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Polygenic Health Index, General 
Health, and Pleiotropy: Sibling 
Analysis and Disease Risk 
Reduction
Erik Widen1,2*, Louis Lello1,2*, Timothy G. Raben1, Laurent C. A. M. Tellier1,2 & 
Stephen D. H. Hsu1,2

We construct a polygenic health index as a weighted sum of polygenic risk scores for 20 major disease 
conditions, including, e.g., coronary artery disease, type 1 and 2 diabetes, schizophrenia, etc. 
Individual weights are determined by population-level estimates of impact on life expectancy. We 
validate this index in odds ratios and selection experiments using unrelated individuals and siblings 
(pairs and trios) from the UK Biobank. Individuals with higher index scores have decreased disease 
risk across almost all 20 diseases (no significant risk increases), and longer calculated life expectancy. 
When estimated Disability Adjusted Life Years (DALYs) are used as the performance metric, the gain 
from selection among ten individuals (highest index score vs average) is found to be roughly 4 DALYs. 
We find no statistical evidence for antagonistic trade-offs in risk reduction across these diseases. 
Correlations between genetic disease risks are found to be mostly positive and generally mild. 
These results have important implications for public health and also for fundamental issues such as 
pleiotropy and genetic architecture of human disease conditions.

Interest in polygenic risk scores (PRS) and the ability to estimate disease risks from genotypes has increased 
steadily over the past decade. A polygenic risk score maps an individual genotype to a score that reflects genetic 
risk for a particular disease; most PRS depend on hundreds or thousands of individual loci in the genome. As 
biobank data sets have grown larger, so have the performances and applicability of PRS. There are now a multitude 
of predictors that can assign estimated disease risks with an accuracy that has reached clinical utility. Disease 
conditions as diverse as coronary artery disease, breast cancer, and schizophrenia can be predicted with a useful 
accuracy from genetic information alone1–21. Typically, PRS are trained on and applied to a single disease but with 
many such risk predictions available it is natural to ask whether they could be combined into a general health 
index—a single number to describe the overall health of an individual. This question has already been explored 
in22, where the authors created a composite PRS using a cox-hazard model, utilizing diseased participants of the 
UK Biobank (UKB). This composite PRS was found to predict longevity. The impact on longevity and individual 
disease burdens from individual variants has also been studied, using the Finish databank FinnGen23.

In this paper, we construct a form of general health index by combining PRS for 20 diseases (Table 1), choos-
ing the individual disease weights in an attempt to minimize the number of life years lost due to illness. The 
choice of conditions to include in the index was partly idiosyncratic—determined by the set of well-performing 
PRS available, prioritized by overall burden (life expectancy impact times population prevalence). The list is not 
exhaustive and future extensions of this work are planned. We evaluate whether a single number index score 
is a useful reflection of an individual’s various disease risks and their combined effect on estimated life years. 
If true, health indices could be a valuable tool for clinicians and patients to assess combined risks and genetic 
health predisposition. For a wide range of reasons, interpreting clinical risk based on genetic data can be difficult 
for both patients24–29 and clinicians30–32. Combining PRS into a single metric can greatly simplify the process of 
evaluating genetic risk reports.

Another prominent application of a general health index is to inform embryo selection in IVF cycles (in vitro 
fertilization). Embryos are routinely biopsied for aneuploidy and monogenetic disease tests. For cycles resulting 
in more than one euploid embryo (without any of the monogenetic disease variants), clinicians and prospective 
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parents typically select which embryo to implant based on visually assigned embryo grades. With the advent of 
preimplantation polygenetic testing, a general health index could additionally be used to guide this choice and 
reduce the overall disease risk for the baby.

A priori, it is not given that such a health index would be useful. A common preliminary objection is that an 
index or single PRS, while reducing the risk for one disease, could inadvertently increase the risk for another33,34. 
However, it has long been known that several pairs of diseases, often grouped into categories, in reality tend to 
co-occur35–46. It seems possible that there are genetically influenced large systems (circulatory, digestive, meta-
bolic, etc.) that vary across individuals in robustness, and which affect disease risks across multiple conditions. 
This could, at least for some broad categories of diseases, allow for useful indices. The specific concern raised 
for polygenic health indices has been the possibility of antagonistic pleiotropy, i.e., that a single gene may affect 
more than one disease risk simultaneously and in such a way that it decreases one disease risk while increasing 
another. If such pleiotropy were very common, there would not be much point of a genetically based health index.

In this paper, we examine both underlying phenotypic comorbidities and genetic pleiotropy to answer whether 
the notion of genetic general health can be meaningful and—if so—if the proposed health index is indicative of 
health outcomes and can be used to reduce several disease risks without risking significant trade-offs. We find 
that the 20 studied diseases frequently occur together, sometimes with strong positive phenotypic correlation, 
while the genetic pleiotropy is usually small and slightly positive, or negligible. More importantly, we show in 
practice, using real genetic and health data, that the proposed health index can identify individuals at high or low 
risk for almost all the 20 diseases simultaneously. We observed individual disease risk reductions even beyond 
40% (CAD, heart attack, diabetes type II) when selecting the highest index among five individuals, as compared 
to the general population. We further see no statistically significant evidence for inadvertent risk increments 
among any of the 20 diseases, nor among any of 11 additionally analyzed common diseases that did not have 
predictors included in the index.

These conclusions are drawn from several experiments. We apply the constructed index to about 40,000 late-
life individuals of European ancestry for whom both genotypes and medical history are known, using the UK 
biobank (UKB). Odds (prevalence) plots are shown for the most common diseases but the majority of the results 
are in form of selection experiments. The test data samples are grouped, using different group sizes in different 
experiments, and the sample with the highest health index is selected from each group. The selected individu-
als are then compared to the total test set to see the health differences in the medical history data, computing 
metrics like Relative Risk Reduction (RRR) and estimated gained life years. These experiments are repeated and 
confirmed with a very strong test of the genetic signal: selection among pairs (21,539) and trios (969) of genetic 
siblings. Siblings have both less genetic variation and typically share similar family environments, thus consti-
tuting an excellent test set. Finally, the underlying phenotypic and PRS dependencies among the 20 diseases in 
the index are analyzed, as well as the index relations (t-tests and correlations) to 11 common diseases not in the 
index, 5 addiction phenotypes, and 5 continuous phenotypes.

It is well-established that PRS are more accurate within a population ancestrally homogeneous and similar 
to the training population—–however, generally a positive effect in one ancestry will persist in more distant 
ancestries. Research on this topic is ongoing and of high interest7,47–50. The primary motivation for this paper is to 
investigate whether a composite genetic health index is reflective of general health in principle and we therefore 
focused on a single ancestry with maximum amount of data.

Only the listed 20 diseases in the index, and an additional 11 conditions, were analyzed in this paper. Although 
studies of general health will never exhaust the list of everything that may be relevant, it is important to stress the 
limited scope of this first analysis of the genetic health index. There are many diseases with significant mortalities 
and disability burdens whose impact and dependencies on the index are not taken into account in this presenta-
tion . Also, non-pathological traits, such as grip strength, reaction time, and cognitive metrics etc., may correlate 
with the index. This paper only examined five such phenotypes. Follow-up studies expanding the scope of the 
analysis—both in terms of more diseases and other traits—are already ongoing. For this publication however, 
we emphasize again that the results presented refer to general health in terms of the listed 20 diseases only, and 
when indicated the additional 11 conditions.

Table 1.   Disease abbreviations and predictor AUCs.AUCs are listed with the standard deviations in 
parentheses, as computed by 30 bootstrap runs (see Supplementary Information for more details and case/
control counts).

Abbr. Disease AUC​ Abbr. Disease AUC​ Abbr. Disease AUC​

AD Alzheimer’s disease 0.686(0.004) HA Heart attack 0.580(0.008) Obes Obesity 0.669(0.002)

AFib Atrial fibrillation 0.623(0.004) HCL Hypercholesterolemia 0.616(0.003) PC Prostate cancer 0.64(0.02)

ASA Asthma 0.626(0.004) HTN Hypertension 0.635(0.003) SCZ Schizophrenia 0.67(0.03)

BC Breast Cancer 0.594(0.008) IBD Inflammatory bowel 
disease 0.647(0.003) T1D Type I diabetes 0.63(0.02)

BCC Basal cell carcinoma 0.62(0.01) IS Ischemic stroke 0.541(0.002) T2D Type II diabetes 0.616(0.004)

CAD Coronary artery disease 0.616(0.005) MDD Major depressive 
disorder 0.534(0.001) TC Testicular cancer 0.61(0.04)

Gout Gout 0.65(0.01) MM Malignant melanoma 0.57(0.02)
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All analyses, except where otherwise specified, are performed on self-reported white samples from the full 
UKB release (2021-04); these are almost exclusively of European ancestry. We set aside 39,913 samples (contain-
ing a large number of genetic siblings) as a pure test set, withheld from all predictor training and hyperparameter 
tuning (see the Supplementary Information for details on the test set). The PRS are constructed through a previ-
ously published LASSO-algorithm7 trained on ∼ 200k-400k samples from the training portion of the same UKB 
data, except for the predictors for AD, IBD, IS, MDD, and SCZ (predictors leveraging other specialized datasets 
performed better for these traits). More details on the predictors can be found in the Supplementary Information.

Results
Overview of methods.  Polygenic health index.  There are many ways to construct a polygenic health in-
dex from multiple PRS. Here we investigate the performance of a single linear combination of risk estimates, 
attempting to reduce lost life years. Let ld be the estimated reduction in life expectancy for an individual having 
a disease d as compared to the general population, and let ρd be the lifetime risk in the general population of 
getting the disease. For the predicted risks rd , we define the health index to be

for a selected set of diseases D (this paper consistently uses the 20 diseases in Table 1). As such, a higher I should 
correspond to a healthier individual. As a proxy for ground truth in our test data set, we also define a case/
control-based version, Ic , which instead of the risk rd uses the recorded case/control status c . (Since there is a very 
large overlap between the case definitions we used for CAD and HA, we choose to exclude HA from the case/
control based index Ic . Otherwise HA would practically be double-counted in the performance evaluation.) We 
use this quantity as measure of the real world outcome value of the index. We note that the majority of our UKB 
test set is still alive (age µ = 70, σ = 7 years) making Ic an imperfect measure of lifetime outcomes and skewed 
towards diseases with early onset. Still, since the mean age is not more than about one standard deviation (SD) 
from the average lifespan and the incomplete data masks cases as controls, rather than vice versa, we expect that 
a health index validated on an Ic using complete data (with perfect lifetime medical records and age of death) 
would have a better performance than what is measured in the UKB data. (The Supplementary Information 
contains more characterization of the test data.)

The index parameters ld and ρd were taken from literature studies, using the average values if more than one 
source was used (see Supplementary Information).

Gaussian risk model.  The health index definition Eq. (1) requires an estimated absolute (lifetime) risk r for 
each disease, modeled from the PRS as input. Depending on disease and predictor specifics, there are different 
possible choices for this modeling. A fairly general model, which works very well for sufficiently polygenic PRS 
(i.e., such that the Central Limit Theorem can be applied), models the PRS as drawn from a sum of two normal 
distributions with case/control status dependent means ( µ1/µ0 ) and joint variance. The PRS probability distribu-
tion can then be written as

where π is the population prevalence and N  is the normal distribution. This leads to the Gaussian risk model

The case and control variances do not need to be equal in principle (unequal variances can lead to unrealistic 
behavior in the tails) but in practice tend to be close in value (see Supplementary Information). We use estimates 
of µ0,µ1 , and σ based on the PRS in test set controls and cases.

Selection experiment from groups of unrelated individuals.  To evaluate the performance of the health index, 
we created sets of groups and carried out selection experiments, i.e., we grouped together random individuals 
in the test set into groups of a specific size and than picked one individual from each group. In index selection 
experiments, we selected the individual with the highest index value. In PRS selection experiments we selected 
the individual with the lowest PRS (lowest risk) for a specific disease.

We created 40k random groups from the samples belonging to the intersection of all predictor test sets, such 
that no sample was used in any type of training nor hyperparameter tuning. Each sample was scored and assigned 
a raw and a sex-adjusted (see Supplementary Information) health index, as in Eq. (1). For each selection outcome, 
we calculated the relative risk reduction (RRR) for each individual disease and the index gain as measured in the 
case/control-based index Ic , as compared to a completely random selection (i.e., the general population statistics):

Here g sums over all Ngroup groups, Icgsel is the health index for the selected individual in group g, and �·� denotes 
the sample means, i.e., 〈Ic〉g is the average health index value in group g, 〈Ic〉sel is the average among all selected 
individuals, and 〈Ic〉 is the average in the total test set. The index gain �Ic can be viewed either as the average 

(1)I =
∑

d∈D

ld(ρd − rd) ,

(2)φ(PRS) = (1− π)N (µ0, σ)+ πN (µ1, σ) ,

(3)
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1
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π
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index difference between the selected individual and its group average or as the difference between the average 
selected index and the general population average ( ∗ holds for constant group size). Note here that we are using 
the case/control status based index, Ic , as evaluation metric which does not use any genetic information but 
only individual lifetime disease status (see Supplementary Information for details), together with the population 
based lifespan impact and lifetime risk estimates. The full selection experiment procedure is illustrated in Fig. 1.

We repeated all selection experiments 25 times to get a bootstrap estimate of the errors, reusing the same 
samples but assigning them into different groups. Thus, these are underestimates neglecting the additional vari-
ance that would come from also using other samples, while the groupings are practically unique.

For the three sex specific diseases (breast, prostate and testicular cancer), we compared only the subsets with 
the relevant sex of the selected and random sets when calculating the RRR and index gain.

Genetic sibling selection.  The selection experiments on unrelated individuals provide good metrics for how the 
health index performs in the general population. A much stronger test, that is also more relevant to the applica-
tion of embryo selection, is to repeat the same experiments using real world siblings, sharing half their genetic 
material. Accurate prediction within siblings is challenged both by this reduced genetic variance and by more 
similar environments; it is thus a rigorous test of genetic prediction performance.

We repeated the selection experiments for 21,539 pairs and 969 trios of genetic siblings. Since the sibling data 
cannot be re-grouped as in the unrelated selection experiments, we opted to not use bootstrap errors but instead 
calculate the theoretical 95% confidence interval for the prevalence among the selected siblings, based on the 
Wilson score interval. It was translated to the RRR metric through Eq. (4), keeping the population prevalence 
πrand fixed. We did not estimate the errors for the index gain metric when selecting among genetic siblings.

Additional diseases and phenotypes.  The health index probes 20 diseases directly. Although that corresponds to 
a sizable subspace of the most common and impactful diseases, it is still far from a complete coverage of “general 
health”. To make an initial probe of diseases and phenotypes not directly included in the index, we examined 
the genetic health index distributions among cases and controls for 11 additional diseases: bipolar disorder, 
chronic kidney disease, chronic obstructive pulmonary disease, colorectal cancer, leukemia, lung cancer, lupus, 
lymphoma, osteoporosis, rheumatoid arthritis, and stomach cancer. In addition, we looked at five self-reported 
survey questions about addiction history for which we did the same binary trait analysis.

We also examined the correlations between the genetic health index and five continuous phenotypes: lung 
capacity (forced expiratory volume and forced vital capacity), fluid intelligence, grip strength, and height. Lastly, 
we performed a linear regression using all the (L2-normalized) additional phenotypes to see whether they were 
predictive of the health index. Since the health index is systematically different for males and females, we con-
ducted all these additional analyses separately for the two sexes (see the Supplementary Information for a sex 
neutral version of the index).

Selection experiment using groups of unrelated individuals.  We report the overall index gain ( �Ic 
from Eq. 4) from the selection experiments on unrelated individuals in Fig. 2. It documents a well-established 
and consistent gain that increases with group size, maintaining a positive increment even when selecting among 
more than ten people. The health index distribution is non-Gaussian with standard deviation (SD) of 1.56 esti-
mated life years and with a skewness of −0.49 . The difference between the mean health index values for the top 
and bottom 5% of the index I was 5.10 predicted life years. The corresponding difference between these groups 
was 3.49 years when measured with the case/control based index Ic (a smaller difference is to be expected due to 
the incomplete case/control data). Despite different methods and disease sets, we note the connection to22 which 
reported similar values in lost life years per SD and difference between top and bottom 5% of composite PRS. In 
Fig. 3, the selection experiment result at the group size of five is broken down into the RRR and the component-
wise index gain for each disease, allowing a more fine-grained view of the performance. Strikingly, the RRR 
graph is overwhelmingly positive thus demonstrating compelling evidence that selected individuals with higher 
health index score have lower incidence for almost all diseases at the same time. 15 out of the 20 disease have 
statistically significant positive RRR, reaching over 40% for the most reduced disease risks (CAD, HA, T2D), 
whereas none is significantly negative or even has a negative central value. It is important to note that although 
the weights ld matter for how the index is constructed and thus for whom is selected, they have no direct impact 

Figure 1.   The selection experiments.The test set is scored with the health index I or a single PRS and is 
randomly divided into groups of equal size. The individual with the best score in each group is selected and the 
health status among the selected are then compared with the general test set. The symbols in Eq. (4) refer to 
indicated subsets.
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on the RRR metric itself - only the actual disease status is measured. As such, the RRR plot is a true measurement 
of the reduced disease incidence. In contrast, the right plot in Fig. 3 of the index gain �Ic involves the weights 
both in selection and in evaluation. Using the weights based on estimated lost life years, we get a disease-by-
disease breakdown of the index gain. Again, there is a statistically significant positive contribution from almost 
all diseases with obesity, type II diabetes, major depressive disorder and CAD as the strongest contributors.

The average component gains in Fig. 3 depend both on the quality of the individual PRS, the weights ld and 
the test set prevalences. For example, the AD predictor has a much stronger individual performance than MDD 
(AUC ∼ .69 vs ∼ .53 ) while MDD has stronger weights than AD in the index ( lMDD/lAD ≈ 1.6 ). The index 
achieves a RRR of about 31% for AD and 12% for MDD, with the individual PRS-performance having a larger 
impact on the RRR metric. Meanwhile, MDD has about four times the AD contribution to the index gain, largely 
due to it being about ten times more prevalent in the test set. Naturally, common diseases contribute more to 
the average index difference than rare ones. Both AD and MDD have some strong comorbidities and milder 

Figure 2.   The estimated gain from index selection is a clearly positive function of group size, both using disease 
weights as defined by population estimates of lost life years or using disease weights based on disabilty-adjusted 
life years (DALY). Left: the index gain, as measured as the average health index difference between selected 
and random individuals ( �Ic in Eq. (4)), is growing monotonically with group size and with a continued clear 
positive derivative at group sizes of 10. Notably, there is a strongly significant gain for all group sizes, even 
at a group size of 2. The error band is a 95% CI as computed by 25 experiments with independent selection 
groupings. Right: while still selecting on the same index Eq. (1), we evaluated it on a case/control status metric 
using DALY-weights, taking quality of life into account. Again, there is a clear and steady gain, with the gain 
at a group size at 10 reaching about 4 years. The error band is a 95% CI as computed by 25 experiments with 
independent selection groupings.

Figure 3.   Selecting on health index among five randomly grouped individuals reduces simultaneously the 
risk of almost all the studied diseases. Left: the RRR among the selected individuals as compared to random 
selection is dominantly positive, ranging from a few risks reductions statistically consistent with zero up to 
more than 40%. No disease risk is demonstrably increased. The case numbers for each disease are printed 
just above the x-axis and the error bars are 95% CI estimates from 25 repeated experiments with different 
selection groupings. Right: the estimated index gain for each of the index components (diseases), i.e., the disease 
component breakdown of Eq. (4), also shows non-negative gains across the board with most component gains 
being statistically significant. The unit on the y-axis is estimated life years (LY), as is the unit of Ic . This index 
is primarily driven by CAD, heart attack, hypertension, major depressive disorder, obesity and type II diabetes, 
due to their combinations of strong impacts ld and high population prevalence.
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PRS-correlations with other diseases; this is discussed further in “Characterization of phenotypic and genetic 
dependencies” . See also the Supplementary Information for a deeper discussion of the test set prevalences and 
their influence on the quantitative results.

The RRR and index gain metrics offer complementary information of the potential benefits: the RRR captures 
how much the risk can be reduced simultaneously, while the index gain translates this into estimates of the cor-
responding life years gained on average. All selection experiments selected on the index in equation (1), using 
lost life years ld as weights. A common alternative for assigning relative importance to diseases is the unit Dis-
ability Adjusted Life Years (DALY). While still selecting on our index (1), we make contact to the existing DALY-
literature by evaluating the index gain using a DALY-scale to the right in Fig. 2. The weights in the evaluating 
index difference �Ic were computed as population level DALY-coefficients ld + qd�yd , where qd is a disability 
factor between 0 and 1 and �y is the number of years between average age of onset and average age of death. As 
for the lost-life-year-based index, we only included contributions from the 20 listed diseases. The individuals 
selected from groups of size 10 had an increase of 4 DALY as compared to randomly selected individuals. This 
magnitude scale comports with previous studies23.

The index tries to minimize the risk for several diseases simultaneously. In Fig. 4 we demonstrate how all the 
RRR from index selection compare to the RRR when selecting directly on the individual disease PRS, i.e., how 
much the index retains of the maximal risk reduction you would achieve if you focused on reducing a single 
disease. The direct PRS-selection tend — as naively expected — to reduce the specific diseases risk more than the 
index, especially for those diseases with very small weights (BCC, IBD). Yet, there are several examples where 
the index actually matches or even surpasses the direct PRS performance, most notably HA (probably because 
the strong/large comorbidity with CAD, HTN and obesity).

The PRS-comparison in Fig. 4 is a cross-section of the results at a group size of 5. The patterns are however 
consistent across all tested sizes, as seen in Fig. 5. The index reduces the risk of both T2D and CAD by about 50% 
at group size 10, consistently matching both the individual PRS-performances simultaneously. The consistent 
difference between PRS and index selection are also shown for Alzheimer’s disease and obesity.

For the most prevalent diseases (ASA, HCL, HTN and obesity), we also provide prevalence-per-index quan-
tile plots (odds ratio plots if divided by the general prevalence) in Fig. 6; the less prevalent diseases did not have 
enough cases for such high resolution. The top 4 percentiles have about half the risk of the bottom 4 percentiles 
to have either of hypercholesterolemia, hypertension, and obesity, while the risk reducing trend for asthma is 
less dramatic.

Genetic sibling pairs and trios.  The primary results for the selection experiment on pairs of siblings 
is shown in Fig. 7, broken down into RRR and component index gain for each disease. The same graphs also 
include as reference the results from the selection among unrelated samples at group size 2. The sibling with the 
largest health index was selected from each of the 21,539 sibling pairs; no bootstrap was carried out. Instead the 
RRR error bars for the genetic siblings are theoretical 95% confidence intervals using the Wilson score interval 
for the prevalences among the selected siblings. They are generally larger than the corresponding error bars 
for the group size 2 bootstrap experiment. The limited data, for the rarest diseases in particular, decrease the 
certainty and result in the large error bars. Yet, we conclude from Fig. 7 that even in the most challenging task 
of minimizing the disease risk among only two genetic siblings the index provides a simultaneous and verifiable 
reduction of many diseases, while others are left inconclusive in this data set. Among the 20 studied diseases, 
there is no example of verified increased disease risk. Similarly, the estimated index gain is non-negative for all 
disease components and sum up to a significant gain also among pairs of genetic siblings. (The mean values for 
BCC and Gout are negative but much smaller in magnitude than the uncertainty.).

The index selection experiment result on the 969 trios had to the most part large uncertainties due the small-
ness of the data set and low case counts. Only two disease RRR reached statistical significance, according to the 
theoretical RRR confidence intervals. Hypercholesterolemia and obesity were confirmed with positive RRR, 
while hypertension and type II diabetes bordered to positive significance. No disease was confirmed to have 
negative RRR. The full RRR and index gain plots for trios are to be found in the Supplementary Information.

Figure 4.   RRR comparison between selection on index and selecting on individual disease PRS.The individual 
disease RRR obtained by index selection contrasted with selection directly on the individual PRS, using a group 
size of 5. The case numbers in the test set for each disease are shown above the x-axis and the error bars are 95% 
CI as computed by 25 independent experiment runs.
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Additional diseases and phenotypes.  The t-tests for almost all the additional 11 diseases showed no 
statistical evidence for differences in mean for the health index distributions between cases and controls. That 
is, there is little to no relation between the non-significant diseases and the health index. Selecting on the health 
index would thus not affect these additional disease risks. Only in the cases of bipolar disorder and chronic 
obtrusive pulmonary disease (COPD) were there statistical significant differences between cases and controls 
among females. For males, only COPD and rheumatoid arthritis had significant differences. For all the mean 
differences of statistical significance, the health index is on average higher for the controls than for the cases. 
Note that no corrections for multiple testing was done and a Bonferroni correction (either with the number of 
diseases or number of sexes) would render the female bipolar result non-significant. Box plots, sample sizes and 
t-test p-values for all 11 diseases are presented in the Supplementary Information.

As with the 11 diseases, there were almost no significant deviations from equal health index means among 
the 5 addiction phenotypes. The statistical power was however much weaker due to the limited number of 
answering participants. Only male history of alcohol addiction had a significant mean difference between cases 
and controls, with cases having a slightly higher health index. Again, no correction for multiple testing was 
made and a Bonferroni correction (either per number of addictions or number of sexes) would leave all results 
non-significant. The box plots, sample sizes and t-test p-values for each addiction question are shown in the 
Supplementary Information.

The correlations with the additional continuous phenotypes were all weak but detectable. The strongest 
correlated trait was height at +0.06 for both males and females. While the correlations were small, the strong 
statistical power for these traits gave all linear regression slopes a non-zero value with high certainty. A table 
with correlations and p-values are presented in the Supplementary Information.

Figure 5.   The disease risk reduction from index and PRS selection for different group sizes.The relative 
performance between index selection and PRS for individual diseases varies, as seen in Fig. 4. Here shown as 
functions of the group size, we see the strongest performance step between having no selection (group size 1) 
and selecting between between two and also the continued, but less dramatic, benefits with larger group sizes. 
Notably, for the chosen examples type II diabetes and CAD, the full health index consistently perform as well as 
selecting directly on the specific PRS, showing no reduced effects on these disease from taking all the other into 
account. The index performance for Alzheimer’s disease and obesity, while not achieving the full risk reduction 
of their corresponding PRS, retain significant risk reductions for all group sizes. The error bars represent 
estimated 95% CI as computed by 25 selection experiments using different selection groupings.
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Lastly, the multivariate linear regression using all additional phenotypes to predict the genetic health index 
did not explain any of the variance. The R2 was 0.003 (std 0.009) for females and 0.005 (std 0.011) for males. We 
concluded that none of the additional 11+ 5+ 5 phenotypes were linearly predictive of the genetic health index.

Characterization of phenotypic and genetic dependencies.  The simultaneous disease risk reduc-
tion demonstrated for the index selection is bounded by potential disease dependencies, i.e., if two or more 
diseases tend to occur together (comorbidity) or are mutually exclusive. A commonly raised concern for PRS, 
and even more so for a composite health index, is the risk of antagonistic pleiotropy, i.e., that the same gene 
simultaneously increases the risk for one disease while decreasing the risk for another. Such a situation (or 
any cause of negatively correlated disease incidence) would impede simultaneous risk reduction. We examined 
this question for the 20 chosen diseases within our test set both on a genetic and phenotypic level. The result is 
presented in Fig. 8 through three quantities for each pair of diseases: the correlation between the PRS, the ratio 
between observed and expected comorbidity (called the χ2 ratio), and the p-value of a χ2 independence test (see 
figure caption for the details of the quantity visualization). The high information density in the plot requires 
some explanation but allows for quick comparison between all three quantities, both for individual pairs and for 
the disease set as a whole.

Contrary to the concern about strong impacts of antagonistic pleiotropy, we find that the disease incidences 
typically are pairwise dependent and overwhelmingly occur together. The predominantly solid green squares 
above the diagonal confirm that most of the disease pairs have comorbitities of statistical significance, in line 
with longstanding results such as coincidence of CAD and hypercholesterolemia. This makes a health index not 
only possible but an almost natural concept. The χ2 ratio, lower green triangle—triangles below the diagonal, 

Figure 6.   Prevalence in health index quantile bins for the most common diseases.We binned the test set 
according the health index into 25 equally distributed quantiles and plot the prevalence within each bin for the 
most prevalent diseases (allowing enough cases for the bin resolution to be meaningful). The general population 
prevalences are plotted as dotted reference lines (dividing with this number would give odds ratio plots) and the 
y-axis start at 0 to give a visual representation of the (odds) scales. For the intermediately risk reduced diseases 
(according to RRR Fig. 3) hypercholesterolemia, hypertension and obesity, there is a clear and systematic risk 
relationship across the entire range of the health index. For asthma, there is only a weak, detectable trend for the 
center values consistent with its existing but smaller RRR. The error bars are 95% CI estimates obtained through 
100-fold bootstrap calculations of the prevalence within each bin (no re-binning was done).
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demonstrates the magnitude of the comorbidities, for example the very strong coincidences of (HA, CAD), (SCZ, 
MDD) and (T2D, T1D), and the moderate (HTN, AFib), (HTN, CAD) and (HCL, HA). The PRS correlations 
(upper blue triangle—triangles) are relatively small in magnitude and in general agreement with the phenotypic 
coincidences. As such, most PRS are relatively uncorrelated. Some notable exceptions are (HCL, CAD) and (MM, 
BCC). Just as the large amount of comorbidity facilitates the simultaneous positive RRRs, there are also some 
explanations for the lesser reductions here. The mutually exclusive tendency of (TC, CAD) complicates simultane-
ous risk reduction on a phenotypic level. (We are not aware of any research supporting this finding in other data 
sets. On the contrary, there are several examples of either inconclusive results or increased comorbidity of CAD 
among patients having undergone chemotherapy in TC treatment51–53. With our barely significant finding and 
small TC statistics, we view this result as peculiarity of the test set rather than a general epidemiological result.) 
This is in accordance with Fig. 4, where the RRR of TC is much stronger in PRS selection than index selection. 
The only examples of PRS level conflicts are the moderate anti-correlations between (T1D, IBD), (T1D, MDD) 
and (T2D, IBD), and the milder (BCC, ASA) and (IBD, ASA) anti-correlations, despite that these disease pairs 
are independent or have mild comorbidities. The combined index weights for ASA, T1D and T2D dwarf the 
impact of IBD on the index while BCC has no weight and is almost independent from everything else but MM 
(which is also independent from everything else). This contributes to the stronger RRR of PRS selection for ASA, 
BCC, IBD, and MM as compared to index selection.

Discussion
It is commonly believed that genetic factors influence overall health and longevity. With modern genomic meth-
ods we can test the scientific veracity of this hypothesis. By combining Polygenic Risk Scores (PRS) across the 
most impactful disease conditions, we can build a composite predictor of 20 diseases as part of an individual’s 
overall health. The specific implementation studied in this paper used lifespan impact of each disease condition 
as the weighting factor in the index. We could then test whether this index predicts individual disease risks, as 
well as estimated longevity or disability adjusted life years.

Specifically, we validated this index in selection experiments using unrelated individuals and sibling pairs and 
trios from the UK Biobank. Individuals with higher index scores have decreased risk of individual diseases across 
almost all 20 diseases, with no significant risk increases, and longer calculated life expectancy. When Disability 
Adjusted Life Years (DALYs) due to the 20 diseases were used as the performance metric, the gain from genetic 
selection (highest index score vs average) among 10 individuals was found to be roughly 4 DALYs, and among 
5 individuals was found to be 3 DALYs.

We found no statistical evidence for strong antagonistic trade-offs in risk reduction across these 20 diseases. 
Correlations between the disease risks are found to be mostly positive, and generally mild. This supports the 
folk notion of a general factor which characterizes overall health, sometimes described as synergistic pleiotropy. 
These results have important implications for public health and also for fundamental biological questions such 
as genetic architecture of human disease conditions.

The concept of pleiotropy was formulated before the notion of high dimensional spaces of genetic varia-
tion became familiar. The conventional logic is that, because a single gene can affect many different complex 
traits, it must be the case that different complex traits, such as disease risks, are themselves correlated, perhaps 
antagonistically (e.g., due to balancing selection, or for some deeper biochemical reason). This would entail 

Figure 7.   Index selection between 22,667 pairs of genetic siblings retain the overall benefits. In both figures, 
selection experiments among pairs of genetic siblings are compared to selection among pairs of unrelated 
individuals. The index performances are qualitatively very similar despite that siblings share half their genomes 
and have more similar environments. As expected, we do see a general performance attenuation among siblings, 
but also a few exceptions. Left: the RRR for each disease. The error bars for siblings are theoretical 95% C.I. 
using Wilson score interval for the prevalences among the selected siblings. The error bars for the selection 
among the unrelated pairs are again estimated 95% CI from 25 separate runs. The case numbers are shown 
above the x-axis. Right: the component-wise index gain for the selections among pairs of siblings and among 
pairs of unrelated individuals. The sibling results are presented without error bars since no theoretic uncertainty 
was calculated; statistical significance is therefore not established from this data. The error bars for the selection 
among unrelated individuals are 95% CI from 25 separate runs.
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specific trade-offs, hypothetically: an individual with low diabetes risk might necessarily have higher cancer 
risk, etc. However, results from the modern era of GWAS and machine learning on large data sets show that the 
number of genetic loci which control a specific complex trait is typically in the thousands. It was shown in54 that 
the SNP sets used in sparse predictors are largely disjoint for different traits or disease risks. The fact that most 
of the variance can be disjoint across different complex traits is a manifestation of high dimensionality. In this 
work we focus on sparse algorithms applied to array data which leaves open the possibility that there could be 
underlying causal loci that could still be correlated. However, the relatively small genetic correlations observed 
here leave this as an unlikely scenario.

In an earlier paper54, we looked at the extent to which SNPs used in polygenic predictors of risk are correlated 
across pairs of disease conditions. Here we went further and investigated pairwise correlations between each 
of 20 major disease PRS. The results, as summarized in Fig. 8, can be expressed in words as: most correlations 
are modest, and tend to be positive rather than negative (antagonistic). (Modest correlation is consistent with 
mostly but not entirely disjoint variance in the two PRS.) We also concluded, on a phenotypic level, that the 20 
diseases tend to have positive significant pairwise comorbidity.

It may be counter-intuitive that variants with exclusively deleterious effects have survived natural selection, 
especially widespread variants and in large numbers, as these results suggest55. It is possible that variants which 
solely increases disease risk, without positive contribution to fitness, would be selected against and disappear. 

Figure 8.   Phenotype dependencies and PRS correlation comparisons. This figure visualizes three different 
quantities for each pair of diseases: the PRS correlation, a comorbidity metric, and a χ2 independence test 
p-value. Each tile below the diagonal is split into two halves where upper blue triangle = PRS corr. is the 
correlation between the two diseases’ PRS, i.e., the genetic correlations as inferred by the predictors. The other 
half, lower green triangle = χ2 ratio, is a metric of the actual disease comorbidity: how many more times is 
disease coincidence observed compared to what would be expected if the diseases were completely independent, 
where a positive (negative) sign indicates higher (lower) comorbid frequency (this is based on the ratio between 
the observed and expected case-case cell in a χ2-test contingency table, hence referred to as the χ2 ratio). 
The green/red squares = log(p) , above the diagonal indicate the statistical significance of the dependence: 
the (signed) logarithm of the p-value in a χ2-test. The sign is positive (negative) for more (less) frequent 
coincidence. Both the p-value and the χ2 ratios are masked for disease pairs without statistically significant 
( p = .05 ) dependence. For example, the deep green square above the diagonal at (CAD,HCL) indicates that the 
CAD-hypercholesterolemia comorbidity is highly significant (we can reject phenotype independence at p-value 
< 10−4 ). Below the diagonal, we see for the same disease pair that the lower triangle is gently blue-green, i.e., 
case coincidence for CAD-hypercholesterolemia is about 2.3 times more common than random chance. Lastly, 
the upper triangle is dark blue meaning that the PRS correlation between CAD and hypercholesterolemia is 
among the very strongest, at about 0.22. Overall, we see that most disease pairs have statistically significant 
comorbidity with 1–2 times more coincidence than chance, and that their PRS are not, or slightly positively, 
correlated. This phenotypic and genetic background not only allows but facilitates the construction of a useful 
health index. The most prominent outliers are discussed in the main text.
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However, most of the 20 studied diseases have late onset and may reduce the lifespan from say 75 years to 65 
within a modern day well-developed society. The lost fitness, even for the surviving (grand)children, is small 
and potentially negligible for all but a very short time in evolutionary history. This weak selection pressure is 
competing against the natural tendency for a population to accumulate random mutations. A full evolutionary 
genetics analysis of this would be an interesting continuation of our findings. Meanwhile we claim the results to 
be plausible even from an evolutionary perspective.

The proposed proxy-phenotype Ic for general health in UKB has some clear limitations. First, and as men-
tioned, it only takes the impact of the listed 20 diseases into account; the still not quantified impacts from other 
diseases and traits may have large contributions of either sign. Second, the UKB-cohort was 40+ years old at 
intake and although the medical records extend back to include early onset diagnoses for the participants, there 
is an inherent sampling bias against diseases with high mortality early in life. Quantifying those effects would 
increase the applicability of the results, in particular to embryo selection. Third, the index approximates the lost 
life years/disease burden under current environmental factors. The performance of the health index applied to 
embryo selection would most accurately be measured in the environments 40–70 years in the future (where 
some disease might be easily cured and others more common due to environmental changes). However, that is 
a limitation that applies to any type of health intervention (including recommendations of eating less cholesterol 
or already well-established pre-implantation testing); we will never be able to see into the future and the best we 
can do is to be aware of the potential discrepancy between today’s environment and the future, while making 
as credible assumptions as possible. While the caveat still applies, we believe the selected 20 disease will remain 
relevant for the notion of general health also 70 years from now.

Let us also point out another limitation of the health index. The predictors used for the studied index are 
built using only common SNPs (very rare variants were filtered out from all training). Hence they do not, and in 
extension neither does the index, capture disease risks arising from rare but potentially very impactful variants. 
In the context of embryo selection, this is a minor concern since genetic pre-implantation testing usually includes 
additional monogenetic screening, targeting precisely such known variants. However, a full genetic health index 
intended for clinical use on adults should also include such risk contributions.

We focused this paper on index performance in a single cohort, and carried out cross-cohort analyses in 
other populations. We found substantial index performance in all populations, despite the expected and observed 
decreases in distant non-training populations. With expanded data availability, these cross-cohort analyses will be 
expanded in scope. There are already many research efforts dedicated to making the benefits of PRS available to 
more population groups, with efforts directed toward data collection, analysis, and clinical tools as end-products. 
It is an urgent task to make polygenic precision medicine not only as effective but also as equitable as it can be. 
To this end, follow-up health index studies in more cohorts are planned.

Data availibility
Access to the UK Biobank resource is available via application ( http://​www.​ukbio​bank.​ac.​uk).
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