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Helminths are parasitic worms that have successfully co-evolved with their host immune
system to sustain long-term infections. Their successful parasitism is mainly facilitated by
modulation of the host immune system via the release of excretory-secretory (ES) products
covered with glycan motifs such as Lewis X, fucosylated LDN, phosphorylcholine and
tyvelose. Evidence is accumulating that these glycans play key roles in different aspects of
helminth infection including interactions with immune cells for recognition and evasion of
host defences. Moreover, antigenic properties of glycans can be exploited for improving
the efficacy of anti-helminthic vaccines. Here, we illustrate that glycans have the potential to
open new avenues for the development of novel biopharmaceuticals and effective
vaccines based on helminth glycoproteins.

Keywords: helminths, glycans, vaccines, immunomodulation, biopharmaceuticals

INTRODUCTION

Glycosylation is one of the most common post-translational modifications and contributes
substantially to the molecular makeup of almost all living organisms. For infectious agents
glycans play an important role in the interaction with their host in order to establish a successful
infection. For example, glycosylation of the viral envelope proteins haemagglutinin and
neuraminidase of influenza A impacts virus infectivity, virulence and host immune
responses (Deshpande et al., 1987; Li et al., 1993; Schulze, 1997). Alternatively, impaired
glycosylation of surface glycoproteins of the bacterium Campylobacter jejuni affects
interactions with the host and results in reduced intestinal colonisation (Szymanski et al.,
2002). For parasitic helminths, various glycans mediate the modulation of host immune
responses, which benefits the establishment of long-term infections. Besides the advantages
for the parasite, immunomodulatory effects could also be considered valuable for the host.
Evidence is accumulating that areas where helminth infections are endemic are associated with a
lower incidence of inflammatory diseases, like allergies and autoimmune diseases (Zaccone et al.,
2006; Maizels and Yazdanbakhsh, 2008). The “hygiene hypothesis” and more recently the “old
friends” hypothesis suggest that the absence of co-evolved microbes, including helminths, leads
to defects in the establishment of immune regulatory networks (Rook, 2010). The lack of
immunomodulatory effects in the absence of such infections could contribute to the
development of inflammatory diseases, but also potentially immunological hyperactivity
during SARS-CoV-2 (COVID-19) infection (Fonte et al., 2020; Hays et al., 2020;
Gebrecherkos et al., 2021). Recent advances in glycobiology have contributed to further
understanding of the interaction between glycosylated helminth products and the host
immune system. Yet, there is still a lack of knowledge on the effects of many unique and
complex helminth glycans on host immune responses. In this review we highlight the untapped

Edited by:
Michael C. Jewett,

Northwestern University,
United States

Reviewed by:
Chang-Chun Ling,

University of Calgary, Canada

*Correspondence:
Myrna J. M. Bunte

myrna.bunte@wur.nl

Specialty section:
This article was submitted to

Glycoscience,
a section of the journal

Frontiers in Molecular Biosciences

Received: 02 November 2021
Accepted: 20 December 2021
Published: 10 January 2022

Citation:
Bunte MJM, Schots A, Kammenga JE

and Wilbers RHP (2022) Helminth
Glycans at the Host-Parasite Interface

and Their Potential for Developing
Novel Therapeutics.

Front. Mol. Biosci. 8:807821.
doi: 10.3389/fmolb.2021.807821

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 8078211

MINI REVIEW
published: 10 January 2022

doi: 10.3389/fmolb.2021.807821

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.807821&domain=pdf&date_stamp=2022-01-10
https://www.frontiersin.org/articles/10.3389/fmolb.2021.807821/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.807821/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.807821/full
http://creativecommons.org/licenses/by/4.0/
mailto:myrna.bunte@wur.nl
https://doi.org/10.3389/fmolb.2021.807821
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.807821


potential of these unique helminth glycans for the
development of successful helminth biopharmaceuticals and
vaccines.

Helminth Glycans and Their Role in PRR
Signalling
Glycans on most helminth-released ES products play a role in the
recognition by host innate immune cells. Upon infection, the
glycan structures on ES products are recognised by pattern
recognition receptors (PRRs), located on the surface of innate
immune cells, such as dendritic cells (DCs) (Everts et al., 2010).
For DCs, recognition and binding of an antigen to PRRs results in
initiation of internal signalling pathways leading to the
maturation of the DC itself. Mature DCs are able to release
cytokines and mediate the polarisation of different T helper (Th)
cell subsets including Th1, Th2, Th17 and regulatory T cells
(Walsh and Mills, 2013).

Different classes of PRRs, such as Toll-Like Receptors (TLRs)
and C-type Lectin Receptors (CLRs), bind to specific glycan
motifs and mediate internalisation to initiate an appropriate
immune response. Antigen recognition by TLRs generally
results in priming immature DCs to induce the production of

pro-inflammatory cytokines and costimulatory molecules that
contribute to the maturation of naive CD4+ T helper cells into
Th1 or Th17 cells (Kapsenberg, 2003; Medzhitov, 2007; Weaver
et al., 2007). However, TLR recognition of helminth antigens is
associated with lower expression of pro-inflammatory cytokines
and polarisation towards Th2 cells (MacDonald and Maizels,
2008). For example, the filarial nematode glycoprotein ES-62
interacts with TLR4 on immature DCs, thereby initiating
MyD88-dependent signalling cascades that lead to maturation
of DCs and cytokine release. Subsequently, mature DCs will
promote the differentiation of Th2 cells (Goodridge et al.,
2005). N-glycans of ES-62 are characterised by the presence of
phosphorylcholine (PC) motifs (Figure 1) (Harnett et al., 2003).
Studies using PC-conjugated ovalbumin (PC-OVA)
demonstrated that PC-OVA mimics the effects of ES-62 on
DCs in a TLR4- and MyD88-dependent manner (Goodridge
et al., 2007). This suggests that the PC motif is responsible for
the interaction of ES-62 with DCs via TLR ligation.

The CLR family of receptors have distinct binding
properties to specific carbohydrate motifs (Weis et al., 1998;
Zelensky and Gready, 2005). Carbohydrate structures are often
bound in a calcium-dependent manner to the highly conserved
carbohydrate recognition domain of the receptor. Dendritic

FIGURE 1 | Overview of a selection of helminth glycans with strong immunogenic or immunomodulatory properties. The corresponding positions and symbols of
the monosaccharide units are indicated. LDN and (multi)-fucosylated LDN found on secreted egg antigens of the trematode Schistosoma mansoni are associated with
immunogenic responses whereas Lewis X has immunomodulatory effects. In contrast to the other glycan motifs, multi-fucosylated LDN is found on O-glycans. Tyvelose
expressed by Trichinella species and distal core fucose expressed by Haemonchus contortus are glycan motifs which are associated to be important to induce
humoral immunity. Glycoproteins carrying phosphorylcholine (PC) are mainly secreted by filarial nematodes and in many cases, PC is responsible for the
immunomodulatory effects of these glycoproteins.
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cell-specific intracellular adhesion molecule-3-grabbing
nonintegrin (DC-SIGN), macrophage galactose-type C-type
lectin (MGL) and mannose receptor (MR) are the most
prominent CLRs described regarding helminth glycoprotein
recognition (Prasanphanich et al., 2013). DC-SIGN is highly
expressed on the surface of DCs and can recognise the glycan
motifs Lewis X (Galβ1-4(Fucα1-3)GlcNAc; LeX) and LDN-F
(GalNAcβ1-4(Fucα1-3)GlcNAc), which are found on secreted
egg antigens of the trematode Schistosoma mansoni (Figure 1)
(van Die et al., 2003; van Liempt et al., 2007). LeX binding to
DC-SIGN induces the production of the anti-inflammatory
cytokine IL-10 and contributes to a modified Th2 response
(Gringhuis et al., 2014; Wilbers et al., 2017). MGL binds and
internalises glycoproteins with terminal β-GalNAc residues,
such as LDN (GalNAcβ1-4GlcNAc) and LDN-F, whereas MR
recognises mannose- and fucose-containing glycans (Taylor
et al., 1992; Denda-Nagai et al., 2002; van Vliet et al., 2005).
Binding of the LeX-carrying glycoprotein omega-1 by MR has
demonstrated to facilitate binding and internalisation of
omega-1 by DCs (Everts et al., 2012; Wilbers et al., 2017).

Although there are strong indications that glycans play an
important role in immune recognition, for many helminth-
derived glycoproteins it is still unknown how their glycans
interact with immune cells and contribute to the modulation
of the host immune system. Therefore, a deeper understanding is
required of glycan interaction with PRRs and innate
immune cells.

Antibody Responses to Helminth Glycans
Many helminth-derived products can initiate a humoral response
by inducing the generation of antibodies. A large part of these
antibodies binds specifically to the glycan structures on ES
products, indicating that glycans can serve as epitopes. In
some cases, antibodies against these glycan epitopes reduce an
infection. An example of such a glycan epitope is tyvelose (β3,6-
dideoxy-D-arabinohexose), a glycan modification found on the
glycoprotein TSL-1, which is excreted by Trichinella spiralis
during the infective larval muscular phase (L1) (Figure 1)
(Reason et al., 1994). During this phase, IgG antibody
responses are induced that predominantly target the β-
anomeric tyvelose on TSL-1 (Appleton et al., 1988; Appleton
et al., 1991; Ellis et al., 1997). These anti-tyvelose antibodies may
play an important role in host-protection. In an in vitro model
with intestinal epithelial cells, it was demonstrated that the
tyvelose-specific antibodies inhibit the invasion of T. spiralis
(McVay et al., 1998; McVay et al., 2000). In addition, the
presence of these antibodies causes a rapid expulsion of L1
larvae, eliminating 99% of a total oral challenge dose in rats
(Appleton and McGregor, 1984; Appleton et al., 1988; Bell et al.,
1992; Ellis et al., 1994). The induced immunity can provide long-
term protection (up to several months) and can be transferred to
offspring (Bullick et al., 1984; Appleton et al., 1985).

Although anti-tyvelose antibodies can induce high-level
protection against L1 larvae, these antibodies are not
providing protective immunity against intestinal stages of
infection (Goyal et al., 2002). This led to the idea that the
presence of tyvelose may also offer protection for the parasite,

since the expression of tyvelose and its associated immune
response is specific for L1-staged larvae (Denkers et al., 1990;
Robinson et al., 1995). By the time the host immune system has
generated the required antibodies, the parasite continued its
development and lost the tyvelose epitope. In this way, the
strong antibody response may serve as a smoke screen to
divert the immune system away from effective immune
responses. However, there is limited evidence supporting this
theory, so more research is required to further study the role of
tyvelose during infection and in establishing protective
immunity. Apart from its role in protection, anti-tyvelose
antibodies may offer possibilities in terms of diagnostics.
Immobilised anti-tyvelose monoclonal antibodies can relatively
easy capture the major secreted TSL-1 antigens with high
specificity and high sensitivity, which makes the antibodies
suitable to be incorporated into serodiagnosis of human
Trichinella infection (Escalante et al., 2004).

In case of Schistosoma mansoni infection, the host immune
system encounters various highly glycosylated helminth-derived
antigens. Throughout the life cycle, S. mansoni expresses a wide
variety of glycan motifs on its N- and O-glycans as well as
glycolipids. These motifs include LDN, (multi-)fucosylated
LDN and LeX (Smit et al., 2015). Especially (multi-)
fucosylated LDN glycan motifs are highly immunogenic and
are targeted by IgM antibodies (and to a lesser extent IgG
antibodies) in S. mansoni infected people (van Remoortere
et al., 2001; Kariuki et al., 2008; Prasanphanich et al., 2014).
Furthermore, primates vaccinated with radiation-attenuated
(RA) cercariae exhibited high levels of IgM and IgG antibodies
against multi-fucosylated glycan epitopes (Yang et al., 2019).
However, compared to multi-fucosylated glycans, LDN-F and
LeX induce lower levels of antibodies, primarily of the IgM class
(van Remoortere et al., 2001; Naus et al., 2003; Van Remoortere
et al., 2003). This reduced immunogenicity could be explained by
the fact that expressed LDN-F and LeX motifs are shared with the
host (Hokke and Deelder, 2001; Van Remoortere et al., 2003;
Hokke and van Diepen, 2017). By mimicking host-like glycans, S.
mansoni could have gained the opportunity to evade the host
immune system to create a suitable micro-environment.

The Role of Glycans in Helminth
Immunomodulation
Immunomodulation serves as an important survival strategy for
helminth parasites. Biasing the host immune system towards a
modified type 2 immune response results in a more anti-
inflammatory status, which decreases the chances of
elimination. Glycans play an important role in the modulation
of immune signalling via CLRs on DCs, thereby facilitating
internalisation of helminth-released products and subsequent
alteration of the immune response. For example, LeX mediates
the internalisation of the S. mansoni egg antigen omega-1 into
DCs via the MR and DC-SIGN receptors (Steinfelder et al., 2009;
Everts et al., 2012; Wilbers et al., 2017). Within the cell omega-1
has RNase activity, which reduces the activation and maturation
of DCs, thereby biasing towards a Th2 response (Figure 2). The
immunomodulatory properties of the LeX motif by itself have
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also been investigated using lacto-N-fucopentaose III (LNFPIII),
a LeX carrying penta-saccharide found in breast milk and urine of
pregnant women (Ko et al., 1990). This LNFPIII glyco-conjugate
promotes an anti-inflammatory response by the induction of
alternatively activated macrophages (Atochina et al., 2008).
Macrophage and DC activation by LNFPIII appears to be
dependent on α1,3-linked fucose of the LeX motif, suggesting
that the presence of α1,3-linked fucose is necessary for LNFPIII to
exert its effects (Tundup et al., 2015).

In addition, human filarial nematodes, such as Brugia
malayi, Wuchereria bancrofi and Onchocerca volvulus secrete
phosphorylcholine (PC)-containing glycoproteins, which can
drive immunomodulation (Forsyth et al., 1985; Harnett et al.,
1989; Maizels et al., 1987). The best characterised PC-carrying
glycoprotein is ES-62 and is found in the ES products of the
rodent filarial nematode Acanthocheilonema viteae (Harnett
et al., 1989). ES-62 has immunomodulatory effects on a wide
variety of immune cells including T and B cells, macrophages
and DCs (Pineda et al., 2014). ES-62 polarizes the immune
system towards a type 2 immune response by inducing Th2 cells
instead of Th1 cells (Harnett et al., 1999). When the PC motif is
removed, this Th2 polarisation is balanced out, suggesting that
PC is predominantly responsible for the immunomodulatory
effects of ES-62 (Houston et al., 2000). Interestingly, PC-
conjugates mimic several of these immunomodulatory effects,
such as the TLR4-dependent interaction with DCs (Goodridge
et al., 2005). PC-conjugates also dampen the activation of DCs,
which results in reduced expression of costimulatory molecules
and Th1/Th17-polarising cytokines IL-12, IL-6 and TNF-α
(Figure 2) (Goodridge et al., 2004; Goodridge et al., 2007;

Lumb et al., 2017). In B cells, exposure to PC-conjugates
results in interference of activation and proliferation of these
immune cells (Harnett and Harnett, 1993). The presence of PC
on ES-62 causes desensitisation of the B cell receptor (BCR) by
inhibiting key proliferation pathways (Deehan et al., 2001).
Mice exposed to PC-conjugates produced high levels of anti-
inflammatory cytokine IL-10 and IgM antibodies, which are also
abundant during filarial nematode infections (Al-Qaoud et al.,
1998). Therefore, it is reasonable to state that PC by itself is
acting as an active ingredient on ES-62 as it is largely mediating
the immunomodulatory effects of this helminth ES product.

Overall, these examples indicate that glycan motifs such as LeX
and PC have broad immunomodulatory properties, which may be
interesting for the development of biopharmaceuticals. Attempts
have been made to explore the potential of helminth-derived
glycoproteins to serve as therapeutic agents. For example, plant-
produced recombinant omega-1 with LeX-carrying glycans was
able to reduce body weight, fat mass and food intake of obese mice
and improve their insulin sensitivity and glucose tolerance (van der
Zande et al., 2021). In addition, immunomodulatory effects of the
PC-glycoprotein ES-62 led to the design and synthesis of small
molecule analogues (SMAs) that mimicked the chemical structure
of PC (Al-Riyami et al., 2013). Besides providing additional
evidence that immunomodulatory properties of ES-62 depend
on PC, these SMAs offer solutions for treatment against
immune disorders. Studies in mouse models of inflammation-
associated diseases such as rheumatoid arthritis, systemic lupus
erythematosus and asthma demonstrated that these SMAs possess
anti-inflammatory properties similar to ES-62 (Al-Riyami et al.,
2013; Rzepecka et al., 2014; Al-Riyami et al., 2015; Rzepecka et al.,

FIGURE 2 | Internal signalling of dendritic cells upon exposure of glycoproteins omega-1 and ES-62. C-type lectin receptors can bind various glycanmotifs such as
LeX on omega-1, which results in uptake of the extracellular antigen. After internalisation in endosomes (1), omega-1 translocates to the cytosol where it interferes with
protein translation by exhibiting RNase activity on messenger RNA and ribosomal RNA (2). This suppresses DC maturation by inhibiting IL-12 cytokine release whilst
enhancing IL-10 production and down-regulation of co-stimulatory molecules such as CD86. This ultimately results in T helper 2 (Th2) cell polarisation (3).
Glycoprotein ES-62 biases the immune system towards an anti-inflammatory/Th2 response as it is able to mediate the LPS-induced TLR4 signalling by regulating the
activity of kinases Erk, JNK and p38 via adaptor molecule MyD88 (4). This leads to down-regulation of gene transcription of Th1-associated cytokines (IL-6, IL-12p38
subunit and TNF-α) (5). ES-62 inhibits the production of IL-12p40 subunit by preventing the binding of transcription factor NF-κB to the IL-12 promotor (6).
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2015; Coltherd et al., 2016; Janicova et al., 2016; Lumb et al., 2017;
Doonan et al., 2018; Suckling et al., 2018). Since ES-62 is
immunogenic and hard to obtain on large scale, SMAs exhibit
great therapeutic potential against inflammation-associated
diseases.

Challenges and Opportunities of Glycans in
Helminth Vaccine Development
To date, helminths still pose a serious threat for human and
animal health. The current treatment of human and animal
helminth infections primarily consists of anthelminthic drugs
in mass drug administration (MDA) programs. However,
anthelminthic drugs are never fully effective to eradicate
helminths from their host, so re-administration is necessary.
This may result in reduced efficacy through the development
of resistance against anthelminthic drugs (De Clercq et al., 1997;
Ismail et al., 1999; Melman et al., 2009; Osei-Atweneboana et al.,
2011; Sutherland and Leathwick, 2011; Nana-Djeunga et al., 2014;
Crellen et al., 2016). For this reason, vaccines against helminth
infections are proposed as a more effective and durable treatment.

Given that some glycans seem to induce a potent immune
response, the idea has arisen that helminth-derived glycans aid in
the efficacy vaccines. Attempts have been made to develop a
vaccine against Schistosoma mansoni by using radiation-
attenuated (RA) cercariae. Vaccination of primates with RA
cercariae demonstrated to provide protection against
Schistosoma infection. In vaccinated chimpanzees, the faecal
egg count and the level of circulating cathodic antigens (CCA)
were reduced by 38 and 46%, respectively, compared to non-
vaccinated control animals (Eberl et al., 2001a). Baboons
vaccinated with RA cercariae developed even higher protection
since their worm burden, faecal egg count and CCA were reduced
by up to 86, 94 and 99%, respectively, compared to non-
vaccinated baboons (Kariuki et al., 2004). This induced
protection correlates with high levels of specific IgM and IgG
antibodies targeting RA cercariae-derived glycan epitopes (Eberl
et al., 2001b; Yang et al., 2019). High titres of IgG against (multi-)
fucosylated glycan epitopes were observed in RA vaccinated
baboons (Yang et al., 2019). These IgG levels remained high
until 6 weeks post-challenge, suggesting a potent role of these
fucose-targeting IgG antibodies in protection. Although, these
results are promising, the induced protection could not be
sustained for long-term (Kariuki et al., 2004). Therefore, more
research is required to improve sustained efficacy of RA cercariae
as vaccine.

To combat livestock-infecting helminths, only three commercial
vaccines are available on the market but many vaccines are still in
development (Claerebout and Geldhof, 2020). Many helminth
vaccines rely on life-attenuated parasites, parasite extracts or
purified native antigens, which require the use of donor animals
to produce the important ingredients of the vaccines. Besides ethical
issues it is challenging to collect enough parasite material for large-
scale vaccine production. Therefore, the use of recombinant
production systems has been explored, resulting in more than
100 vaccine studies with recombinant helminth antigens,
including 80 different antigens targeting 22 helminth species

(Geldhof et al., 2007). However, only few recombinant vaccines
induce high-level protection against helminth infection (Geldhof
et al., 2008; Hewitson and Maizels, 2014). The choice for the
bacterium Escherichia coli as recombinant expression system
could be a possible explanation why most recombinant helminth
vaccines fail to induce high-level protection, since E. coli is incapable
to perform complex eukaryotic post-translational modifications like
glycosylation. Therefore, other eukaryotic expression systems have
been considered to produce recombinant helminth vaccines with
complex post-translational modifications.

For example, different expression systems have been
investigated for the production of recombinant activation-
associated secreted protein 1 of Ostertagia ostertagi (OoASP-
1). Vaccination of cows with a native ASP-enriched fractionmade
from an ES-thiol fraction, of which OoASP-1 and OoASP-2 are
the most abundant antigens, resulted in 74% reduction of faecal
egg counts (Geldhof et al., 2002; Geldhof et al., 2003; Meyvis et al.,
2007). To convert this native vaccine to a recombinant version,
expression of OoASP-1 in the yeast Pichia pastoris and the
baculovirus insect cell system was explored. Pichia pastoris-
expressed OoASP-1 showed a less potent immune response
than native OoASP-1 and both recombinant OoASP-1 variants
failed to induce protection upon re-infection (Geldhof et al., 2008;
González-Hernández et al., 2016). A reason for this could be that
native OoASP-1 is differently glycosylated in recombinant
systems. Incorrect glycosylation could impact potentially
important glycan epitopes, the correct folding of the protein
or the interaction with immune cells. Removal of the glycans of
the ES-thiol fraction demonstrated that antibody binding to these
antigens is not affected by the lack of glycosylation, whereas
changing protein confirmation by denaturation/reduction did
(Meyvis et al., 2008). Improper folding of recombinant
OoASP-1 by an altered glycan composition could therefore
result in unreachable epitopes, which might be required for
inducing protective immune responses.

The development of recombinant vaccines against
Haemonchus contortus infection has faced similar challenges.
Currently, the H. contortus vaccine Barbervax is approved and
marketed in Australia and is based on ES material enriched with
glycoproteins H11 and H-gal-GP (Nisbet et al., 2016). The
production of Barbarvax relies on conventional isolation of ES
material from parasites from infected donor sheep. Therefore,
other strategies to employ H. contortus glycoproteins as
recombinant vaccine candidates have been explored.
Glycoprotein H11 has been subjected to vaccine trials as
vaccination with an extract enriched with H11 demonstrated
high levels of protection and the generated antibodies were
mostly directed towards H11 (Munn et al., 1993). Initial
vaccine trials using recombinant H11 produced in E. coli and
baculovirus insect cell system were unsuccessful to induce
protection (Knox et al., 2003; Newton and Meeusen, 2003;
Reszka et al., 2007). Failure has mainly been directed to the
differences in post-translational modifications that impacted the
glycosylation and folding of H11. Mass spectrometry analysis
showed that N-glycans of H11 are highly fucosylated and contain
α1,3- and α1,6-linked core fucoses on the proximal GlcNAc and
α1,3-linked fucose on the distal core GlcNAc (Figure 1) (Haslam
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et al., 1996). Most of the generated antibodies were directed
against these H11 glycan epitopes. Moreover, α1,3-linked core
fucose induces the production of IgE antibodies, which correlated
with the induction of protection (van Die et al., 1999; Kooyman
et al., 2000). This suggests that α1,3-linked core fucose serves as
an important epitope to induce humoral immunity. To test
whether recombinant fucosylated H11 induces protection, H11
was expressed in the free-living nematode Caenorhabditis elegans
since it has the required glycan machinery to mimic the native
glycan composition of H11 (Nguyen et al., 2007; Roberts et al.,
2013). Although C. elegans expressed H11 carried N-glycans with
α1,3- and α1,6-linked core fucoses and α1,3-linked distal core
fucose, no protection was observed againstH. contortus challenge
infection (Roberts et al., 2013). The lack of efficacy could be
attributed to subtle differences in the glycan composition of H11
upon expression in C. elegans. For instance, C. elegans expressed
H11 lacks LDN-F, a glycan motif previously shown to be
correlated with protective immunity against H. contortus in
lambs (Vervelde et al., 2003). Similarly, antibody responses to
the O-glycan motif Galα1–3GalNAc glycan epitopes correlates
with protection in lambs that are vaccinated with ES products of
H. contortus (van Stijn et al., 2010).

Differences in glycan composition or glycan abundance could
be the reason why recombinant vaccines against helminths are
not able to induce protective immunity. Therefore, further
mimicking the native glycan composition could improve the
immunogenicity towards inducing sufficient protection.

CONCLUSION

There is substantial evidence that helminth glycans play a key role
in establishing immunomodulatory and protective immune
responses by the host. Although recent efforts have gained new

insights on the role of several helminth glycans at the host-parasite
interface, many questions remain to be addressed. Technological
advances in the field of glycobiology, including mass spectrometry-
based glycomics, glycan-arrays and glyco-engineering, will allow us
to unravel the complexity of helminth glycomes. In parallel, there is
a need for recombinant expression systems that are able to produce
helminth glycoproteins with a native glycan composition in order
to study their role in immunogenicity and/or immunomodulation.
Plants could serve as such expression system as it offers
“engineering” of the post-translational machinery, resulting in
tailor-made helminth glycan structures (Wilbers et al., 2017;
Van Noort et al., 2020). Altogether this offers opportunities to
exploit the untapped potential of helminth glycans to develop
helminth-derived biopharmaceuticals, diagnostics and improved
vaccines.
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