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Latent autoimmune diabetes in
adults: a focus on b-cell
protection and therapy

Wenfeng Yin, Shuoming Luo*, Zilin Xiao, Ziwei Zhang,
Bingwen Liu and Zhiguang Zhou

National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology
(Central South University), Ministry of Education, and Department of Metabolism and
Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease

sharing some phenotypic, genetic, and immunological features with both

type 1 and 2 diabetes. Patients with LADA have a relatively slow autoimmune

process and more residual islet b-cell function at onset, allowing a time

window to protect residual islet b cells and delay or inhibit disease

progression. It is crucial to discover various heterogeneous factors affecting

islet b-cell function for precise LADA therapy. In this review, we first describe

the natural history of LADA. Thereafter, we summarize b-cell function-related
heterogeneous factors in LADA, including the age of onset, body mass index,

genetic background, and immune, lifestyle, and environmental factors. In

parallel, we evaluate the impact of current hypoglycemic agents and immune

intervention therapies for islet b-cell protection. Finally, we discuss the

opportunities and challenges of LADA treatment from the perspective of islet

b-cell function protection.

KEYWORDS
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1 Introduction

Diabetes is generally regarded as a disease spectrum ranging from classic insulin-

resistant type 2 diabetes to classic insulin-dependent type 1 diabetes (1). Latent

autoimmune diabetes in adults (LADA) is a heterogeneous form of diabetes with

common clinical features of both type 1 and 2 diabetes (2, 3). It is also known as type

1.5 diabetes or slowly progressive insulin-dependent type 1 diabetes. LADA accounts for

approximately 2%–14% of all diabetes patients (4). Latest data have shown that the

number of LADA among the Chinese population has exceeded 10 million (5, 6), being

the largest number of LADA patients in the world.
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There is no universal agreement on LADA classification,

diagnosis, and management. It is called slowly evolving

immune-mediated diabetes and is classified as a type of hybrid

forms of diabetes in the Classification of Diabetes Mellitus 2019 of

theWorld Health Organization (7). However, it is also classified as

a subtype of type 1 diabetes because of its autoimmune

destruction of islet b cells according to the Diagnosis and

Classification of Diabetes Mellitus of the American Diabetes

Association in 2022 (8). Currently, the exact underlying

mechanisms of LADA are poorly understood, and specific

etiological treatment of LADA remains an issue.

Loss of islet b-cell function due to autoimmunity is the key

factor in LADA occurrence and progression, and individuals

with LADA have more residual islet b cells at onset compared

with classic type 1 diabetes (9, 10). After diagnosis, the ability to

retain residual b-cell function is heterogeneous, being influenced

by the age of onset, genetics, and immune mechanisms. A

comprehensive understanding of the influencing factors and

different protection methods of islet b-cell function is clinically

significant to further explore how to effectively protect islet b
cells and delay disease progression. Herein, we summarize

related heterogeneous factors for islet b-cell protection. Then,
we evaluate the impact of current hypoglycemic agents and

immune intervention therapies for islet b cells. Finally, we

discuss the opportunities and challenges of LADA treatment

from the perspective of islet b-cell function protection.
2 Natural history of LADA

The traditional natural history of type 1 diabetes can

conceptually be divided into six stages. The stages are genetic

predisposition; an action of the precipitating event; overt

immunologic abnormalities with normal insulin release;

progressive loss of insulin release with normal glucose level;

overt diabetes with present C-peptide; and complete b-cell
destruction (no C-peptide) (11). LADA, as a subtype of type 1

diabetes, has a similar natural course (Figure 1). However,

because of the heterogeneity of b-cell function in LADA

patients, the course has two special features. One, pancreatic

b-cell function declines faster in LADA patients than in those

with type 2 diabetes but slower than that of classic type 1

diabetes (12). Another, several previous studies have shown

that levels of C-peptide in LADA patients continued to decline

rapidly when followed up for 3 or 6 years (13, 14). The decline

pattern of b-cell function in LADA was biphasic, showing an

initial rapid progression followed by a stable mode (15).

The clinical course of most LADA patients can be divided

into insulin-independent and insulin-dependent stages (16). The

insulin-independent stage is the early clinical stage of LADA,

with similar clinical features to type 2 diabetes. No typical

clinical symptoms are present in this stage. Oral hypoglycemic

agents are capable of controlling blood glucose at this stage. Due
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to presence of heterogeneity, there are LADA patients whose

diabetes can also be controlled with diet alone, weight loss, and

an exercise program, without any oral medications. These are

stable forms that can last for decades and require insulin therapy

only very late, when LADA patients’ islet b-cell function

becomes significantly impaired and leads to diabetic ketosis or

acidosis. Additionally, insulin therapy becomes necessary, and

patients thereafter enter the insulin-dependent stage.
3 Heterogeneity of LADA and islet
b-cell function

LADA exhibits significant clinical heterogeneity. Patients

with LADA have different clinical, immunological, and genetic

characteristics when compared with type 1 and 2 diabetes. The

main parameter differences among them are summarized in

Table 1 (2, 14). These factors of clinical heterogeneity are also

related to islet b-cell function in patients with LADA.
3.1 Age of onset

LADA patients with different ages of onset show different

clinical features and islet b-cell function. Accumulating evidence

shows that individuals with LADA that are younger at disease

onset have a lower level of insulin resistance and worse residual

b-cell function than those with an older age of onset (16, 17). A

recent study has indicated that LADA patients with the old age

of onset (≥60 years) tend to have higher fasting C-peptide levels

and 2-h postprandial C-peptide levels compared with those with

a young age of onset (<60 years) (17). Therefore, the age of

LADA onset may be associated with islet b-cell destruction, with
patients with the old age of onset having more residual b-cell
mass and better islet b-cell function.
3.2 Body mass index

Overweight/obesity is a risk indicator for patients with

LADA (18, 19). Data indicate that 66% of LADA falls into the

overweight/obesity category (20). Although patients with LADA

are leaner compared with type 2 diabetes patients, LADA-China

study has shown that the median body mass index (BMI) was

24.5 kg/m2 in LADA patients, and the proportion of overweight

and obese patients was up to 41.7% (9). Emerging evidence has

demonstrated a significant correlation between BMI and islet b-
cell demise and dysfunction. Compared with classic type 1

diabetes, LADA patients are more obese and have a larger

waist circumference, lower low-density lipoprotein cholesterol

levels, and more residual islet b cells (21). Moreover, obese

LADA patients show a lower frequency of insulin dependence

and have better b-cell function (22, 23). The reason why b-cell
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depletion is slower in LADA patients with higher waist

circumference is unclear. Perhaps, adipose tissue-induced

insulin resistance increases fasting glucose levels earlier

compared to lean LADA patients, leading to prompt

management of the disease (24). Additionally, diabetic obese

mice with leptin receptor knockout causing hyperleptinemia

show that obesity may delay the onset of insulin dependence

(25). This concept diverges from the “accelerator hypothesis,”

which refers to the onset of the autoimmune reaction itself. The

“accelerator hypothesis” argues that intrinsic nature, insulin

resistance, and autoimmunity can accelerate islet b-cell loss

through apoptosis in diabetes patients (26). Obesity may

enhance insulin resistance and islet autoantigen exposure,

contributing to the initiation of autoimmune destructive

processes (27).
3.3 Genetic background

Susceptibility genes, as a predictor and player of the disease,

play a vital role in the islet b-cell failure in diabetes. Recent

studies have verified the genetic overlap between LADA and
Frontiers in Endocrinology 03
both type 1 and 2 diabetes (28). Human leukocyte antigen

(HLA) class II genes are the most susceptible genes in LADA

patients and can mediate the autoimmune response (29, 30).

Most type 1 diabetes-associated HLA haplotypes also confer

LADA susceptibility (31). A study has revealed that DR9/DR9 is

the Chinese-specific LADA risk genotype, while DR3/DR4 is the

major risk factor in Caucasians (32). A study of Caucasians has

indicated that the DRB1/DQB1 genotype in LADA was

associated with the age of onset, and LADA patients with HLA

DRB1 and DQB1 developed the disease at a younger age and had

severe islet b-cell function (33). Additionally, previous studies

have shown that HLA-DQB1 genotypes are most frequent in

early-onset classic type 1 diabetes patients who were diagnosed

at <20 years, followed by late-onset classic type 1 diabetes

patients who were diagnosed at >35 years and LADA patients

(34). This further suggests that HLA genes are related to islet b-
cell function. Japanese LADA subjects with insulin dependence

more often had DRB1*0405-DQB1*0401, DRB1*0802-

DQB1*0302, and DRB1*0901-DQB1*0303 haplotypes, whereas

only the DRB1*0405-DQB1*0401 haplotype occurred more

often in non-insulin-dependence LADA patients, additionally

reinforcing the stated point (35).
TABLE 1 Differences in key parameters between type 1 diabetes, LADA, and type 2 diabetes.

Disease feature Type 2 diabetes LADA Type 1 diabetes

Age of onset Mostly at adulthood Older than 30 years Most commonly occurs in children, but it may occur at any age

Body mass index Overweight/obesity Normal/overweight Underweight/normal

HLA susceptibility No change Increased Considerably increased

Number of islet autoantibodies None Increased Considerably increased

C-peptide levels High Low Considerably low

Insulin dependence Mostly late (8-10 years) Early (after 6 months) Always
FIGURE 1

The natural history of type 1 diabetes and LADA. Type 1 diabetes can be divided into six stages. LADA has a similar natural course to type 1
diabetes as its autoimmune subtype. However, the rate of decline of pancreatic b-cell function is lower than that of type 1 diabetes. Moreover,
the natural history of most LADA patients can be divided into insulin-independent and insulin-dependent periods according to the degree of
pancreatic b-cell destruction. There is great heterogeneity in the progression to insulin dependence in patients with LADA, which is associated
with the age of onset, body mass index, genetic background, and immune, lifestyle, and environmental factors.
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Some non-HLA genes, including type 1 diabetes-associated

variants and type 2 diabetes-associated variants, also have a role

in LADA. Insulin (INS) (36), cytotoxic T lymphocyte-associated

protein 4 (CTLA4), and SH2B adapter protein 3 (SH2B3) are

implicated in LADA pathogenesis (37). PFKFB3 has been linked

to immune and metabolic diabetes (30). A previous study has

indicated that the PFKFB3 product can regulate glycolysis and

insulin pathway (38). A further experiment in mice has revealed

that insulin resistance exacerbation and increased adipose tissue

inflammation occurred if PFKFB3 expression in adipose tissue

was disturbed (39). Additionally, targeted overexpression of the

gene can protect against diet-induced insulin resistance and

inflammatory responses (40). Moreover, genome-scale in vivo

CRISPR screening has identified RNLS as a target for b-cell
protection in type 1 diabetes. By deleting RNLS, b cells can

become resistant to autoimmune killing in type 1 diabetes mice

(41). However, its specific function in LADA remains unclear.

Briefly, it can be concluded that LADA patients share a genetic

predisposition with type 1 and 2 diabetes.
3.4 Immune mechanisms

LADA is a heterogeneous disease characterized by immune-

mediated b-cell destruction. In recent years, multiple studies

have reported that innate, cellular, and humoral immunity plays

an important role in LADA pathogenesis (42–44).

3.4.1 Innate immunity
A cross talk is believed to exist between b cells and various

immune cells from adaptive and innate immunity during the

initiation and progression of autoimmune diabetes (45). In

LADA occurrence and progression, macrophages, natural

killer (NK) cells, dendritic cells (DCs), and neutrophils (NEs)

play a crucial role. First, macrophages are present in the pancreas

of LADA patients and a rat model, and an increase in

interleukin-1b (IL-1b) has been able to recruit more

macrophages to infiltrate the pancreas, leading to apoptosis of

b cells (46). Other studies have also shown that macrophages

infiltrate pancreatic islets and participate in the destruction of b
cells (47, 48). A further study has shown that macrophages can

produce more IL-1b, and IL-1b may contribute to b-cell
destruction (49).

Second, NK cells may also be involved in LADA

development. Wang et al. (50) have found a higher number of

inducible interferon (IFN)-g (+) NK cells in newly diagnosed

Chinese LADA patients compared to controls. IFN-g released by
NK cells may promote LADA development by affecting islet b
cells. The role of NK cells in LADA is not well understood, with

some studies reporting a decrease in the number of NK cells,

while other studies have indicated an increase in the number of

NK cells (51, 52). In a Caucasian population with LADA, the
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number of CD3-CD56+ NK cells has decreased, unlike that in

healthy individuals (52), whereas in Chinese LADA patients, the

number of activated NKp46(+) NK cells has significantly

increased (50). Interestingly, the expression of NKG2D, a

surface-activated receptor for NK cells, has been reduced in

type 1 diabetes patients and an animal model (53, 54). In

contrast, in patients with LADA, NKG2D expression has been

increased, while the expression of killer cell immunoglobulin-

like receptor 3DL1 has been decreased (52). This might imply a

distinction between LADA patients with slower progression of

b-cell injury (52).

DCs are involved in pancreatitis along with macrophages

and activate CD4+ T cells via IL-12 secretion (55). Evidence has

shown that the proportion of CD123-CD11c+ DCs is lower in

patients with LADA than that in patients with type 1 diabetes,

implying a slower progression of LADA, unlike in acute type 1

diabetes patients (56). However, to date, few studies have been

performed on the importance of DCs in LADA.

Finally, NE counts have shown a gradual increase from type

1 diabetes and LADA to type 2 diabetes and correlated with the

number and level of islet b-cell autoantibodies (57). Data have

shown that patients positive for glutamic acid decarboxylase

antibodies (GADA), protein tyrosine phosphatase 2 antibodies

(IA2A), and selective zin transporter 8 (ZnT8A) all had minimal

NE counts, suggesting an association between NE and

autoimmune dysfunction and b-cell failure in diabetic patients

(57). In conclusion, although the exact mechanism of b-cell
failure is still unknown, the cross talk between immune cells is

slowly becoming elucidated.

3.4.2 Cellular immunity
Insulitis is a hallmark of b-cell immune-mediated

dysfunction and is characterized by various immune cell

infiltrates, consisting of CD8+ cytotoxic T cells, CD4+ T cells,

and B cells (58, 59). Insulitis exists in the pancreas of LADA

patients, as indicated by pancreatic scintigraphy (60), and it has

been verified in isolated pancreatic tissue and LADA animal

model (46, 61). Rolandsson et al. (62) noted that type 2 diabetes

patients with antigen-specific reactive T cells and no

autoantibodies were termed as T-LADA (Ab-T+). T-LADA

(Ab-T+) patients have worse b-cell function distinct from

classic type 2 diabetes (Ab-T-) (63). The latest study also

indicated that T cell-mediated autoimmunity plays an

important role in b-cell destruction and worse glycemic

control (64), implying that altered proportions and functional

defects of T-cell subsets are an important cause of autoimmunity

in LADA. Studies found that decreased regulatory T cells in

LADA mediate b-cell damage (65). Further experiments have

revealed that the expression level of forkhead box protein 3

(FOXP3) is downregulated in peripheral CD4+ T cells, and this

FOXP3 expression is regulated by STAT3-mediated epigenetic

silencing through HDAC5 and DNA methyltransferase 3b
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(66, 67). In addition to T-cell subsets, B-cell subsets also have an

alteration, in which the size of the marginal zone B is increased

while the number of follicular B and IL-10-producing regulatory

B (B10) cells is decreased. This change has been associated with

the loss of self-tolerance and the destruction of islet b cells (68).

A previous study has suggested that B10 cells can exert anti-

inflammatory effects and maintain peripheral tolerance by

secreting IL-10 in type 1 diabetes patients (69).

3.4.3 Humoral immunity
Humoral immunity is primarily reflected in the presence of

islet autoantibodies in the serum of patients with LADA. In

fact, autoimmunity to islet b cells precedes the onset of LADA

by several years. A prospective study has verified this

phenomenon in nearly 60% of LADA patients (70). GADA,

as one of the most potent autoantibodies and sensitive

diagnost i c markers , i s involved in b ce l l - spec ific

autoimmunity (71). The discussion on whether GADA levels

can predict the functional exhaustion of b cell has lasted for

years without reaching definitive conclusions. Some believe

that GADA antibodies have high predictive power (72), while

others do not (73). Furthermore, a transient increase in

circulating GADA levels may result from body weight gain

or b-cell stress, not necessarily indicating an underlying

ongoing autoimmune process. Quantitative data on antibody

levels should make it easier to decide whether patients have

true LADA or a mere surge in antibody levels due to

metabolic decompensation. Additionally, the affinity and

identifying specific epitopes of islet autoantibodies help

improve the prediction of insulin deficiency (74). The

electrochemiluminescence (ECL) assay is a promising islet

autoant ibody detect ion method that can precise ly

discriminate between high-affinity and high-risk specific

autoantibodies, leading to an earlier identification of islet

autoimmunity initiation before clinically evident diabetes

(75). According to ECL analysis, ECL-GAD65 antibody-

positive participants resemble type 1 diabetes patients with

slender body size and poor b-cell function, whereas ECL-

GAD65 antibody-negative patients have a similar phenotype

to type 2 diabetes individuals with good b-cell mass and a slow

rate of insulin insufficiency (74). The presence of IA-2A is also

effective in predicting the future need for insulin therapy (76).

A report indicated that among seven IA-2 constructs, the IA-2

(256–760) fragment was analyzed as the most sensitive marker

for detecting humoral IA-2 immunoreactivity in patients with

LADA (77). Moreover, as verified in an animal model, the

reduced activity of pancreatic b cells ZnT8 can contribute to

impaired b-cell function and accelerate diabetes related to islet

amyloidosis (78). Recently, a new autoantibody of LADA,

tetraspanin 7 autoantibodies (TSPAN7A), has been

investigated. TSPAN7A is a valid islet autoantibody for use

in East Asian populations suffering from LADA and can
Frontiers in Endocrinology 05
discriminate against individuals with LADA who have a

lower b-cell function after disease progression (79).
3.5 Environmental factors

Environmental factors may also contribute to LADA

occurrence and progression. Numerous studies have

indicated that physical activity, smoking, drinking, sweetened

beverages, coffee intake, viruses, and gut microbiota are related

to disorders in glucose metabolism, insulin sensitivity, and

autoimmune destruction of LADA (80–83). High physical

activity can regulate metabolism and increase immunity (80).

Individuals who exercise daily have a three-fold lower risk of

developing LADA compared to those who exercise less than

once a week (81). Notably, the association between smoking

and LADA incidence has been contradictory. A 22-year

follow-up study found that heavy smoking can suppress

autoimmunity in a Norwegian population with LADA (84),

while some data from a Swedish case–control study indicated

that heavy smoking increases the risk of LADA compared with

never-smokers who have high levels of homeostatic model

assessment of insulin resistance and b-cell function and

lower levels of GADA (85). Additionally, certain evidence

has suggested that smoking or nicotine has a biphasic action,

which depends on patients’ different smoking statuses (86, 87).

Further studies have indicated that former and current

smoking is associated with high or low islet b-cell function,
respectively (88).

Recently, an emerging study has demonstrated a significant

link between gut microbiota and autoimmune targeting of islet b
cells (83). LADA patients exhibit various gut microbiota and

metabolic profiles compared with healthy subjects and classic

type 1 and 2 diabetes patients. Furthermore, data have suggested

that patients with LADA have a decrease in short-chain fatty

acid (SCFA)-producing bacteria. SCFA-producing bacteria can

regulate intestinal hormones, increase insulin sensitivity, and

attenuate islet b-cell destruction (89, 90). Additionally, acetate

and butyrate derived from non-obese diabetic mice gut

microbes have been demonstrated to serve as protective

factors to inhibit insulitis development. In contrast, acetate

and butyrate in the diet decrease the proportion of

autoreactive T cells, increase regulatory T-cell counts, enhance

the function of regulatory T cells, and boost gut integrity (91). A

further study has shown that the transfer of microbiota to

pancreatic lymph nodes triggered the intracellular protein

receptor nucleotide-binding oligomerization domain-

containing 2 (NOD2) activation and contributed to the onset

of type 1 diabetes (92). Remarkably, this suggests that gut

dysbiosis in patients with autoimmune diabetes may

contribute to the onset and progression of the disease, but this

requires further high-quality evidence to confirm it.
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4 Hypoglycemic agents and islet
b-cell protection

Currently, for LADA drug treatment, some hypoglycemic

agents can prolong the duration of the insulin-independent stage

progression to the insulin-dependent stage. Achieving strict

glycemic management is the basis of preventing or postponing

preserved b-cell destruction and inhibiting the development of

diabetic complications in LADA patients.
4.1 Insulin

Certain studies have reported that insulin therapy is

rational and essential for intervention in progressive b-cell
deterioration in LADA patients, especially in patients with the

early onset and more preserved b-cell function (93–95). The

possible reason for protecting b-cell function using insulin in

LADA patients may be due to a decrease in antigen expression

and autoimmune attack on b cells as a result of exogenous

insulin inhibition of b-cell activity (94). Furthermore,

exogenous insulin may lead to immune tolerance and inhibit

subsequent immune pathways, thereby protecting residual b
cells (94). Additionally, exogenous insulin prevents the

accumulation of amylin-positive amyloid in b cells, which is

considered one of the most important pathogenic mechanisms

of b-cell failure (94). One study reported that therapy with

intensive insulin in newly diagnosed type 2 diabetic patients

has a great significance for the recovery and maintenance of b-
cell function (96). We speculate that intensive insulin therapy

can protect islet b-cell function in LADA patients. However, to

date, studies on insulin intensification in patients with LADA

have not been reported.
4.2 Insulin sensitizer

Metformin, an insulin sensitizer, is the most commonly used

hypoglycemic drug. Patients with LADA who have not yet

progressed to the insulin-dependent stage often utilize

metformin to control their blood glucose levels. However, it has

been shown that metformin does not delay or halt the progressive

deterioration of b-cell function in youth with impaired glucose

tolerance or newly diagnosed type 2 diabetes (97). In patients with

LADA, this is unclear, and further studies are needed.

Thiazolidinediones (TZDs), as a stronger insulin sensitizer,

have anti-inflammatory activity on b cells and can increase their

survival during the non-insulin-dependent stage of LADA. For

example, Brooks-Worrell et al. (98) treated T-LADA patients

with rosiglitazone for 3 years and found that the levels of IFN-g
and IL-12 secreted by autoreactive T cells in the intervention

group were lower than those in the control group, suggesting
Frontiers in Endocrinology 06
that rosiglitazone can delay islet failure by inhibiting

autoreactive T cells. Moreover, clinical studies in China

showed that rosiglitazone alone or in combination with insulin

can maintain C-peptide levels and protect islet b-cell function in

LADA patients (99). In animal models, TZDs have protected the

structure and tissue integrity of pancreatic islet cells, ameliorated

oxidative stress, reduced apoptosis stimulation, and promoted

the proliferation of islet b cells, thereby improving insulin

secretion and regulating blood glucose levels (71). Regretfully,

the side effects of the cardiovascular risks of this drug have

extremely limited its use in patients with LADA.
4.3 Dipeptidyl-peptidase-4 inhibitors

Dipeptidyl-peptidase-4 inhibitors (DPP-4is) have exhibited a

promising role in b-cell function protection in LADA patients. A

randomized controlled trial has observed the changes in T-cell

phenotype, downregulation of messenger RNA expression, and

improved glycemic control in LADA patients after 12 months of

treatment with sitagliptin (100). Similarly, other studies have

concluded that saxagliptin increases islet b-cell function in patients

with LADA (101–103). Moreover, recent studies have shown that

saxagliptin combined with vitamin D has a beneficial effect on islet b
cells (104, 105). Mechanistically, DPP-4is may influence the control

of glucose metabolism in patients with LADA. Further, DPP-4is

increase glucagon-like peptide-1 levels and inhibit glucagon levels,

thereby boosting insulin secretion after glucose loading through the

activation of DPP-4 receptors. Additionally, DPP-4 receptors have

also been expressed on the surface of T lymphocytes, and studies

have suggested that they are associated with immune regulation,

which might have a significant role in delaying and stopping b-cell
immune destruction in LADA (101, 106–108).
4.4 Glucagon‐like peptide-1
receptor agonists

Glucagon-like peptide-1 receptor agonists (GLP-1RAs),

including liraglutide and dulaglutide, have been approved to

treat type 2 diabetes and obesity. They elicit robust

improvements in glycemic control and weight loss, combined

with cardioprotection in individuals at risk of or with preexisting

cardiovascular disease (109). GLP-1RAs seem to have a potential

role in the treatment of patients with overweight or obese LADA.

A post-hoc analysis of the AWARD-2, -4, and -5 trials has found

that dulaglutide can reduce glycated hemoglobin (HbA1c) levels

in patients with LADA (110). Recently, liraglutide combined with

an anti-IL-21 antibody has been shown to preserve islet b cells in

adults with recent-onset type 1 diabetes (111). A further study has

found that continuous infusion of GLP-1RA in non-obese diabetic

mice can reduce b-cell apoptosis, promote b-cell regeneration,
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and delay disease development (112). In vitro, GLP-1RA can

suppress cell apoptosis and enhance glucose response in freshly

isolated human islets (113). However, whether GLP-1RAs can

preserve islet b-cell function in LADA patients requires further

confirmation by a randomized controlled clinical trial.
4.5 Sodium-glucose cotransporter
2 inhibitors

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are a

new class of antidiabetic drugs. Research has clearly demonstrated

that SGLT2is, such as empagliflozin, canagliflozin, and

dapagliflozin, have pleiotropic effects in preventing

cardiovascular and chronic kidney diseases beyond their

favorable impact on hyperglycemia (114). Studies have reported

that SGLT2is can decrease HbA1c levels in patients with type 1

diabetes, and the European Union has approved SGLT2is for the

treatment of adult type 1 diabetes patients with poor blood glucose

control and obesity (115, 116). However, the roles of SGLT2is in

LADA have not been well studied. Recent data have suggested that

the cardiorenal protective properties of these new therapies are

present even in people without diabetes; thus, the extrapolation of

their results on LADA individuals seems reasonable (117).

SGLT2is and GLP-1RAs should be considered for the

management of people with preserved insulin production and at

high cardiovascular risk. The risk of diabetic ketoacidosis with

SGLT2i yet requires increased vigilance by clinicians.
5 Immune intervention and islet
b-cell protection

Several immune interventions, as an emerging and

promising therapeutic approach, aimed to counteract

autoimmune responses against b cells and preserve b-cell
function are currently being investigated. Glutamic acid

decarboxylase (GAD) is a major autoantigen in the process

leading to LADA with both a clear cell-mediated immune

response to GAD and autoantibodies to GAD. Administration

of the GAD65 isoform can prevent autoimmune destruction of

pancreatic b cells in non-obese diabetic mice and the subsequent

need for exogenous insulin replacement (118–124). In phase I

and II studies, an alum-formulated vaccine (Diamyd) has shown

to be safe, and in a dose-finding study in LADA patients, 20 mcg

of Diamyd has been given subcutaneously 1 month apart,

indicating the preservation of residual insulin secretion (125,

126). Additionally, a double-blind, multicenter study has found a

good safety and tolerability profile for multiple subcutaneous

doses of HSP60 peptide (DiaPep277) in LADA patients (71).

With this promising background, further studies are coming.
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There is increasing attention to the non-mineral metabolism

function of vitamin D. Evidence has shown that the vitamin D

system may be involved in autoimmunity pathogenesis (127).

Our previous research has shown the protective effects of 1-

alpha-hydroxyvitamin D3 on residual b-cell function in patients

with LADA (128). The use of immunotherapeutic agents in a

combination therapy appears to be a valid approach to obtaining

better results in terms of b-cell mass and function preservation.

DPP-4is combined with vitamin D3 can delay the loss of b cells

and improve endogenous insulin production in patients with

new-onset type 1 diabetes and LADA (104, 129, 130). The main

findings on the use of combination therapy with vitamin D and

DPP-4is in patients with autoimmune diabetes have been

summarized elsewhere (131). Vitamin D may boost anti-

inflammatory response, enhance immunomodulatory effects,

induce immune tolerance, and potentially stimulate insulin

synthesis and secretion. Additionally, DPP-4is have been

shown to develop similar actions on the innate and adaptive

immune systems. The co-administration of both vitamin D and

DPP-4is may substantially strengthen the efficacy of each

compound as immunomodulators.

Over the past two decades, research has identified multiple

immune cell types and soluble factors destroying insulin-

producing b cells in type 1 diabetes. Effective immunotherapies

to treat type 1 diabetes are currently under development. Bluestone

et al. (132) have summarized current results for targeting

complementary nodes in immunotherapies that have shown

efficacy in patients with type 1 diabetes, as well as additional

efforts in next-generation immune therapeutics. These immune

therapeutics included cytokine antagonists, cytokine agonists, T-

cell activation inhibitors, T effector cell depletion and exhaustion

therapy, checkpoint agonists, regulatory cell-based therapy, B-cell

antagonists, microbiome therapy, and autoantigen therapy.

Whether these immunotherapies can be used for LADA and

their effect of protecting b-cell function are questions expected to

be answered in future research. LADA represents an ideal model

for exploring immunotherapy of autoimmunity and b-cell
function because it is typically associated with a lower and less

severe immune-mediated b-cell destruction compared to type 1

diabetes. Therefore, LADA offers a wider window to test immune

interventions that may slow down a b-cell failure.
6 Conclusions and future
perspectives

Currently, there is an urgent need for an optimal treatment

scheme for LADA patients. This scheme should not only achieve

good blood glucose control but also actively protect islet b cell

cells and their function and delay and prevent complications as

long as possible. The importance of therapeutic methods in
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protecting islet b-cell function in LADA is attracting significant

attention. This article highlighted the risk factors and protection

aspects of islet b cells in LADA according to the age of onset,

BMI, environmental factors, genetic background, immune

mechanisms, hypoglycemic agents, and immune therapeutics

(Figure 2). To date, delaying islet b-cell exhaustion and precision

treatment of LADA still face many challenges. Over the past two

decades, research has identified multiple immune cell types and

soluble factors that destroy insulin-producing b cells. These

insights into disease pathogenesis have enabled the

development of therapies to prevent and modify LADA.

Furthermore, research concentrating on b-cell protection

treatment options can provide potential opportunities for b-
cell protection and reversal of diabetes, such as b-cell
dedifferentiation, regeneration, and b-cell replacement.

There is a great need for additional studies exploring the

protection of islet b cells in LADA prevention and treatment.

Several studies have supported the development of b-like cells by
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transplantation in vitro (133). Human pluripotent stem cell-

derived pancreatic islets have received widespread attention as a

promising cellular resource for diabetes therapy. A recent study

has indicated that transoral injection of human chemo-induced

pluripotent stem cells into non-human primates with diabetes

can significantly recover the secretion of endogenous insulin and

improve glycemic management (134). Utilizing current evolving

and extensive technologies and platforms to study human b cells

will permit a more elaborate investigation of the underlying

mechanisms and will also stimulate the further advancement of

therapeutic methods dedicated to human b-cell quality and

function (135). The progress in stem cell biology and

transplant site engineering has provided both innovative

sources of cellular material and improved transplantation

approaches. Frontier methods to guard against xenograft

rejection and relapsing autoimmunity are also included (136).

However, there is still a long distance to cross to the application

of these to the therapy of b cells in diabetic patients.
FIGURE 2

Comprehensive factors affecting b-cell protection and therapy in LADA patients. b-cell function in LADA patients can be affected by cellular,
humoral, and innate immunity. Additionally, studies have shown that age of onset, body mass index, environmental factors, genetic background,
hypoglycemic agents, and immune intervention can also play an important role in b-cell damage in patients with LADA. In the future, b-cell
dedifferentiation, regeneration, and b-cell replacement may be a promising approach to cure LADA patients. NK cell, natural killer cell; TZDs,
thiazolidinediones; DPP4i, dipeptidyl-peptidase-4 inhibitor; GLP1-RA, glucagon-like peptide-1 receptor agonist; SGLT2i, sodium-glucose
cotransporter 2 inhibitor.
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