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DNA is constantly under attack by a number of both exogenous and endogenous agents
that challenge its integrity. Among the mechanisms that have evolved to counteract this
deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic
errors that occur when replicating the genome. Malfunction or inactivation of this system
results in an increase in spontaneous mutability and a strong predisposition to tumor
development. Besides this key corrective role, MMR proteins are involved in other
pathways of DNA metabolism such as mitotic and meiotic recombination and processing of
oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes.The
mutagenic MMR has beneficial consequences contributing to the generation of a vast
repertoire of antibodies through class switch recombination and somatic hypermutation
processes. However, this non-canonical mutagenic MMR also has detrimental effects;
it promotes repeat expansions associated with neuromuscular and neurodegenerative
diseases and may contribute to cancer/disease-related aberrant mutations and transloca-
tions.The reaction responsible for replication error correction has been the most thoroughly
studied and it is the subject to numerous reviews. This review describes briefly the
biochemistry of MMR and focuses primarily on the non-canonical MMR activities described
in mammals as well as emerging research implicating interplay of MMR and chromatin.
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INTRODUCTION
The mismatch repair (MMR) system provides two main genetic
stabilization functions; it is involved in the correction of errors
generated during replication that escape polymerase proofreading
and ensures the fidelity of recombination. Such a corrective role
was first proposed to explain gene conversion in fungi (Holliday,
1974). Studies using bacteria and yeast uncovered MMR as a long
patch correction system and identified its protein components
(Grilley et al., 1990). The MMR process was then reconstituted
using bacterial (Lahue et al., 1989), yeast (Bowen et al., 2013),
and mammalian proteins (Constantin et al., 2005; Zhang et al.,
2005). Defects in this pathway were shown to give rise to a muta-
tor phenotype in bacteria and yeast with characteristic traits at
repetitive sequences of simple nature, microsatellites (microsatel-
lite instability, MSI; Levinson and Gutman, 1987; Strand et al.,
1993). The observation that a subset of colorectal tumors con-
tain a large number of mutations in microsatellite sequences
was subsequently explained by the finding that these tumors
were defective in MMR (Fishel et al., 1993; Leach et al., 1993;
Jiricny, 1994; Modrich and Lahue, 1996). The discovery that MMR
defects predispose to cancer (Lynch syndrome) highlighted the
relevance of MMR in human disease and renewed the interest
in MMR proteins, their structure, mechanisms of action and
gene variants that may contribute to the disease (Boland and
Goel, 2010). The mechanistic insights obtained by these stud-
ies did advance our understanding on how hereditary sequence
variants in the minimal human MMR system affect the MMR

function and hence predispose to the DNA instabilities linked
to cancer predisposition. The list of cancer types where MMR
malfunction has been observed expanded to include the most fre-
quent hereditary predisposition to colorectal cancer along with
increased risk for development of endometrial, ovarian, gastric,
small bowel, urothelial, brain, hepatobiliary, pancreatic, bladder,
kidney, prostate and breast cancers, and hematological malig-
nances (Scott et al., 2001; Umar et al., 2004; Grindedal et al.,
2009; van Oers et al., 2010; Wimmer and Kratz, 2010; Buerki
et al., 2012; Win et al., 2012a,b; Vasen et al., 2013). The abil-
ity to predict cancer predisposition by analyzing the sequence
variants for the MMR genes also contributed to better man-
agement of patients and their relatives and resulted in reduced
mortality (Jarvinen et al., 2009). Therefore, the characteriza-
tion of such gene variants has become of prime interest and is
nowadays a multidisciplinary international endeavor (Thompson
et al., 2014). The efforts made in understanding MMR mecha-
nism and function also led to the discovery of new roles for
MMR. MMR was found to be involved in DNA damage signal-
ing and intriguingly also in mutagenic processes such as somatic
hypermutation (SHM), class switch recombination (CSR), and
instability of trinucleotide repeats (TNRs; Hsieh, 2001; Li, 2008;
Pena-Diaz and Jiricny, 2012; Edelbrock et al., 2013; Jiricny, 2013).
This review describes first the components of mammalian MMR
and their mode of action and then focuses on DNA transactions
in which MMR contradicts its role as antimutator to become a
mutator.
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THE BIOCHEMISTRY OF MAMMALIAN MMR
Replication errors represent a considerable threat to genomic
integrity. Failure to repair base–base mismatches and inser-
tion/deletion loops (IDLs) arising during DNA replication
increases mutation frequencies by two to three orders of mag-
nitude. MMR associates with replication factories (Hombauer
et al., 2011; Lopez-Contreras et al., 2013; Sirbu et al., 2013) and
targets the newly synthesized DNA strand for repair thereby con-
tributing to the fidelity of replication. MMR achieves this feat by
a sequential mechanism comprising mismatch recognition, exci-
sion, and resynthesis steps. This process has been described in
detail in several reviews (Kunkel and Erie, 2005; Jiricny, 2006;
Modrich, 2006; Hsieh and Yamane, 2008). Briefly, the reaction
commences by the binding of the MutS heterodimer to a mis-
match (Figure 1). The MutS heterodimer is formed by either
MSH2/MSH6 (MutSα) or MSH2/MSH3 (MutSβ). Two other
homologs, MSH4 and MSH5, have specific roles in meiosis and
have been discussed previously (Snowden et al., 2004; Her et al.,
2007). The MutSα complex recognizes single base mismatches
and 1–2 nucleotide IDLs, while the MutSβ complex recognizes

larger loops. The mechanisms of lesion recognition by MutSα

and MutSβ differ but in both cases binding leads to bending
of DNA (Warren et al., 2007; Gupta et al., 2012). MutS het-
erodimers belong to the ABC transporter superfamily and contain
ATP binding domains essential for MMR. Following substrate
recognition, MutS undergoes an ADP–ATP exchange-driven con-
formational change into a sliding clamp and recruits the MutL
heterodimer. There are several MutL homologs; MutLα, MutLβ,
and MutLγ that belong to the GHKL ATPase family (Dutta and
Inouye, 2000). MutLα (MLH1/PMS2 heterodimer) is the preva-
lent homolog in MMR. MutLβ (MLH1/PMS1) appears to lack a
function in MMR, whereas MutLγ (MLH1/MLH3) contributes to
some extend to MMR in vitro (Cannavo et al., 2005) but is primar-
ily involved in meiotic recombination (Lipkin et al., 2002). The
complex formed by MutS–MutL can translocate in either direc-
tion along the DNA contour in search of a strand discontinuity.
When it encounters a strand discontinuity (such as a gap between
Okazaki fragments) bound by PCNA, loading of the exonuclease
EXO1 initiates degradation of the nicked strand that will terminate
past the mismatch. Additionally, the latent endonuclease activity

FIGURE 1 | Schematic representation of postreplicative mismatch

repair in human cells. The canonical MMR process commences by
the binding of the MSH2/MSH6 heterodimer, MutSα, to a mismatch
(in this figure a G/T mismatch in the leading strand resulting from
misincorporation during replication of thymidine opposite to guanosine).
Upon binding, MutSα undergoes an ATP-driven conformational change
and recruits the MLHl/PMS2 heterodimer (MutLα). This complex can
translocate in either direction along the DNA contour (green arrows).

When it encounters a strand discontinuity (such as a gap between
Okazaki fragments in the lagging strand or a PMS2 induced nick in the
leading strand, not shown) PCNA binding (blue circle) and loading of an
exonuclease (EXO1) initiate degradation of the nicked strand that will
terminate past the mismatch. The resulting RPA-stabilized single-stranded
gap is then filled in by the replicative polymerase and the remaining nick
sealed by DNA ligase I. Small insertion/deletion loops (not shown) are
corrected in a similar fashion by a MutSβ (MSH2/MSH3) initiated process.
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harbored by MutLα (Kadyrov et al., 2006) may provide an entry
site for EXO1-dependent excision or for polymerase-dependent
strand displacement reactions (Kadyrov et al., 2009). The result-
ing single-stranded gap is stabilized by RPA and then filled in by
polymerase δ. The remaining nick is sealed by DNA ligase I. The
physical interactions of MutS and MutL with the replication fac-
tor PCNA and the constitutive presence of the MMR machinery at
replication factories support the role of MMR as a postreplicative
repair mechanism. However, several studies indicate that MMR
proteins may also function outside of S-phase (Brooks et al., 1996;
Zlatanou et al., 2011; Pena-Diaz et al., 2012). In contrast to the
classical MMR activity described above, some of the activities
derived from this replication-uncoupled MMR are mutagenic.
Such a mutagenic non-canonical MMR (ncMMR) has been found
to influence immunoglobulin diversification and the stability of
TNRs.

MMR IN IMMUNOGLOBULIN DIVERSIFICATION
GENERATION OF ANTIBODY DIVERSIFICATION IN HUMANS
Our immune system is able to generate a staggering repertoire of
antibodies in order to deal with the variety of antigens that we may
encounter during our life time. The information required to syn-
thesize this large number of antibodies is not directly contained in
our limited genome. Instead, several mutagenic processes taking
place at the immunoglobulin locus are responsible for altering the
genetic information to create sufficient diversity. Antibody diver-
sity is generated in a two-stage process. Early in B cell development,
DNA breakage and rejoining events between variable (V), diver-
sity (D) and joining (J) gene segments assemble immunoglobulin
genes and allow the production of a primary repertoire of low
affinity IgM antibodies (Jung et al., 2006; Schatz and Swanson,
2011). In mammals, a second diversification process that alters
the sequence and structure at the immunoglobulin genes occurs
after exposure of a B cell to an antigen. This secondary process
entails SHM and CSR mechanisms and generates different classes
of antibodies with higher affinities and specificities (Maizels, 2005;
Di Noia and Neuberger, 2007; Teng and Papavasiliou, 2007; Peled
et al., 2008; Stavnezer et al., 2008). SHM introduces mutations
in the variable region of the Ig gene while CSR recombines the
variable region to a downstream constant region in the Ig locus
by a double-strand break (DSB) induced event. SHM and CSR
are initiated by a shared event involving targeted DNA deamina-
tion catalyzed by the enzyme activation-induced deaminase (AID;
Muramatsu et al., 1999, 2000; Bransteitter et al., 2003; Chaudhuri
et al., 2003; Dickerson et al., 2003). The discovery of AID repre-
sented a milestone in the immunology field and initiated further
studies into the molecular basis of SHM and CSR processes (Delker
et al., 2009). AID converts cytosines to uracils in single-stranded
DNA (Bransteitter et al., 2003; Chaudhuri et al., 2003; Dicker-
son et al., 2003; Figure 2A) and initiates mutagenic processes
with the participation of low fidelity DNA polymerases and DNA
repair pathways including base excision repair (BER), MMR, clas-
sical non-homologous end-joining and alternative end-joining.
Ample genetic evidence has substantiated the seemingly paradox-
ical involvement of BER and MMR in this mutagenic process.
Moreover, mutations in MMR proteins that affect different cat-
alytic functions or physical interactions with other components of

FIGURE 2 | ncMMR as a mediator in SHM and CSR. (A) AID deaminates
cytosine to uracil in single-stranded DNA such as in DNA that is being
transcribed. U:G mismatches can be recognized by the BER and MMR
machineries. (B) An inefficient BER can lead to excision of the uracil by
UNG or SMUG1 glycosylases and to an incision by APE1. MMR loaded
at a different mismatch, can use this APE incision as an entry point for
EXO1-mediated degradation. Alternatively, PMS2 endonuclease can
generate the required entry site. The single-stranded DNA generated by
EXO1 is not readily filled and promotes PCNA-Ub and recruitment of Pol η.
Resynthesis by the error prone Pol η leads to mutations at different sites
than the original deaminated cytosine. (C) Incisions generated by BER
and/or MMR-dependent strand degradation can lead to DSBs when the
degradation tracks and breaks are in close proximity on opposite strands.
DSBs induction initiates recombination events during CSR. The red dashed
line indicates MMR-dependent strand degradation.

this pathway have been shown to affect immunoglobulin diversi-
fication processes (Chahwan et al., 2011). This review summarizes
the current mechanistic model proposed for mutagenic MMR.

MMR AS A MUTATOR AT THE IMMUNOGLOBULIN LOCUS
How is ncMMR engaged at the immunoglobulin locus? AID-
mediated cytosine deamination results in a U/G mismatch in the
DNA that leads to several outcomes. During SHM, if the mismatch
is not corrected, replication across U will lead to C/G to T/A tran-
sitions. A second type of mutations is dependent on error-prone
BER. BER initiated predominantly by the uracil–DNA glycosy-
lase UNG, or to a minor extent by the backup activity of SMUG1
(Dingler et al., 2014) may correct the mismatch and restore the
original sequence or, when incomplete, leave abasic sites that are
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mis-repaired by error-prone polymerases. These events take place
at the deaminated cytosine site and leads to both transitions and
transversions (Sousa et al., 2007). These activities were confirmed
by the finding that ablation of UNG in mice leads to accumu-
lation of uracil in the DNA of immunoglobulin genes, and to a
significant increase in transition mutations at C/G pairs (Rada
et al., 2002; Maul et al., 2011). A third type of frequent mutations
occurring at A/T base pairs and therefore not affected directly
by the deamination of cytosine were shown to arise by a dif-
ferent mechanism (Figure 2B). This third mode of addressing
uracil in DNA required long path DNA repair processes with a
propensity to introduce errors. Genetic evidence suggested the
involvement of MMR proteins, EXO1, mono-ubiquitylation of
PCNA (PCNA-Ub) and primarily the translesion synthesis poly-
merase η (Bardwell et al., 2004; Delbos et al., 2007; Krijger et al.,
2009; Chahwan et al., 2012a; Saribasak and Gearhart, 2012). Upon
MutSα recognition of the U/G mismatch the complex slides along
DNA in search of an entry site for EXO1 loading, and once such an
entry site is found, initiates strand degradation. The gaps formed
in this process are believed to persist and to trigger PCNA-Ub
and recruitment of pol η. In absence of MSH2, mutations at
A:T sites are drastically reduced but not completely abolished.
In this scenario, BER is suggested to provide a backup role for the
recruitment of pol η during SHM (Delbos et al., 2007). Two major
open questions about this process remain: (i) which enzymatic
activity generates the entry site for EXO1-dependent degradation
and (ii) what distinguishes high fidelity from error prone MMR.
(i) The answer to the first question may lie in the potential of
AID to create clustered mutations at the Ig locus (Storb et al.,
2009). In this scenario, BER may introduce a strand discontinu-
ity that can be used by proximally loaded MMR proteins as entry
point for EXO1 (Schanz et al., 2009). A complementary model
substantiated by recent findings suggests that in absence of proxi-
mal entry sites, a cryptic endonuclease activity harbored by PMS2
may serve as a back-up for the DNA incision required to initi-
ate EXO1-dependent strand degradation (Pluciennik et al., 2010;
Pena-Diaz et al., 2012; Zivojnovic et al., 2014). Overlapping roles
of BER and ncMMR have been demonstrated and endorse these
two possibilities (Rada et al., 2004; Shen et al., 2006). Whereas
strand discontinuities created by BER may serve to direct MMR
to the same strand containing the nick, in absence of entry sites,
the back-up cleavage by PMS2 endonuclease is largely without
strand bias (Pluciennik et al., 2010; Pena-Diaz et al., 2012). The
interplay between BER and MMR thus may affect the strand
bias observed for mutations at A/T sites (preferential targeting
of A nucleotides for mutation within WA motifs on the non-
transcribed strand). The source of the strand bias observed at A/T
sites though remain controversial (Franklin and Blanden, 2008;
Frieder et al., 2009; Steele, 2009; Roa et al., 2010). (ii) Once EXO1
is loaded and strand degradation takes place, what distinguishes
high-fidelity from error-prone MMR? Whereas high-fidelity MMR
is coupled to replication, ncMMR acting in SHM and CSR pro-
cesses may take place outside of S-phase. The mutagenic ncMMR
thus may function in an environment where replicative poly-
merases are scarce and dNTP pools suboptimal. This could lead
to inefficient refilling of the single-stranded gaps formed dur-
ing the repair process, which would in turn elicit PCNA-Ub and

promote refilling of the gap by error-prone polymerases. In this
model, DNA lesions addressed by MMR outside S-phase promote
MMR-dependent PCNA-Ub. This is supported by several stud-
ies showing that oxidative and alkylating DNA damage can elicit
MMR-dependent PCNA-Ub independently of the cell-cycle phase
(Schroering and Williams, 2008; Zlatanou et al., 2011; Pena-Diaz
et al., 2012).

CSR similarly to SHM requires AID, BER, and MMR pro-
teins. CSR requires the formation of DSBs in highly repetitive
switch regions located upstream of each of the heavy chain
constant region genes (Figure 2C). These breaks are subse-
quently processed by canonical non-homologous end-joining
(C-NHEJ) that seals DNA ends with little or no homology
or by alternative end-joining (A-EJ) that requires microhomol-
ogy for ligation (Boboila et al., 2012; Cortizas et al., 2013).
How these DSBs are created is not entirely clear. BER may
create single strand-breaks on opposite strands that when suf-
ficiently close lead to DSBs (Masani et al., 2013). Fortuitous
overlap of MMR-generated gaps with BER breaks or other MMR-
induced gaps in the opposite strand provides an additional
explanation for the formation of DSBs (Peron et al., 2008; van
Oers et al., 2010). Strikingly, while SHM is largely indepen-
dent of MutLα, the formation of DSBs during CSR requires
the PMS2 endonuclease activity (van Oers et al., 2010). MMR
can be initiated using strand discontinuities provided by BER
and therefore does not strictly require PMS2 endonuclease activ-
ity (Genschel and Modrich, 2003). In this scenario, the gaps
formed by MMR are in the same strand than the original
strand discontinuity provided by BER. On the other hand, for-
mation of gaps on the opposite strand of nicks generated by
BER is aided by the lack of strand bias exhibited by MMR
in absence of nearby nicks (Pluciennik et al., 2010; Pena-Diaz
et al., 2012). This therefore increases the likelihood of DSB for-
mation and it may partly explain the critical requirement of
PMS2 endonuclease activity during CSR. MMR proteins may
have additional functions beyond their major role convert-
ing AID DNA damage into suitable broken ends for C-NHEJ
and A-EJ pathways. Recent studies suggest that MMR proteins
may influence the pathway choice for resolution of the DSBs
formed during CSR (Eccleston et al., 2011; Chahwan et al., 2012b;
Cortizas et al., 2013). Biochemical evidence substantiating the
models for DSBs formation during CSR and the potential role
of MMR proteins in pathway choice for DSBs resolution is still
missing.

Currently, it is not known whether the ncMMR mutagenic
activity is engaged exclusively at AID deaminated sites in the
immunoglobulin locus. AID may act on many non-Ig genes (Liu
et al., 2008; Chiarle et al., 2011; Klein et al., 2011; Staszewski et al.,
2011; Fear, 2013) and spontaneous deamination of cytosine to
uracil is also a frequent event (∼200 per mammalian genome per
day; Kavli et al., 2007). Therefore, lesions that can be recognized
by MMR are not locus specific and MMR mutagenic activities may
be more frequent than anticipated. The interplay or competition
between BER and MMR activities, the regulation of the access of
error-prone polymerases and the timing of repair related to the
cell cycle are likely to influence the balance between high-fidelity
and error-prone DNA repair in these loci.
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MMR IN NEURODEGENERATIVE DISEASE
REPEAT INSTABILITY AS A CAUSE OF HUMAN DISEASE
Expansion of simple repeats in genomic DNA is the underlying
cause of over 30 human neurodegenerative and neuromuscular
inherited diseases such as Huntington’s disease (HD), myotonic
dystrophy type 1 (DM1), fragile X syndrome type A (FRAXA),
Friedreich’s ataxia (FRDA), and spinocerebellar ataxias (SCAs).
Unstable repeats are polymorphic and show a normal range in
healthy individuals, and a pathological range, i.e., above a thresh-
old length, associated with clinical manifestations. Instability can
occur during both meiotic and mitotic divisions and at various
stages of the cell cycle (Nag, 2003; McMurray, 2010). Several
of the repeat expansion-associated diseases show anticipation,
in which subsequent generations display earlier disease onsets.
Otherwise, somatic instability accounts for increases with age
towards larger size of the repeats in a tissue-dependent man-
ner correlating with progression of the symptoms. Long repeats
exceeding a determined threshold tend to be more unstable and
both gametic and mitotic instability becomes more likely with
increasing repeat length. The unstable repeats can be found at
different regions of their resident genes (Mirkin, 2007) and the
etiology of the diseases caused by their expansion reflects this
diversity. Repeat expansions can cause disease by a variety of
both loss and gain of function pathways, interfering with the
expression or properties of the gene products, affecting splicing
or antisense regulation. The most common unstable disease-
associated DNA repeats are TNRs including CAG, CTG, CGG,
and GAA triplets and their expansion is thought to be linked to
their ability to form unusual secondary structures (Gacy et al.,
1995; Mirkin, 2007). Several mechanisms including errors dur-
ing DNA replication, meiotic recombination, transcription, DNA
repair, and chromatin remodeling have been proposed to con-
tribute to the observed instability (Lin et al., 2009; Lopez Castel
et al., 2010; McMurray, 2010; Kim and Mirkin, 2013), but their
relative contribution remains unknown.

MMR AS A SOURCE OF REPEAT INSTABILITY
The involvement of DNA repair mechanisms in repeat expan-
sion was suggested to explain the puzzling finding that in diseases
such as HD, somatic repeat instability appears most pronounced
in non-proliferating tissues of the CNS (Gonitel et al., 2008) and
that repeat expansion rates did not always correlate with cell divi-
sion rates (Lia et al., 1998; Fortune et al., 2000; Gomes-Pereira
et al., 2001). The first evidence that the MMR system contributes
to repeat expansion was obtained by Manley et al. (1999). Given
that a functional MMR is required for maintaining the stability of
microsatellite sequences (mostly mono- and dinucleotide repeats)
the authors set out to analyze whether MMR affects the stability
of HD-associated CAG repeats. Surprisingly, Msh2−/− transgenic
mice bearing a copy of the human HD exon 1 (containing the CAG
repeats), showed reduced expansion of the introduced (CAG)n
repeats when compared with Msh2+/+ HD exon 1 mice coun-
terparts. Additional studies confirmed this novel mutagenic role
of Msh2 in HD CAG repeat instability and HD CAG-dependent
phenotypes (Kovtun and McMurray, 2001; Wheeler et al., 2003;
Kovalenko et al., 2012). However, the observation that Msh2 defi-
ciency did not completely abolish expansions suggested further

hitherto unknown roles for other DNA repair processes in pro-
moting repeat instability. Later studies provided further evidence
for the non-canonical role of Msh2 in trinucleotide repeat insta-
bility, this time in (CTG)n repeat expansion associated with DM1.
In contrast to the observations in HD, Msh2 absence resulted in
a shift towards (CTG)n contraction rather than stabilization of
the repeat size (Savouret et al., 2003). These initial findings led
to a number of studies designed to decipher the role of MMR
in repeat expansion. The involvement of other components of
the MMR machinery was subsequently analyzed. Msh3 defi-
ciency was found to block somatic (CTG)n expansions in DM1
knock-in mice whereas Msh6 deficiency increased the frequency
of such events (Foiry et al., 2006). This suggested competition of
Msh3 and Msh6 for binding to Msh2 and differential effects of
MutSα and MutSβ complexes in repeat expansion (van den Broek
et al., 2002). Wheeler and coworkers confirmed separate func-
tional roles of MutSα and MutSβ complexes in HD knock-in mice
and showed that whereas Msh6 protects against intergenerational
contractions, Msh3 is required for CAG expansions in striatum
(Dragileva et al., 2009). A model to account for the role of MutSβ

in repeat instability proposes that MutSβ-dependent stabilization
of secondary structures formed at the repeats and uncoupling
from downstream repair events leads to instability (Figure 3A;
McMurray, 2008). In addition, the requirement for the MutLα

component PMS2 (Gomes-Pereira et al., 2004) suggested a second
model where repeat instability requires a fully functional MMR
(Figure 3B). This model is supported by the finding that Msh2-
mutant mice carrying a missense mutation Msh2G674A/G674A show
less pronounced CTG expansions than wild type mice (Tome
et al., 2009). This mutation retains mismatch recognition activ-
ity but fails to support MMR in vitro (Lin et al., 2004; Ollila et al.,
2008; Geng et al., 2012). In an effort to gain a mechanistic insight
into the MMR-dependent instability process, biochemical stud-
ies were undertaken. Using synthetic DNA substrates containing
CAG or CTG slipped out structures a third model was suggested
where MSH2, MSH3, and PMS2 mediate the formation of expan-
sion intermediates prior to processing of the slip-outs (Figure 3C;
Panigrahi et al., 2005). In this model, repair is triggered either by
DNA damage in or near the TNR, or by the aberrant TNR-DNA
structure itself. Subsequent excision of nucleotides is followed by
error-prone repair synthesis. Despite this wealth of knowledge,
the biochemical role of MutSβ in repeat instability remains con-
troversial. MutSβ processing of CAG slip-outs in vitro may depend
on assay conditions as well as the size, number and structure of
the hairpins (Owen et al., 2005; Tian et al., 2009; Panigrahi et al.,
2010; Lang et al., 2011; Zhang et al., 2012). The involvement of the
MutLα heterodimer in repeat instability was also analyzed in vitro.
Pearson and coworkers demonstrated that a functional MutLα

complex is required for processing (CAG)n or (CTG)n extru-
sions (Panigrahi et al., 2012). How PCNA-dependent activation
of MutLα endonuclease occurs in the context of non-replicating
DNA was later revealed by the finding that repeat extrusions may
serve as loading sites for the PCNA clamp (Pluciennik et al., 2013).
These biochemical approaches have contributed to our under-
standing of MMR activities at unstable repeats. However, they
yield only partial reactions at TNRs. Therefore, the combined use
of the biochemical assays together with genetic (Dixon et al., 2004)
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FIGURE 3 | Models for ncMMR function in repeat instability. (A) MMR
hijacks and stabilizes the hairpins formed at repeats by strand displacement
during long-patch BER (LP-BER). This inhibits further processing by other
repair mechanisms such as FEN1 dependent flap removal (McMurray, 2008).
(B) Nicking in the strand opposite to a hairpin leads to unwinding of the
hairpin and resynthesis across resulting in repeat expansion. Processing of
the strand containing the hairpin may lead to hairpin removal and repeats
contraction (adapted from Gomes-Pereira et al., 2004). (C) Mismatch repair
processing of lesions (e.g., oxidative or alkylating damage) may lead to strand
degradation and faulty resynthesis resulting in hairpin formation. (D) As in the
hijacking model (A), MutSβ stabilization of hairpins formed by polymerase
slippage during replication or lack of processing of IDLs results in contraction

when the hairpin is located in the template strand or expansions when the
hairpin is formed in the newly synthesized strand. (E) Gap filling can lead to
hairpin formation by strand displacement during Okazaki fragment processing
(Kantartzis et al., 2012; Kim and Mirkin, 2013). (F) Hairpins formed at the
template strand can promote MMR processing leading to DSBs. The DSBs
formed can be processed by different mechanisms leading to gross
chromosomal rearrangements (GCRs) or to repeat length variations (Kim
et al., 2008). The models presented here are not mutually exclusive. The
asterisk represents a lesion addressed by MMR. The red dotted line indicates
MMR-dependent processing including strand degradation and resynthesis
steps. Inverted red triangles indicated the position of EXO1 entry site. BIR,
break induced replication.
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and in vitro assays where complete expansion can be recapitulated
(Stevens et al., 2013) may contribute further to our knowledge
about the mechanisms involved in MMR-mediated instability at
TNRs.

The use of other model organisms may also shed some light
on the MMR mutagenic activities. Instability of TNRs was also
modeled in bacteria and yeast cellular systems. In contrast to the
expansion bias observed in human neurodegenerative diseases,
deletion events are more frequent in bacteria and yeast (Kovtun
and McMurray, 2008). In these model organisms DNA repli-
cation seems to be the major contributor to repeat instability.
Several replication models for repeat expansion have been drawn
on the common basis that repetitive sequences posit a challenge
for replication fork progression (Kim and Mirkin, 2013). Indeed,
the earliest molecular model of how repeat expansions occur
was based on DNA strand slippage during replication (Kunkel,
1993). In this first model, repeats misalign during replication,
resulting in formation of extrahelical DNA loops. These loops
may escape from correction or become stabilized by a MutSβ-
dependent mechanism. A subsequent round of replication will
give rise to progeny DNA that is shorter than the template when
the loop was located at the template strand or expanded when
the misaligned nucleotides are in the newly synthesized strand
(Figure 3D). Other studies suggest that MutSβ interferes with
normal processing of Okazaki fragments and promotes small
expansion events (Figure 3E; Kantartzis et al., 2012). ncMMR has
also been involved in expansions via replication fork stalling, DSB
formation and repair (Figure 3F; Kim et al., 2008). These mod-
els also have support in mammalian cell systems, as repeats have
been shown to interfere with replication (Follonier et al., 2013)
and the direction of replication was found to influence the fre-
quency of expansions (Claassen and Lahue, 2007). Investigations
into SV40-driven replication of plasmid templates containing
(CAG)n repeats in human cells also support a role for replication
in promoting repeat instability (Panigrahi et al., 2002).

Another layer of complexity is added by the poten-
tial crosstalk between different DNA repair mechanisms in
repeat instability. Formation and processing of secondary
structures formed at repeats suggest cooperation between
MMR and other DNA repair mechanisms such as BER
(Kovtun and McMurray, 2007; Kovtun et al., 2007), NER (Lin and
Wilson, 2009), and chromatin modifiers (Gannon et al., 2012).
Interplay of MMR with BER and NER in other cellular processes
has previously been suggested (Hong et al., 2008; Schanz et al.,
2009; Zhao et al., 2009; Edelbrock et al., 2013) implying that such
cooperation may be a conserved feature of DNA damage response
mechanisms.

Given that several of the expandable repeats associated with
disease can form unusual secondary structures, and that these
structures are likely to be the underlying cause of instability,
it is anticipated that ncMMR plays a role in TNRs-associated
diseases other than HD and DM1. In fact, Msh2 was shown
to reduce intergenerational expansion of (CGG)n in a FRAXA
mouse model (Lokanga et al., 2013). Analyses of (GAA)n expan-
sions associated with FRDA though led to conflicting results
(Perdomini et al., 2013). The use of alternative models such as
FRDA mouse models (Bourn et al., 2012; Ezzatizadeh et al., 2012),

FRDA induced pluripotent stem cells (Ku et al., 2010; Du et al.,
2012) or ectopic expression of MSH2 and MSH3 in FRDA
patient-derived fibroblasts (Halabi et al., 2012), may explain the
discrepancies observed.

In addition, other MutS and MutL homologs may affect the
stability of repeats. In this regard, a role for MutLγ in TNR expan-
sion associated with HD has recently been described (Pinto et al.,
2013). Further work is needed to clarify the potential mutagenic
role of ncMMR and the MMR proteins involved in these and other
repeat-associated diseases.

The models described above are not mutually exclusive and
reveal a high degree of unexpected context-dependency. The
mechanisms of repeat expansion may differ depending on the
sequence and length of repeat, replication rates, transcription
rates, chromatin state, and crosstalk between different repair
mechanisms. Future work is needed to understand the relative
contribution of each of these mutagenic activities to the instability
of repetitive sequences.

MMR IN THE CONTEXT OF CHROMATIN
Little is known about the influence of the chromatin context on
MMR activity. Most reconstituted reactions used so far were min-
imal systems that cannot account for MMR as it may occur in
the context of chromatin. Therefore, how the DNA packaging
into chromatin affects MMR and how chromatin is restored after
repair remains largely unknown. Nucleosomes inhibit MMR (Li
et al., 2009) and MutSα diffusion (Gorman et al., 2010) and this
barrier can be counteracted by MutSα-dependent nucleosome dis-
assembly (Javaid et al., 2009). On the other hand, deposition of
nucleosomes during replication may be tuned with MMR. By using
in vitro modified systems containing chromatinized substrates,
the groups of Jiricny and Kadyrov recently analyzed the mech-
anisms of nucleosome assembly during repair (Kadyrova et al.,
2011; Schopf et al., 2012). These studies found coordination of
MMR and nucleosome deposition initiated by the histone chaper-
one chromatin assembly factor 1 (CAF-1) and physical interaction
between MutSα and CAF-1. CAF-1 is an essential factor in chro-
matin assembly in newly replicated DNA (Hoek and Stillman,
2003) and can function locally at NER sites (Green and Almouzni,
2003). The described crosstalk between MMR and CAF-1 is pro-
posed to extend the time window available for repair by delaying
chromatin assembly after replication. Histone modifications also
contribute to the regulation of MMR in a chromatin context. The
histone mark H3K36me3 was recently found to interact with the
MMR protein MSH6 (Vermeulen et al., 2010) and facilitate MMR
function by mediating its association with chromatin (Li et al.,
2013). This mark is linked to actively transcribed regions but
also peaks at the G1/S transition where it constitutes a chromatin
signature for early replication domain boundaries (Ryba et al.,
2010). This may contribute to explain the observed constitutive
presence of MMR at replication factories (Lopez-Contreras et al.,
2013; Sirbu et al., 2013) and its readiness for action. Importantly,
mutations in SETD2, the histone methyltransferase responsible
for H3K36 trimethylation, correlate with MSI found in renal cell
carcinoma and Burkitt’s lymphoma cell lines that do not display
genetic or epigenetic defects in MMR genes. This may provide
the molecular basis for MSI in cancer with otherwise intact MMR.
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Similarly, histone H3 acetylation in yeast acts in concert with MMR
in mutation avoidance (Kadyrova et al., 2013). These new findings
pave the way for future research and a better understanding of the
MMR role in disease.

CONCLUDING REMARKS
A common theme among the DNA sequences that are subjected to
mutagenic repair seems to be their tendency to present an obsta-
cle for transcription/replication machineries to proceed. So far,
only few mutation-prone genomic loci have been described, but
a large fraction of the genome contains sequences with these fea-
tures. Thus, it is likely that mutagenic ncMMR is not restricted
to the loci described but rather influences genome integrity to a
larger extend. Comprehensive studies deciphering the global finger
print of mutagenic ncMMR are then needed to understand how
ncMMR affects genome maintenance and contributes to disease.
In addition, future studies will have to determine the factors that
direct the path choice towards mutagenic or corrective activities.
In the past decades the finding that MMR is involved in Lynch syn-
drome highlighted the relevance of this DNA repair mechanism
and led to a significant progress in the field. The novel findings on
the role of ncMMR in mutagenic processes and the cross-talk of
MMR with other DNA repair mechanisms and with chromatin
architecture are likely to renew this interest. We are confident
that deeper insight into mutator and anti-mutator activities of
the MMR machinery will be the basis to develop novel improved
strategies for the management and treatment of MMR-associated
diseases.
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