominal visceral tissue (cm2) 130 (98–172) 162 (125–208) a,b 180 (137–233) a <0.001
LDL cholesterol (mg/dL) 116 (95–133) 93 (71–117) a,b 86 (64–115) a <0.001
HDL cholesterol (mg/dL) 46 (37–56) 37 (31–44) a 37 (32–44) a <0.001

Triglycerides (mg/dL) 138 (102–190) 159 (116–212) a,b 169 (124–231) a <0.001
Apolipoprotein A1 (mg/dL) 134 (116–158) 120 (101–136) a 120 (102–142) a <0.001
Apolipoprotein B (mg/dL) 92 (75 –111) 80 (65–102) a,b 79 (61–102) a <0.001

DPP4 (ng/mL) 121 (93–155) 107 (76–137) a 93 (70–122) a <0.001
Type 2 diabetes mellitus (%) 0 0 b 100 a <0.001
Current smoking habit (%) 23.4 12.2 a 10.7 a <0.001

Physical activity 7.9 (7.0–8.9) 7.6 (6.8–8.5) a,b 7.4 (6.5–8.4) a <0.001
rs17574 DPP4 genotypes

AA (%) 64.9 68.6 a 72.6 a

AG (%) 31.7 28.1 a 24.0 a 0.018
GG (%) 3.4 3.5 3.5

Data are presented as a percentage, median (interquartile range), or mean ± standard deviation. * Differences
were analyzed by Kruskal–Wallis, ANOVA, or chi-square test as appropriate. a Indicates difference versus
control group; b indicates difference versus premature coronary artery disease diabetes patients. T2DM, type 2
diabetes mellitus.

3.2. DPP4 Serum Concentration Stratified by rs17574 DPP4 Genotypes

DPP4 serum concentration was available for 818 non-diabetic normoglycemic controls,
669 pCAD non-diabetic patients, and 339 pCAD diabetic patients. Protein levels were
higher in control individuals than in non-diabetic pCAD and diabetic pCAD patients
(121 (93–155) ng/mL, 107 (76–137) ng/mL, and 93 (70–122) ng/mL, respectively, p < 0.001)
(Table 1). The protein levels were analyzed stratifying the whole sample for rs17574
DPP4 genotypes. Individuals with the GG genotype (103 (74–133) ng/mL) have the low-
est protein levels followed by AG (108 (82–139) ng/mL) and AA (113 (84–146) ng/mL,
p = 0.039) genotypes (Figure 1).
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The association of rs17574 genotypes with the protein levels were evaluated separately
in control, non-diabetic pCAD and diabetic pCAD individuals. In control subjects, no
significant differences were observed (p = 0.418). For the pCAD non-diabetic group, the
GG genotype also had the lowest DPP4 concentration (93 (63–106) ng/mL) compared
with AG (103 (74–133) ng/mL) and AA genotypes (111 (77–141) ng/mL) without reaching
statistically significant difference (p = 0.091). Similar to that observed in the pCAD non-
diabetic group, in the pCAD with T2DM group, the GG genotype patients had the lowest
protein levels (73 (59–92)) compared with carriers of the AG (89 (64–115) ng/mL) and AA
genotypes (96 (72–123) ng/mL, p = 0.037) (Figure 2).
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as median (interquartile range). CAD, coronary artery disease; T2DM, type 2 diabetes mellitus.
Differences were analyzed by the Kruskal–Wallis test.

3.3. Association of the rs17574 DPP4 Polymorphism with pCAD + T2DM

The rs17574 DPP4 polymorphism was in Hardy–Weinberg equilibrium. To analyze
the association of pCAD with the rs17574 DPP4 polymorphism, we executed a logistic
regression analysis for each inheritance model and adjusted them for sex, age, BMI, smok-
ing habit, and LDL-C levels. Under all inheritance models tested, we found a similar
distribution of the rs17574 DPP4 polymorphism in individuals with pCAD, and in healthy
controls, we did not find an association with the presence of pCAD. However, considering
that in the pCAD group, the frequency of T2DM is high, we analyzed pCAD patients
with and without T2DM. This analysis showed no statistically significant differences in
the distribution of the rs17574 DPP4 polymorphism in pCAD without T2DM patients
and healthy controls. However, we found that the rs17574 DPP4 polymorphism was as-
sociated with protection for pCAD in T2DM patients (pCAD + T2DM) under additive
(OR = 0.68, p = 0.007), dominant (OR = 0.61, p = 0.003), heterozygote (OR = 0.61, p = 0.003),
and co-dominant 1 (OR = 0.60, p = 0.003) models (Figure 3); all of them were appropriate
inheritance models according to the Hosmer–Lemeshow criteria.
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4. Discussion

To the best of our knowledge, this is the first population-based study that shows an
independent association of rs17574 DPP4 polymorphism with a more than 30% lower risk
of pCAD in T2DM patients. We also found that control individuals have higher DPP4
serum concentration when compared with pCAD without T2DM and pCAD with T2DM
groups. Individuals with AA genotype have the highest concentration of the protein in the
whole sample and the pCAD with T2DM group. The lowest DPP4 concentrations were
observed in individuals with GG genotype.

Recently, we reported that the rs17574 G allele was related to a 22–28% reduction
of risk for the HA presence [25], dyslipidemia that often coexists with T2DM [5,31], and
the most common dyslipidemia found in family members with pCAD [6]. The rs17574
polymorphism has not been previously associated with CAD. However, Aghili et al., in a
sample of 875 Caucasian CAD patients, reported that the rs3788979 DPP4 polymorphism
increases the risk of myocardial infarction [24]. This polymorphism was also associated
with circulating protein concentrations [24]. A similar finding was also observed in a study
of 391 CAD patients and 216 individuals without CAD in the Taiwanese population, where
the rs3788979 DPP4 polymorphism increased the risk of CAD in women patients [32].
Recently, in 201 patients with CAD and T2DM, the same polymorphism was related to a
smaller proportion of severe coronary artery stenosis only in women [33]. These studies
support the participation of the rs3788979 DPP4 polymorphism in the susceptibility to CAD
and CAD severity in Caucasians and Chinese patients with and without T2DM. Our study
did not include the determination of this polymorphism because the functional analysis we
performed showed that the rs3788979 polymorphism does not have a possible functional
consequence; it does not generate binding sites for transcription factors or essential sites
in RNA splicing. On the other hand, we analyzed rs17574, a polymorphism with possible
functional consequences. We suggest that the rs17574 polymorphism could be a genetic
protector marker for pCAD in patients with T2DM in the Mexican population. These
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data agree with our previous finding of the protective effect of this polymorphism for the
presence of HA [25]. DPP4 participates in the degradation of gastric inhibitor polypeptide
(GIP) and type 1 glucagon-like peptide (GLP-1), proteins with recognized cardiovascular
effects [34]. GLP-1 improves endothelial dysfunction [35] and increases coronary blood
flow [36], while GIP has anti-atherosclerosis effects [37].

The bioinformatics analyses settled that the rs17574 G minor allele can change the
efficiency of cutting and splicing, modifying the affinity of binding of the splicing factors
SF2ASF2 and SF2ASF1 [25]. The result could be the expression of DPP4 non-functional
isoforms. These proteins would be expressed to a low degree at the cellular level, and since
serum DPP4 concentrations depend on cellular DPP4 shedding, these individuals would
have lower levels of DPP4 in serum. On the other hand, the production of non-functional
DPP4 molecules may lead to a longer half-life time of GLP-1 and GIP, which results in a
prolonged-life benefit due to the cardiovascular effect of these incretins [38]. This fact could
explain, at least in part, the association of the rs17574 G allele with a lower risk for pCAD
in T2DM patients and supports the hypothesis that the rs17574G allele might be conceived
as a potential genetic indicator for pCAD. The genome-wide expression quantitative trait
loci (eQTL) dataset analysis that we performed showed that the rs17574 polymorphism
affects the expression of DPP4 in the colon, lung, and visceral adipose tissue. In visceral
adipose tissue and the lung, the GG genotype is associated with decreased expression of
DPP4. It has been reported that this polymorphism is related to methylation of the gene;
thus, the highest degree of methylation was observed in non-diabetic obese premenopausal
women with the GG genotype [39] and, consequently, low concentrations of DPP4. The
eQTL analysis and the Turcot report agree with our genetic results, where subjects with the
GG genotype showed low DPP4 concentrations.

DPP4 is a novel adipokine; its expression and activity increase in obese individu-
als [40,41]. Fat cell volume, BMI, waist circumference, and triglycerides and leptin concen-
trations, all markers of obesity, are associated with plasma DPP4 concentrations [42]. DPP4
expression is directly associated with insulin resistance (IR), especially in visceral adipose
tissue, in lean and obese individuals [43]. Proinflammatory adipokines from enlarged
adipocytes could regulate DPP4 release [43]. In obese T2DM and metabolic syndrome
patients, increased expression and membrane shedding of DPP4 suggest that this novel
adipokine could be a marker for visceral obesity, metabolic syndrome, and IR [43]. Obe-
sity is frequently associated with the development of T2DM [44,45]; both abnormalities
have in common a chronic low-grade inflammation state. DPP4 does not only modify
inflammatory pathways; moreover, its expression is a marker of visceral adipose tissue
(VAT) inflammation [46]. In both human and experimental obesity, when compared with
lean controls, VAT dendritic cells/macrophages (1) express higher concentrations of DPP4;
(2) DPP4 expression is directly associated with the degree of IR; and (3) DPP4 increases with
the maturation of the dendritic cells/macrophages [46]. Considering that T2DM and CAD
are abnormalities more frequently found in obese subjects and characterized by important
participation of low-grade chronic inflammation, we would have expected to find a higher
serum concentration of DPP4 in the pCAD with T2DM patients. On the contrary, the
highest concentrations were observed in the control individual, followed by pCAD without
T2DM and pCAD with T2DM (121 pg/mL vs. 107 pg/mL vs. 93 pg/mL, respectively,
p < 0.001). Interestingly, when the DPP4 concentrations were analyzed, considering the
rs17574 genotypes, the GG genotype showed the lowest concentration in the whole sample
and in the pCAD with T2DM group. The DPP4 is released from the membrane of sev-
eral metabolic active cell types, such as T lymphocytes, adipocytes, hepatocytes, smooth
muscle, and endothelial cells, by a non-classical secretory mechanism of shedding [9]. The
mechanism of DPP4 shedding depends on cell specificity and tissue circumstances. It is cell-
type-specific and occurs due to complex coaction between diverse proteases [18]. Hypoxia
increased DPP4 shedding in smooth muscle cells and adipocytes [9]. When both expression
and shedding increase, the DPP4 concentration rises [18]. Several studies have established
that the DPP4 activity is altered in some conditions such as obesity, non-alcoholic fatty
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liver, T2DM, and CAD [47,48]; however, data about the DPP4 concentrations are scarce and
contradictory [18]. Gorrell et al. reported that the serum DPP4 concentrations decrease in
some pathological conditions except in those where a liver injury or extensive lymphocyte
proliferation is involved [49]. We previously reported decreased concentrations of DPP4 in
individuals with hypoalphalipoproteinemia [25] and those with COVID-19 that required
mechanical ventilation [50]. In the same way, in the present study, we reported a decrease in
DPP4 concentrations in patients with pCAD and T2DM. We suggest that in those patholo-
gies characterized by low-grade chronic inflammation, DPP4 anchored to the membrane
of the immune system cells could be mainly involved in cell activation, which can reduce
the degree of the DPP4 shedding by unknown mechanisms. This fact would result in a
persistent state of low-grade chronic inflammation accompanied by low concentrations
of DPP4. Research using animal models could help establish the molecular mechanisms
associated with DPP4 involved in the genesis and progression of pCAD and T2DM.

The study’s strengths are the inclusion of a well-characterized cohort of individuals
clinically, demographically, biochemically, and topographically and the evaluation of the
relationship of the polymorphism with DDP4 concentrations. However, there are some
limitations: (1) we evaluated only one polymorphism located in the DPP4 gene, (2) we did
not determine the activity of DPP4, (3) patients with non-premature CAD and individuals
with T2DM without pCAD were not included, and (4) it is a non-prospective cross-sectional
study that does not permit establishing causality.

5. Conclusions

Our data establish that patients with pCAD and T2DM have the lowest DPP4 serum
concentration. Individuals with T2DM carriers of the rs17574 G allele had more than 30%
lower risk for present pCAD, and individuals carrying the GG genotype had the lowest
concentrations of DPP4. The rs17574G DPP4 allele could be considered as a protective
genetic marker for pCAD.
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