
sensors

Article

Optimal Motion Planning in GPS-Denied Environments Using
Nonlinear Model Predictive Horizon

Younes Al Younes and Martin Barczyk *

����������
�������

Citation: Al Younes, Y.; Barczyk, M.

Optimal Motion Planning in

GPS-Denied Environments Using

Nonlinear Model Predictive Horizon.

Sensors 2021, 21, 5547. https://

doi.org/10.3390/s21165547

Academic Editor: Carlos Silvestre

Received: 29 June 2021

Accepted: 16 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
alyounes@ualberta.ca
* Correspondence: mbarczyk@ualberta.ca

Abstract: Navigating robotic systems autonomously through unknown, dynamic and GPS-denied
environments is a challenging task. One requirement of this is a path planner which provides safe
trajectories in real-world conditions such as nonlinear vehicle dynamics, real-time computation
requirements, complex 3D environments, and moving obstacles. This paper presents a method-
ological motion planning approach which integrates a novel local path planning approach with a
graph-based planner to enable an autonomous vehicle (here a drone) to navigate through GPS-denied
subterranean environments. The local path planning approach is based on a recently proposed
method by the authors called Nonlinear Model Predictive Horizon (NMPH). The NMPH formulation
employs a copy of the plant dynamics model (here a nonlinear system model of the drone) plus a
feedback linearization control law to generate feasible, optimal, smooth and collision-free paths while
respecting the dynamics of the vehicle, supporting dynamic obstacles and operating in real time.
This design is augmented with computationally efficient algorithms for global path planning and
dynamic obstacle mapping and avoidance. The overall design is tested in several simulations and a
preliminary real flight test in unexplored GPS-denied environments to demonstrate its capabilities
and evaluate its performance.

Keywords: motion planner; path planning; nonlinear model predictive approach; feedback lineariza-
tion; dynamic obstacle avoidance; drone vehicle

1. Introduction

Throughout the last century, injuries and fatalities in subterranean environments have
remained a major concern around the world. For example, mine workers are vulnerable to
hazards such as cave-ins, underground flooding, and gas explosions. Unmanned vehicles
can play a key role in performing both tedious and dangerous tasks, for instance air
quality sampling, tunnel inspections, and search-and-rescue missions. A flying drone
is a particularly attractive platform for underground operations due to its abilities to
move quickly, traverse any terrain, navigate through tight spaces, and capture data from
any angle. Recent advances in robotics have motivated research into designing novel
path planning approaches, allowing the vehicle to plan safe paths and navigate through
previously unknown environments.

Path planning is a computational problem to generate and follow a collision-free
trajectory from one point to another [1]. It has many applications, such as robotic surgery [2],
driverless cars [3], automation [4], and mining [5]. An extensive amount of research has
been conducted in the field of path planning for autonomous vehicles [3,6]. However, most
of the presented approaches provide non- or sub-optimal solutions and do not account
for the dynamics of the vehicle, instead treating it as a kinematic model with velocity
inputs [1], for instance a unicycle or kinematic car [7]. Moreover, navigating through
dynamic and unknown environments is a challenging task as it requires safe navigation
around both static and dynamic obstacles, which adds computational load for the onboard
computer of the autonomous vehicle. Nonlinear Model Predictive Control (NMPC [8]) is

Sensors 2021, 21, 5547. https://doi.org/10.3390/s21165547 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8295-8356
https://doi.org/10.3390/s21165547
https://doi.org/10.3390/s21165547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165547
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165547?type=check_update&version=2

Sensors 2021, 21, 5547 2 of 26

an attractive methodology to address the above-named challenges, since it is capable of
predicting optimal trajectories, accounts for the dynamics of the plant, and supports hard
state constraints which can be used to model either static or dynamic obstacles.

The goals of this paper are twofold. The first goal is presenting the design of a local
path planning approach and applying it to a multi-rotor drone. The nonlinear dynamics of
a drone makes it an excellent test candidate for this work. The path planning approach
is based on recent work by the authors [9]. It combines a variant of NMPC, named
Nonlinear Model Predictive Horizon (NMPH), which employs the Feedback Linearization
(FBL) technique [10,11] to reduce the non-convexity of the optimization problem and thus
provide faster solutions for the path planning problem. NMPH provides feasible solutions,
generates smooth and collision-free paths, supports moving obstacles, is able to run in
real-time, and reduces battery draw by minimizing abrupt drone motions. The second goal
is developing a global motion planner for the drone to explore a subterranean environment.
This operates by building a map of the environment and guiding the vehicle to unexplored
areas within this map using a graph-based planner. The global motion planner is a design
that integrates the local path planner design from the first goal with a graph-based planner
named GBPlanner [5]. We propose a choice of computationally efficient algorithms for
obstacle mapping and avoidance, plus robust path guidance. A block diagram of the
proposed global motion planner design is shown in Figure 1.

Controller
Unmanned

Aerial System
Sensors /

Estimators

SLAM or
Volumetric
Mapping

Graph-Based
Planner

NMPH-FBL Optimal
Local Path
Planning

Desired
path

Control
inputs

Actual
outputs

Pose

Measured outputs

Point
cloud

Setpoints

Robust Path
Guidance

Dynamic Obstacles
Mapping

Proposed Motion Planner Structure

3D map

3D obstacles
map

Figure 1. Block diagram of the proposed global motion planner.

The contributions of this work are as follows:

• A recently proposed trajectory generation algorithm (NMPH) is used for local path
planning of the drone. The NMPH is integrated inside the global motion planner and
produces optimal local trajectories for the drone vehicle in real-time.

• A methodological two-layer global motion planner design is proposed. The first layer
utilizes a graph-based planner to generate terminal setpoints for the second layer,
which uses the NMPH design to generate continuous optimal paths from the vehicle’s
current pose to the terminal setpoint in real time.

• Efficient algorithms for obstacle mapping and avoidance are proposed which produce
models of static and dynamic obstacles used by the NMPH to generate safe and
collision-free paths in a dynamically changing environment.

• A robust path guidance algorithm is implemented to avoid the risk of NMPH getting
trapped into a local minima.

• The overall design is implemented using quadcopter and hexacopter drone dynamics,
enabling navigation through unknown, dynamic and GPS-denied environments.

• Several simulation results and a preliminary experiment are presented in this work to
validate the proposed approach.

Sensors 2021, 21, 5547 3 of 26

The remainder of this paper is organised as follows. Section 2 surveys literature related
to our work. Section 3 presents the problem formulation of NMPH and its integration
with feedback linearization. The two-layer global motion planner design and choices
of algorithms to provide robust path planning and obstacle avoidance are discussed in
Section 4. System dynamic models of and implementation of our design on rotary-wing
drones are presented in Section 5. In Section 6, various simulation and experimental results
are presented to evaluate and validate the proposed approach. Finally, concluding remarks
are given in Section 7.

2. Related Work

Path planning for an autonomous robot in an unknown, GPS-denied and dynamically
changing environment is a challenging task, since the robot needs to plan trajectories
that consider the vehicle’s relative motion with respect to the surrounding obstacles.
The path planning problem itself has been thoroughly studied in the literature and can
be classified into three main categories: search-based, sampling-based, and optimization-
based methods.

The search-based methods, a.k.a. grid-based, discretize the environment map into
a graph of grids and use a search algorithm to find a collision-free path through these
grids [6]. The two fundamental graph search algorithms are Breadth-First Search (BFS) and
Depth-First Search (DFS) [12]. BFS is based on a first-in-first-out queue and can produce an
optimal solution if the graph is uniformly weighted. Meanwhile, a last-in-first-out stack is
used in DFS until the goal is reached, but no optimality is guaranteed.

One of the most widely used optimal searching algorithms for quickly finding the
shortest path is the Dijkstra algorithm [13]. It directs the search towards unvisited nodes,
then calculates and updates the shortest distances to the neighbor nodes from the root node.
It keeps doing this until all the nodes are visited. Meanwhile, A* [14] is a commonly used
algorithm for path planning. A* is an extension to Dijkstra algorithm, where it combines
the cost search with heuristics that guide the search towards the goal point to achieve
quicker searching performance. Many extensions of A* have been proposed, for instance
Lifelong Planning A* (LPA*) [15] was developed to support changes in the environment
without recalculating the entire graph, D* Lite [16] extends LPA* to re-plan the path while
the robot is moving, Anytime Repairing A* (ARA*) [17] improves the optimality of the
path by reusing suboptimal solutions from previous executions, and Hybrid-state A* [18]
generates the graph based on the robot dynamics and thus searches for a dynamically
feasible path.

The sampling-based methods are considered one of the main motion planning meth-
ods for robots with a high number of Degrees-Of-Freedom (DOF) [19]. In these methods,
feasible robot poses are randomly sampled to form admissible paths. Probabilistic Road-
Map (PRM) [20] and Rapidly-Exploring Random Tree (RRT) [21] are the fundamental
sampling-based methods for motion planning. In PRM, a graph is built from random
configurations and connected using a local planner (for instance Dijkstra’s searching al-
gorithm for the shortest path between two configuration). PRM is complete but does not
necessarily provide an optimal path solution. The RRT method is designed to randomly
build a space-filling tree of vertices and edges inside a complex environment to find a
feasible path to the goal node. However, the RRT-generated paths are not optimal [22].
Asymptotic optimality of paths can be achieved by employing various extensions of RRT,
such as RRT* and Rapidly-Exploring Random Graph (RRG) methods [22]. RRG constructs
a graph by connecting new samples with all nodes within a specified distance, then finding
the shortest path using a local planner such as the Dijkstra algorithm. Meanwhile, RRT*
searches the local nodes and finds the shortest path from the start to end nodes.

In general, there are three main limitations of the search- and sampling-based motion
planning approaches. First, they do not account for the constraints imposed by the robot
dynamics, even if some support kinematic and/or dynamic constraints (e.g., velocity
and/or acceleration limits, respectively) [23]. A second limitation is consistency, since for

Sensors 2021, 21, 5547 4 of 26

several executions the algorithms may not produce identical trajectories between a start
and goal configuration in the very same environment. Third, the computational load of
these methods generally prevents them from being able to actively regenerate paths while
moving between the start and goal configuration, which makes motion planning a difficult
task in dynamic environments. However, some optimization-based methods can overcome
these limitations, and the present work is directed at using optimization for planning safe,
consistent, and time-efficient paths which also respect the dynamics of the vehicle. This
last feature allows generating smooth trajectories for the robot vehicle, avoding the jerky
motions and rapidly changing trajectories often generated by other planning methods [1].

The optimization-based approaches solve a constrained non-convex optimization
problem to smooth the trajectory generated by other methods. Some optimization-based
methods use cost-gradient information of a trajectory’s waypoints for refinement purposes,
for instance CHOMP [24], Trajopt [25], and STOMP [26]. Other optimization-based methods
are more closely related to optimal control, which focuses on system dynamics more than
collision prevention. Examples include dynamic programming [27], LQR-based [28],
and Model Predictive Control (MPC) [29].

One of the challenges of using an optimization-based path planning approach is
accounting for obstacle constraints at each time instant the optimization problem is solved,
especially for real-time implementations [30]. For a small number of obstacles, it has
been demonstrated that finding local optimal trajectories is possible with MPC in outdoor
environments [31]. Conversely, increasing the number of obstacles and considering 3D
and dynamic environments makes the optimization problem much more computationally
expensive to find feasible paths in real-time.

Our proposed formulation addresses the above challenges in two ways. First, it
reduces the non-convexity of the optimization problem by combining the nonlinear plant
model with a feedback linearization. Second, it maps obstacles as possibly moving volumes,
and adaptively introduces state constraints modeling them in order to efficiently find local
solutions. Our proposed design is integrated with a graph-based exploration planner [5] in
order to provide global motion planning capabilities.

3. Nonlinear Model Predictive Horizon for Path Planning

The Nonlinear Model Predictive Horizon is a recently proposed methodology by
the authors [9]. The purpose of NMPH is to generate optimal reference trajectories for
closed-loop systems, and it will be implemented here for path planning. An overview of
the NMPH algorithm is presented next.

3.1. NMPH Algorithm for Optimal Trajectory Generation

NMPH is an optimization-based reference trajectory generation technique for nonlin-
ear closed-loop systems. Using a model of the nonlinear plant dynamics plus a feedback
linearization control law, the NMPH creates optimal reference trajectories for a closed-loop
system as shown in Figure 2. The generated trajectory is continuously updated by account-
ing for the current state of the system and path constraints within the optimization problem.

The purpose of the nonlinear control law within the NMPH is to reduce the non-
linearity of the system model, and consequently the non-convexity of the optimization
problem. This leads to better performance in terms of reduced computational time and
better convergence properties, enabling motion planning to be repeatedly computed in
real time.

Sensors 2021, 21, 5547 5 of 26

Closed-loop System

Controller
Nonlinear

System

Sensors /
Estimators

system state

optimized
reference
trajectory

+
−

Nonlinear Model Predictive Horizon

Nonlinear
Control Law

Nonlinear
System Model

Optimization
Problem

Solver

Constraints

Cost Function

stabilization
setpoint

Figure 2. NMPH architecture. A model of the nonlinear system dynamics is used to perform the
optimization process within NMPH (gray box). The resulting optimized reference trajectory is passed
to the actual closed-loop system (blue box) for tracking purposes.

Consider a continuous-time nonlinear system controlled by a nonlinear control law,

ẋ = f (x, u) (1)

ξ = h(x) (2)

u = g(x, ξre f) (3)

where x ∈ X ⊆ Rnx are the system states, u ∈ U ⊆ Rnu are the system inputs, and ξ ∈ Ξ ⊆
Rnξ are the system outputs (here 3D position and heading, such that Ξ ⊆ X). The reference
trajectory is denoted by ξre f ∈ Ξ. The map f : X×U → X represents the system dynamics
and g : X × Ξ → U is the control law that is used to make the system output follow the
reference trajectory.

The optimization within NMPH uses Equations (1)–(3) plus assigned constraints
to solve for the predicted system state trajectory x̃ (which for us includes the predicted
output trajectory ξ̃ as a subset) and the estimated reference trajectory for the closed-loop
system ξ̂re f , all while x̃ converges to a desired stabilization setpoint xss. The optimization
calculations are summarized in Algorithm 1.

Within Algorithm 1, the optimization problem is solved over the finite time horizon
τ ∈ [tn, tn + T]. The cost function is chosen to penalize the deviation of the predicted
system state trajectory from the stabilization setpoint xss , as well as the deviation of the
predicted output trajectory ξ̃ from the estimated reference trajectory ξ̂re f . The weighting
matrices Wx, Wξ , and WT are chosen by the user to balance the effects of the optimization.
The cost function consists of the stage cost function L

(
x̃(τ), ξ̂re f (τ)

)
, which represents the

cost of the problem over the time horizon, and the terminal cost function E
(

x̃(tn + T)
)
,

which represents the cost of steady-state error. X ⊆ X, U ⊆ U, and Z ⊆ X are the state,
control, and trajectory constraint sets, respectively. The inequality constraint Oi(x̃) ≤ 0 is
used to model p dynamic obstacles in the environment.

In Algorithm 1, the current system state x(tn) of the actual system is first measured
or estimated, then a prediction of the reference trajectory ξ̂re f for an admissible control is
obtained by minimizing the cost function over the prediction horizon while respecting the
system model, control law, and other constraints. Finally, the predicted reference trajectory
is sent to the closed-loop system for tracking, and the above process is repeated at the next
sampling time instant, possibly with an updated terminal setpoint xss.

Sensors 2021, 21, 5547 6 of 26

Algorithm 1 (NMPH algorithm with stabilizing terminal condition xss).

1: Let tn, n = 0, 1, 2, · · · represent successive sampling times; set n = 0
2: while ‖xss − x(tn)‖ ≥ δ do

min
x̃,ξ̂re f

(∫ tn+T

tn
L
(
x̃(τ), ξ̂re f (τ)

)
dτ + E(x̃(tn + T))

)
=

min
x̃,ξ̂re f

(∫ tn+T

tn

(
‖x̃(τ)− xss‖2

Wx
+ ‖ξ̃(τ)− ξ̂re f (τ)‖2

Wξ

)
dτ

+ ‖x̃(tn + T)− xss‖2
WT

)
(4)

subject to x̃(tn) = x(tn), (5)
˙̃x(τ) = f (x̃(τ), ũ(τ)), (6)

ũ(τ) = g
(
x̃(τ), ξ̂re f (τ)

)
, (7)

x̃(τ) ∈ X , ũ(τ) ∈ U , ξ̂re f (τ) ∈ Z , (8)

Oi(x̃) ≤ 0 , i = 1, 2, . . . , p. (9)
if x̃ → xss then (estimated trajectory converging towards terminal setpoint)

n← n + 1;
else

break;

In this paper, ξ̃ is defined as the predicted output trajectory which in our case (drone’s
position and yaw angle) represents a subset of the predicted state trajectory x̃, while ξ̂re f
is the estimated reference trajectory which is computed by minimizing the cost function
Equation (4) within the NMPH. ξ̂re f is used as the reference trajectory for the actual closed-
loop system, providing smooth trajectories which respect the dynamics of the vehicle.
Please note that ξre f (n) in Equation (3) is taken as ξ̂re f , where the latter is actively updated
by the NMPH algorithm in response to events such as new dynamic obstacles. Also, please
note that ξ̂re f and ξ̃ converge to each other, and both can be used as a reference trajectory for
the actual closed-loop system (here the drone). Further details about the NMPH algorithm
can be found in the authors’ recent work [9].

3.2. Feedback Linearization Control Law

This section reviews the feedback linearization (FBL) control law used within the
NMPH structure to improve the prediction performance of the reference trajectory. In this
work, a Multi-Input Multi-Output (MIMO) control-affine system (here a drone) is used.
The FBL design for this class of systems is summarized below.

Consider a MIMO nonlinear control-affine system of the form,

ẋ = f (x) +
nu

∑
i=1

gi(x) ui , f (x) + G(x)u (10)

where f , g1, . . . , gnu are smooth vector fields in Rnx . G(x) is a nx × nu matrix with
rank G(0) = nu.

The objective of FBL is to transform the nonlinear system (10) into a linear canonical
form with a non-singular state feedback [11], which is defined as

u = β(x) + D(x)−1v (11)

Sensors 2021, 21, 5547 7 of 26

where β(x) is a smooth function, and β(0) = 0. D(x)−1 is the inverse of a non-singular
nu × nu matrix. D(x) and the non-singular state feedback transformation are

D(x) =

〈dϕ1, adr1−1

f g1〉 . . . 〈dϕ1, adr1−1
f gnu〉

...
. . .

...
〈dϕnu , adrnu−1

f g1〉 . . . 〈dϕnu , adrnu−1
f gnu〉

 (12)

v =

Lr1

f ϕ1
...

Lrnu
f ϕnu

+

Lg1 Lr1−1

f ϕ1 . . . Lgnu Lr1−1
f ϕ1

...
. . .

...
Lg1 Lrnu−1

f ϕnu . . . Lgnu Lrnu−1
f ϕnu

u , z =

ϕ1
...

Lr1−1
f ϕ1

...
ϕnu

...
Lrnu−1

f ϕnu

(13)

where {ϕi(x) : 〈dϕi,Gri−2〉 = 0, j ≥ i, i = 1, . . . , nu} are smooth functions that form the
non-singular matrix D(x). ri are the controllability indices and G is a distribution of vector
fields. L f ϕ = 〈dϕ, f 〉 is the Lie derivative, Lr

f means the Lie derivative is applied r times,

and adr
f g = [f , adr−1

f g] is the Lie bracket between the vector fields f and g. Further details
about the non-singular state feedback transformation for MIMO control-affine systems can
be found in Theorem 2.7.3 of reference [11].

4. Motion Planning in GPS-Denied Environments
4.1. Motion Planner Architecture

Our proposed motion planning design aims to produce optimal vehicle paths while
navigating in unexplored, dynamic and GPS-denied environments. We combine a graph-based
exploration technique with a Nonlinear Model Predictive Horizon-based approach based on
optimization which respects the vehicle’s dynamics and supports dynamic obstacles. This inte-
gration yields feasible, optimal, and robust paths while exploring challenging environments.

Figure 3 describes the overall architecture of our motion planner. The design is
composed of three successive stages. The first stage acquires sensor data to build a physical
representation of the environment which contains both static and dynamic objects in it.
Volumetric mapping is used for this stage since it is computationally efficient, easy to
visualize, can be incrementally constructed and reconstructed online, and provides the
voxel grid structure needed for the next stage. Details about the volumetric mapping and
its layers will be discussed in Section 4.2.

Section 4.3 discusses the second stage of the motion planner, which is built around a
graph-based planning approach. It consists of the sampling-based RRG algorithm, which
builds a connected roadmap graph, and the Dijkstra searching algorithm to extract the best
path from within the graph. The main purpose of the graph-based approach is to guide the
vehicle towards unexplored areas within the environment and provide terminal vertices,
a.k.a. stabilization or terminal setpoints, to the local path planner.

The third stage of the motion planner uses the NMPH-FBL local path planning method.
Fusing this method with the earlier stages improves the robustness of generating optimal
paths and avoiding static and dynamic obstacles. The considerations involved in finding a
feasible path are shown in Figure 3. Further details are provided in Section 4.4.

The reference trajectory computed by the path planner is fed to the control system
of the vehicle for tracking purposes. As the drone vehicle moves, the NMPH continues
to update its reference trajectory in response to feedback of the vehicle’s state and new
obstacles. Once the vehicle reaches a setpoint, the motion planning process is repeated,

Sensors 2021, 21, 5547 8 of 26

which continues until the environment is fully explored or the mission is interrupted by
the operator.

Dijkstra to generate the

shortest paths between the

graph vertices

Extract best path by

evaluating the branch gain

for the paths

Solution

found?

No

Yes

Extract the destination vertex

(setpoint) of the best path

Feasible

solution?
No

Yes

Feasible

solution?

No

YesPerform path following

/ trajectory tracking

Use the non-optimal path

generated by the

Graph-based planner

Done?

Update the global graph

Yes

Update the global graph and

the solution search bound

No

TSDF Layer

ESDF

Integrator

ESDF Layer

Mesh

Integrator

Mesh Layer

Map

Mesh Visualization

Volumetric Mapping

(Voxblox)

Pointcloud

Data

Pose

Estimation

TSDF

Integrator

RRG to build a connected

roadmap

Use Path Guidance algorithm

for robust path generation

Graph-Based Planner

Optimal Path Planning

(NMPH with FBL)

Generate optimal

trajectory/path using NMPH

with obstacle avoidance

Generate Dynamic

Local Obstacle Map

Figure 3. Motion Planner Architecture.

Sensors 2021, 21, 5547 9 of 26

4.2. Volumetric Mapping

Volumetric mapping is the foundation of motion planning and navigation strategies
in 3D environments. The volumetric mapping algorithm named Voxblox [32] is used in our
work. In this technique, the map of the environment is represented volumetrically using
the signed distance field to distinguish between known, unknown, free, and occupied
spaces [33]. The grid consists of voxels with a corresponding type. Groups of occupied
voxels represent surfaces of an object, walls, and so on. The main advantage of volumet-
ric mapping is its real-time capability for incrementally representing unstructured and
unexplored environments, which makes it a suitable solution for online planning and
exploration. The Truncated Signed Distance Field (TSDF [34]) is one of the most efficient
methods of representing volumetric maps. TSDF is an implicit surface representation that
consists of a 3D voxel array. Each voxel is indexed by the distance of the ray between the
sensor and the surface, and is truncated near the surface to decrease the errors that are
caused by sensor noise. TSDFs are computationally efficient and can be constructed online.
Also, they are capable of filtering out sensor noise and create meshes with voxel resolution
for visualization purposes.

In contrast to TSDF, the Euclidean Signed Distance Field (ESDF) uses the Euclidean
distance to the nearest occupied cell in labeling the voxel grid [32]. ESDFs are directly
built out of existing TSDFs to make use of the distance information in determining the
obstacle surface location for planning purposes. In other words, TSDF is for mapping and
ESDF for planning, and the main difference between them is the way that distances are
computed [35].

As presented in Figure 3, the volumetric mapping process consists of three layers.
The sensor data is processed to build the TSDF layer, then the voxels are integrated into the
ESDF and mesh layers as presented in [32]. The ESDF voxels and mesh blocks are updated
incrementally allowing real-time map generation for planning and online visualization of
the environment. To reduce the complexity of calculating the layers data, a voxel hashing
approach [36] is used to store the information of each layer in a hash table, which results in
O(1) complexity for adding or retrieving the data.

4.3. Graph-Based Path Planning

In this section, we summarize the graph-based planner presented in [5], which is used
to help the vehicle navigate through unknown GPS-denied environments.

Assume that MG is a global 3D voxel-based map, which consists of voxels m ∈MG.
The map is incrementally built by a depth sensor S plus the vehicle’s pose estimation
using the volumetric mapping approach previously discussed in Section 4.2. The map is
categorized into three spaces, free space M f

G, occupied space Mo
G, and unknown space

Mu
G. The map has a global volume VG and is incrementally constructed within a local map

sub-space ML of volume VL centered around the current vehicle’s output (here 3D position
and heading) ξ0 =

[
x0 y0 z0 ψ0

]T .
The graph-based planner [5] performs a local search towards unknown areas of MG.

It is based on the sampling-based RRG algorithm [37] which builds a connected roadmap
graph GG composed of collision-free vertices ν and edges e stored in vertex set V and
edge set E, respectively. The edges are straight paths connecting the vertices using the
nearest neighbor search [38]. The global graph GG is continuously constructed from the
undirected local graph GL within the local space ML. The local search within the bounded
volume VL considers the physical size of the vehicle VR and bounds it within a sub-space
MR. Collision detection is performed to ensure collision-free paths σL, where MR ∈ M f

G
for all randomly generated vertices and edges.

The set of all shortest paths ΣL, starting from the initial or current vertex ξ0 to all
destination vertices ξν, is found using the Dijkstra algorithm [12]. After that, the best path
is evaluated by calculating the Volumetric Gain V for each vertex. The Volumetric Gain of
a vertex is a measure of the unmapped volume based on the depth reading around that
vertex. The weight functions related to distance and direction combined with V are used

Sensors 2021, 21, 5547 10 of 26

to compute the Exploration Gain E(σi) for all σi ∈ ΣL , i = 1, . . . , n. The vertices of these
paths are νi

j , j = 1, . . . , mi, and νi
0 is the initial vertex along path σi. The Exploration Gain

for a path is calculated as [5]

E(σi) = e−λS S(σi ,σsp)
mi

∑
j=1
V
(

νi
j

)
e−λD D(νi

0,νi
j) (14)

where S(σi, σsp) is a distance factor between a path σi and its corresponding straight path
σsp which has the same length along the estimated exploration direction. This factor
prevents the vehicle from sudden changes in its exploration direction which might happen
in branched environments within ML. D(σi, σsp) is the distance between νi

j and νi
0 of the

path σi, which penalizes longer paths for a higher exploration rate. The tunable gains λS
and λD are positive gains.

Subsequently, the best path σbest that maximizes the Exploration Gain is selected and
sent to the NMPH-FBL local motion planner to find the optimal path that the vehicle will
follow. The whole procedure is repeated once the vehicle reaches the destination vertex.
The detailed algorithm for building the map and planning the best path is presented in
Algorithm 2.

If all vertices within GL are explored, the search will be expanded to the unexplored
vertices of GG. This will guide the vehicle to another location on the global map and
continue the exploration mission. For the return-to-home feature, the Dijkstra algorithm is
also used to find the shortest path between the vehicle’s current output ξ0 and the homing
vertex on GG. This feature can be invoked once the exploration mission is completed,
the battery level is low, or by intervention from the operator.

Algorithm 2 Graph-based Planner.

1: ξ0 ← CurrentMeasurement();
2: MG ← VolumetricMapping(S);
3: V← {ξ0}; E← ∅; GL = (V,E);
4: ML ← LocalBoundSpace(ξ0,MG);
5: for i = 1, . . . , n do . RRG to build the local graph GL
6: ξrand ← SampleFreei(ML);
7: ξnearest ← NearestVertex(GL, ξrand);
8: if CollisionFree(ξrand, ξnearest) then
9: V← V∪ {ξrand};

10: E← E∪ {ξrand, ξnearest};
11: Nnear ← NearVertices(GL, ξrand);
12: for each ξnearest ∈ Nnear do
13: if CollisionFree(ξrand, ξnear) then
14: E← E∪ {ξrand, ξnear};
15: end if
16: end for
17: end if
18: end for
19: ΣL ← DijkstraAlgorithm(GL, ξν); . Find the shortest paths
20: σbest ← ∅; Ebest ← 0;
21: for each σ ∈ ΣL do . Find the best path
22: Eσ ← ExplorationGain(σ, VolumetricGain(V));
23: if Eσ > Ebest then
24: σbest ← σ; Ebest ← Eσ;
25: end if
26: end for
27: GG ← GG ∪GL; . Update the global graph
28: if ReturnHome = true then
29: σbest ← DijkstraAlgorithm(GG, ξhome); . Find the shortest path to home
30: end if

Sensors 2021, 21, 5547 11 of 26

4.4. Nmph for Local Path Planning

The graph-based planner in Section 4.3 generates non-optimal or sub-optimal paths
because the vertices are created randomly within VL. In addition, the straight edges
connecting vertices cause jerky motions for a drone following the path. Finally, the path
generated by the graph-based planner does not respect the vehicle’s dynamics. The NMPH-
equipped path planning approach presented in Algorithm 3 overcomes these issues by
generating a path which respects the system’s dynamics and provides a smooth and optimal
path which also avoids obstacles. From Figure 3, the NMPH path planning stage includes

• Dynamic Local Obstacle Mapping (c.f. Section 4.4.1), a technique which utilizes the
continously updated volumetric map of the environment to generate a dynamically
changing map of obstacles which are used as constraints for the optimization within
the NMPH algorithm.

• Obstacle Avoidance (c.f. Section 4.4.2), an algorithm which allows the optimization
problem solver to select constraints which correspond to obstacles in the path of
the vehicle.

• Path Guidance (c.f. Section 4.4.3), an algorithm which enhances the robustness of path
generation to infeasible situations by making use of all the vertices of the graph-based
planner-generated path, not just the terminal vertex. This allows the generation of
multiple consecutive and feasible paths, leading to an overall path to the terminal vertex.

Algorithm 3 Local Optimal Path Planning using NMPH.

1: σbest ← GraphBasedPlanner(ξ0,MG);
2: νterm ← ExtractVertexterminal(σbest);
3: Mobs ← LocalObstacleBound(ξ0,MG); . Consider certain voxels around ξ0
4: for i = k, . . . , n do . Remove extra voxels
5: for j = i− k, . . . , i do
6: if ‖mi −mj‖ < δ then
7: Mobs ←Mobs\mi; . Remove νi from the obstacles map
8: end if
9: end for

10: end for
11: CL ← ObstacleConstraint(νterm, ξ0,Mobs); . Find the obstacles constraints
12: σopt ← NMPH_Planning(νterm, ξ0,CL);
13: if σopt not f easible then
14: for i = 1, . . . , n do . Path Guidance Algorithm
15: νi ← ExtractVertexi(σbest);
16: σopt ← NMPH_Planning(νi, ξ0,CL);

17: end for
18: if σopt not f easible then
19: σopt = σbest;

20: end if
21: end if
22: PathFollowing(σopt); . Follow the optimal path

4.4.1. Dynamic Local Obstacle Mapping

Transforming physical obstacles within the volumetric map to optimization constraints
is a challenging task. These obstacles need to be represented by a cluster of constraints
while respecting the limitations of the optimization process, specifically a limit on the
number of inequality constraints that the optimization problem can handle.

In this Section, we will present a strategy that maps obstacles in the environment into
a dynamically moving space around the vehicle. This facilitates representing the obstacles
as inequality constraints for optimization. This mapping technique, called Dynamic Local
Obstacle Mapping (DLOM), generates a continuously changing map Mobs.

Based on the occupied voxel in Mo
G, the DLOM strategy generates virtual spheres

centered on occupied voxels within a certain space surrounding the vehicle (e.g., a box

Sensors 2021, 21, 5547 12 of 26

of dimensions Dobs). These virtual spheres have a radius which ensures a safe clearance
between the vehicle sides and the occupied voxel. Figure 4 shows the volumetric map
without and with DLOM. One advantage of using a sphere is for modeling the obstacle as
a state constraint. This inequality constraint requires ri

obs, the distance between the vehicle
and the center of the ith sphere, to be larger than a specific threshold rthld representing
the radius of the virtual sphere as

(
ri

obs ≥ rthld
)
. The solution of the optimization problem

within NMPH will thus generate a path that doesn’t pass through the virtual spheres and
hence avoids the obstacles in the environment.

(a) Without DLOM (b) With DLOM

Figure 4. Dynamic Local Obstacle Mapping (DLOM).

Modeling all occupied voxels in Dobs as obstacles would result in an excessively
large computational burden to continuously generate Mobs and solve the optimization
problem. Instead, any voxels inside the ith sphere are excluded from Mobs. Lines (3–10) of
Algorithm 3 employ a simple running window strategy to remove extra voxels, and those
remaining are represented as virtual spheres which provide constraints to the optimization
problem. Figure 5 shows how the extra spheres are removed to reduce the computational
load involved in producing the obstacles map. The exact time needed to build the dynamic
obstacles map depends on the number of occupied voxels within Dobs. Experimentally,
we found that the time required to build such a map on a desktop-class machine with a
modern GPU (detailed specifications are given in Section 6.1) takes approximately 3 ms.

(a) (b)

Figure 5. Dynamic Local Obstacle Mapping. (a) All voxels are used to map the obstacle’s surface.
(b) A subset of voxels (highlighted in red) is selected to represent the obstacle’s surface, and their
neighbouring voxels are excluded.

Sensors 2021, 21, 5547 13 of 26

4.4.2. Obstacle Avoidance Algorithm

As soon as the obstacle map is created, the NMPH creates an optimal local path
respecting the constraints acquired from Mobs. The optimization solver is limited in the
number of inequality constraints it can handle, making it impossible to include all the
mapped obstacles in Mobs within the optimization problem. Hence, a dynamic method for
selecting a specific number of constraints is described next and included in Algorithm 4.

Algorithm 4 Obstacle Constraints.

1: function OBSTACLECONSTRAINT(νterm, ξ0,Mobs)
2: σopt ← NMPH_Planning(νterm, ξ0);
3: k = 1;
4: CD ← ∅; Ck

T ← ∅; . Dynamic and Temporary Constraint Arrays
5: for j = 1, . . . , N do . N is the number of the horizon points
6: for i = 1, . . . , nobs do . nobs is the number of obstacles
7: if ri

obs,νj
< rthld then

8: CD ← sj
i ; . Store ith obstacle position which is indexed by j

9: Ck
T ← si; . Store ith obstacle position in the kth temp constraint

10: k = k + 1;
11: if k is nT then
12: k = 1;
13: end if
14: end if
15: end for
16: end for
17: CL = (CD,Ck

T);

18: return CL

Our chosen solver provides a solution to the optimization problem every ∼4 ms
(running on the computer described in Section 6.1), which makes it possible to solve
the problem several times before sending the optimum reference path to the vehicle’s
flight control system. The Obstacle Avoidance algorithm takes advantage of this by first
solving the optimization problem without considering obstacle constraints, then running
a collision check on the generated path to find whether it crosses any virtual spheres
in Mobs. It is important to mention that the collision check is performed over the entire
optimization horizon [tn, tn + T] in Algorithm 1, which is discretized into N points for
numerical computation.

If a collision is detected at some points within the optimization horizon, a Dynamic
Constraint Array registers the center of a sphere s ∈ R3 that contains these collision points,
and passes them to the solver as inequalities used to compute a new solution which avoids
them. The Dynamic Constraint Array has dimensions of N × 3 and can register up to N
different inequality constraints for the next run of the optimization problem. For example,
assume that a collision is detected on horizon points 3, 4 and 5, and each of the collision
points are located within the 40th virtual sphere. In this case, the coordinates of the center
of this sphere are registered in the Dynamic Constraint Array at indices 3, 4 and 5, while the
rest of the array entries are kept Null. In the next iteration of the solver, a new constraint
representing the cloned entries of the Dynamic Constraint Array will yield a path which
avoids the region where the collisions previously occured.

To enhance the reliability of the Obstacle Avoidance algorithm while the vehicle is in
motion, a specific number of Temporary Constraint Arrays (labeled by k in Algorithm 4)
store the information from the Dynamic Constraint Array and are used in the optimization
solution as well. The Temporary Constraint Arrays are static, which means that each
registers only one virtual sphere over all its N indices.

Sensors 2021, 21, 5547 14 of 26

4.4.3. Robust Path Guidance Algorithm

The initial state of the vehicle, the nature of the environment (e.g., branched narrow
passages), and the terminal condition location may all affect the feasibility of the optimiza-
tion problem solution. Figure 6 depicts two different path planning scenarios. In Figure 6a,
the obstacle is small and NMPH can easily find a feasible solution. In Figure 6b, the obsta-
cles almost block the way to the destination point. In this situation, the NMPH solver risks
producing infeasible solutions by getting trapped in local minima.

As mentioned in Section 4.3, the graph-based path planning yields multiple vertices,
which are used by the NMPH approach to generate multiple feasible paths, ranging from
the nearest to the most distal (terminal) vertex. The small obstacle depicted in Figure 6a
does not cause any issues for the NMPH in generating a feasible path directly to the
terminal vertex. However, Figure 6b illustrates how the NMPH algorithm uses multiple
consecutive paths (gray lines) generated to the intermediate vertices of the path generated
by the graph-based planner (green line) to eventually find the resulting optimal path (blue
line). Lines 12–21 in Algorithm 3 demonstrate the Path Guidance algorithm that adds
robustness to the NMPH approach in finding a feasible solution. Note in case the Path
Guidance algorithm is unable to help NMPH find a feasible path to the terminal vertex,
the system can still use the path generated by the graph-based planner.

(a) (b)

Figure 6. Graph-based vs NMPH path planning. (a) The terminal vertex of the green path (from
graph-based planner) is sufficient to generate the optimum blue path by NMPH. (b) All the vertices
of the green path are used successively to guide the solutions of NMPH to the final optimal trajectory
(blue path).

5. Application of Motion Planner to A Drone
5.1. System Model

In this section, both a quadcopter and a hexacopter system are modeled as rigid
bodies with lumped force and torque inputs at each rotor. For simplicity, drag forces, rotor
gyroscopic effects, and propeller dynamics are not included in the models. The rigid-body
dynamics are formulated using the Newton-Euler equations [39].

A fixed navigation frame N and a moving body-fixed frame B are the two reference
frames used in this work and their basis are selected to follow the North, East, and Down
(NED) aerospace convention. Schematics of the drones with their body-fixed reference
frames and basis are depicted in Figure 7.

Sensors 2021, 21, 5547 15 of 26

𝑓4

𝑓2

𝑓1

𝑓3

𝑏1

𝑏2𝑏3
𝑛1

𝑛3
𝑛2

𝑝𝑛

𝑚𝑔

𝑓6

𝑓4
𝑓1

𝑓3

𝑏1

𝑏2
𝑏3

𝑛1

𝑛3
𝑛2

𝑝𝑛

𝑚𝑔

𝑓5

𝑓2

(a) (b)

Figure 7. Schematics of (a) quadcopter and (b) hexacopter vehicles.

The dynamics of a rigid body moving through 3D space is represented by rigid-body
kinematics and the Newton-Euler equations as shown below [39],

ṗn = vn

mv̇n = −ūRn3 + gn3

Ṙ = R S(ωb)

Jω̇b = −S(ωb)Jωb + τb

(15)

where pn ∈ R3 is the vehicle’s position and vn ∈ R3 is its velocity, both in coordinates of the
inertial navigation frameN . The mass moment of inertia matrix J is assumed to be diagonal
as J = diag([J1, J2, J3]), and m is the total mass of the drone. ωb, ω̇b are the angular velocity
and acceleration vectors, respectively, in coordinates of the body-fixed frame. The rotation
matrix of B with respect toN is R = Rnb ∈ SO(3). S(·) ∈ R3×3 is a skew-symmetric matrix
such that S(x)y = x× y, x, y ∈ R3. The system input vector is [ū, τb]T , where ū > 0 is the
net thrust from all rotors in the direction of −b3, and τb = [τb1, τb2, τb3]T are the torques
created by the rotors about the three body frame axes.

It is important to mention that each of the vehicle configurations (quadcopter and hex-
acopter) transforms the rotors’ thrusts and torques to the system input vector [ū, τb]T differ-
ently. These transformations are assumed to be performed in the onboard flight controller,
and consequently both configurations are represented by the same dynamics Equation (15).
Hence, the proposed algorithm development is the same for both configurations.

5.2. Development of NMPH on a Drone Vehicle
The state and input vectors of the rigid-body dynamics presented in Equation (10) are

x =
[
(pn)T , (vn)T , (η)T , (ωb)T

]T
∈ R12,

u =
[
ū, (τb)T

]T
∈ R4.

(16)

Using the roll-pitch-yaw (φ, θ, ψ) Euler angle parameterization of R ∈ SO(3), the nonlinear
control-affine representation of Equation (10) can be expressed as

ẋ = f (x) +
4

∑
i=1

gi(x)ui , f (x) + G(x)u (17)

Sensors 2021, 21, 5547 16 of 26

where

f (x) =

x4
x5
x6
0
0
g

x10 + sx7 tx8 x11 + cx7 tx8 x12
cx7 x11 − sx7 x12
sx7
cx8

x11 +
cx7
cx8

x12(
J2−J3

J1

)
x11x12(

J3−J1
J2

)
x10x12(

J1−J2
J3

)
x10x11

, G(x) =

0 0 0 0
0 0 0 0
0 0 0 0

− 1
m (cx7 sx8 cx9 + sx7 sx9) 0 0 0
− 1

m (cx7 sx8 sx9 − sx7 cx9) 0 0 0
− 1

m cx7 cx8 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

J1
0 0

0 0 1
J2

0
0 0 0 1

J3

where s(·) = sin(·), c(·) = cos(·), and t(·) = tan(·).

In order to make the system in Equation (17) state feedback linearizable, the state
vector is augmented with two additional states, which are the thrust x13 = ū and its rate
x14 = ˙̄u, and the thrust is replaced by ¨̄u in the input vector [9]. Moreover, integral states
ζ are added to the system dynamics to compensate for unmodeled external disturbances
which affect the control system and NMPH performances. The proposed extension of the
system is presented in Equations (18) and (19).

x =
[
(pn

3×1
)T , (vn

3×1
)T , (η

3×1
)T , (ωb

3×1
)T , ū, ˙̄u, (ζ pn

3×1
)T , ζψ

]T
∈ R18

u =
[

¨̄u, (τb
3×1

)T
]T
∈ R4

(18)

ẋ = f̄ (x) + Ḡ(x)u (19)

where,

f̄ (x) =

x4
x5
x6

− 1
m (cx7 sx8 cx9 + sx7 sx9)x13
− 1

m (cx7 sx8 sx9 − sx7 cx9)x13
g− 1

m cx7 cx8 x13
x10 + sx7 tx8 x11 + cx7 tx8 x12

cx7 x11 − sx7 x12
sx7
cx8

x11 +
cx7
cx8

x12(
J2−J3

J1

)
x11x12(

J3−J1
J2

)
x10x12(

J1−J2
J3

)
x10x11

x14
0
x1
x2
x3
x9

, Ḡ(x) =

09×4

0 1
J1

0 0
0 0 1

J2
0

0 0 0 1
J3

0 0 0 0
1 0 0 0

04×4

Based on the transformation presented in Section 3.2, the four smooth functions, which
represent the linearizing outputs, are {ϕ1(x) = x1, ϕ2(x) = x2, ϕ3(x) = x3, ϕ4(x) = x9},
and the system transformation into linear canonical form can be written as

ż = Ac z + Bc v , z ∈ R18, v ∈ R4

ξ = Cc z , ξ ∈ R4
(20)

Sensors 2021, 21, 5547 17 of 26

where,

z =
[

ϕ1, . . . , Lr1−1
f ϕ1, . . . , ϕm, . . . , Lrm−1

f ϕm

]T

=
[

x15, x1, x4, ẋ4, ẍ4, x16, x2, x5, ẋ5, ẍ5, x17, x3, x6, ẋ6, ẍ6, x18, x9, ẋ9

]T

ż =
[
z2, z3, z4, z5, v1, z7, z8, z9, z10, v2, z12, z13, z14, z15, v3, z17, z18, v4

]T

The domain for a non-singular solution is {ū 6= 0, −π
2 < φ < π

2 , −π
2 < θ < π

2 }, which is

found by the determinant of matrix D(x) being det D(x) = − ū2 cos (φ)
m3 J1 J2 J3 cos (θ) . The domain

limits shown above are included within the constraints of the optimization problem in
NMPH (8).

Finally, the feedback linearization control inputs are found using Equation (13),
which are

¨̄u =m cx9 sx7 v2 −m sx7 sx9 v1 −m cx7(sx8 cx9 v1 + sx8 sx9 v2 + cx8 v3)

+ x13

(
x2

10 + x2
11

)
τb1 =

mJ1

x13
sx7(sx8 cx9 v1 + sx8 sx9 v2 + cx8 v3) +

mJ1

x13
cx7(cx9 v2 − sx9 v1)− (J2 − J3)x12x11

+
J1

x13
(x11x12x13 − 2x10x14)

τb2 =− mJ2

x13
cx8(cx9 v1 + sx9 v2) +

mJ2

x13
sx8 v3 −

J2

x13
(x10x12x13 + 2x11x14)

+ (J1 − J3)x12x10

τb3 =− 1
cx7 cx8 x13

[
2J3

(
2x12x11c2

x7
+ sx7 x2

11 − x2
12cx7 − x12x11

)
x13sx8

+
(
(J1 − J2 + J3)x10x11x13cx7 + J3sx7(msx8 v3 − 2x10x12x13 − 2x11x14)

)
cx8

− J3
(
m sx7(cx9 v1 + sx9 v2) + x13v4

)
c2

x8

]

(21)

where the feedback inputs are selected as follows,

v :=

{
v4 =

18

∑
i=16

kiezi , vj =
5j

∑
i=5j−4

kiezi : j = 1, 2, 3

}
(22)

and the error ezi is defined as the difference between the desired and the actual feedback
state ezi = zre f

i − zi , i = 1, . . . , n.
As presented in Equations (15) and (21), the drone’s behavior is described by its

nonlinear system dynamics and the feedback linearization control. The optimization
within NMPH exploits their integration to enhance the performance of generating the
reference trajectory. The continuous-time NMPH presented in Algorithm 1 is solved using
a multiple shooting optimization technique. The solver used in our work, ACADO [40],
discretizes the system dynamics, control law, and inequality constraints over the prediction
horizon at each time instant tn. Figure 8 shows the optimization process from the problem
formulation to the trajectory generation.

Sensors 2021, 21, 5547 18 of 26

Optimization
Problem

optimize w.r.t. system’s
trajectories & states

Multiple
Shooting Method

discretizes the
optimization problem

Nonlinear Program (NLP)
Solves the optimization problem that

includes nonlinear function and/or
nonlinear constraints using Sequential

Quadratic Programming (SQP)

Trajectory
Generation

Continuous online
generation of the desired
trajectory for the system

Figure 8. NMPH Optimization Process. The non-convex optimization problem can be solved
iteratively using Sequential Quadratic Programming (SQP) [41]. In SQP, the problem is divided into
a sequence of subproblems, each of which solves a quadratic objective function subject to linearized
constraints [42].

The integration of the feedback linearization within the NMPH aims to reduce the
non-convexity of the optimization problem. A perfect model of the system dynamics
would allow the closed-loop form to be represented by a linear canonical form as shown
in Equation (20), for which the feasibility and stability of the optimized solution are
guaranteed and the computational power needed to solve the optimization problem is
greatly reduced over the non-convex case. However, even an imperfect model still reduces
the non-convexity of the optimization problem as compared to working directly with the
(nonlinear) plant dynamics as in standard NMPC.

6. Experimental Results

In this section, simulation and a preliminary real-time hardware flight test are pre-
sented to evaluate and validate the proposed design on quadcopter and hexacopter vehicles
while operating in GPS-denied environments.

The algorithms are implemented within the Robot Operating System (ROS) [43],
a Linux-based system that handles communication between the individual subsystems and
the vehicle. The ACADO Toolkit [40] is used for optimization. The optimization problem
is programmed in a self-contained C++ environment within this toolkit, then a real-time
nonlinear solver is generated to run the optimizations online. The resulting code can be
compiled and run within ROS, which also handles the communication between the solver
and the vehicle, either simulated or real [44]. The NMPH optimization problem (4)–(9) was
written in C++ code using ACADO, then automatically converted into a highly efficient C
code that is able to solve the optimization problem in real-time.

6.1. Simulation Results

In order to test the proposed approach before implementing it on a real drone, the quad-
copter drone vehicle is simulated within AirSim [45]. AirSim is an open-source simulator
that provides photo-realistic environments plus a physics engine to enable performing
lifelike simulations.

All frameworks and the AirSim simulator are run in ROS on an Intel Core i7-10750H
CPU @ 2.60–5.00 GHz equipped with the Nvidia GeForce RTX 2080 Super Max-Q GPU.
The prediction horizon for NMPH was set to T = 8 s using a sampling time of 0.2 s, which
was found satisfactory for trajectory generation. The cost function weights Wx, Wξ , and WT
were adjusted heuristically to ensure a balanced trajectory generation performance towards
the terminal setpoint.

The drone’s measured pose and pointcloud information are obtained from the AirSim
simulator and sent to the motion planner. The global graph-based and local NMPH
planners generate reference trajectories for the vehicle, which are forwarded to AirSim for
trajectory tracking purposes. RViz, the 3D visualization tool for ROS, is used to monitor
and visualize the simulation process. Figure 9 shows the ROS network architecture of the
nodes and topics employed in performing our simulation.

Sensors 2021, 21, 5547 19 of 26

Figure 9. Simulation Architecture.

Different simulation results are now presented to evaluate the performance of the
proposed approach on a quadcopter drone navigating autonomously through a previously
unexplored, GPS-denied underground environment available within the AirSim simula-
tor. The motion planner design illustrated in Figure 3 is implemented for this purpose.
Within AirSim, the virtual quadcopter is equipped with a customized 32-channel 360◦

scanning Lidar sensor with a 45◦ vertical field of view, 10 Hz rotation rate, and 50 m range.
The pointcloud data plus the vehicle pose are acquired and used to build a volumetric map
of the environment and locate the vehicle within it.

As discussed in Section 4.3, the graph-based planning algorithm guides the vehicle
towards unexplored areas within the map and provides vertices as terminal setpoints xss
for the NMPH local path planner. The design’s robustness is increased by implementing
the Obstacle Avoidance and Path Guidance algorithms proposed in Sections 4.4.2 and 4.4.3,
respectively. Finally, the generated reference path from the motion planner is sent to
the AirSim quadcopter for tracking. The NMPH continues updating the path during
the vehicle’s movement toward a setpoint. This allows to avoid dynamic obstacles and
improves the tracking performance. Once the vehicle reaches a setpoint, the planning
process is repeated until the environment is fully explored or the mission is interrupted by
the operator.

Figure 10 shows the paths generated by the graph-based and the NMPH path planners.
The NMPH is seen to provide a smooth and optimal path as compared to the sharp-corner
path generated by the graph-based planner. Moreover, the NMPH keeps updating the path
dynamically from the start to the terminal point at a rate of up to 100 Hz, while the graph-
based planner generates only one path between the two points. To reduce computational
load, the NMPH algorithm rate is set to 5 Hz, which was found to be suitable in generating
continuous and smooth paths in the environment. This rate of path regeneration also
provides good path following performance in the presence of static and dynamic obstacles.

(a) (b)

Figure 10. Motion Planner. (a) Path planning using graph-based approach (pink) and NMPH
algorithm (red). (b) Optimal path using NMPH algorithm.

Sensors 2021, 21, 5547 20 of 26

A portion of the overall tracked trajectory between multiple vertices using the NMPH
algorithm can be seen in Figure 11. Respecting the system dynamics provides smooth flight
paths and thus reduces power consumption caused by abrupt changes in the trajectory.

The DLOM generates a continuously changing obstacle map modeled by virtual
spheres as depicted in Figure 12. As discussed in Sections 4.4.1 and 4.4.2, mapped obstacles
are represented by (continuously updated) inequality constraints within the optimization
problem. The Obstacle Avoidance Algorithm helps in creating and updating a path that
avoids the obstacles as shown in Figure 12.

Figure 11. Illustration of trajectory generation and tracking. The green path is the trajectory of the
vehicle, and the red path is the future reference path.

(a) (b)

Figure 12. Dynamic Local Obstacle Mapping and Avoidance. In (a) the DLOM is made visible while
in (b) it is hidden.

Sensors 2021, 21, 5547 21 of 26

In the next simulation test, the quadcopter autonomously navigates an unexplored
GPS-denied environment. Figure 13 shows the exploration mission performed by the
quadcopter. The drone travels a total distance of 774.5 m while following smooth tra-
jectories generated by our proposed algorithm. Meanwhile, the graph-based planner
generated paths with a total length of 993.1 m for the same exploration mission. Table 1
and Figure 14 offer a mission performance comparison between using the graph-based
planner solo versus using the graph-based planner integrated with our NMPH approach in
terms of exploration time, average computation time of the generated paths, path lengths
between terminal vertices, and average and total length of the generated paths. This
comparison shows the impact of using the NMPH algorithm for reducing power consump-
tion, total mission time, and unwanted abrupt motions while following the generated
reference paths.

Table 1. Comparison between Graph-based and Graph-based-plus-NMPH approaches to path planning.

Total Length of the
Generated Paths

Average Path
Length (between
Terminal Points)

Average Path
Computation Time

Exploration
Time

Continuous Path
Generation

Graph-based 993.1 m 8.79 m 733 ms 1327 s No

Graph-based-
plus-NMPH 774.5 m 6.86 m 4.34 ms 1035 s Yes

(a) (b)

Figure 13. Autonomous navigation and exploration in GPS-denied environment. The vehicle
travelled a total distance of 774.5 m in about 1035 s. (a) Overhead visualization of exploration path
through environment. (b) Plot of vehicle positions (x,y,z) versus time.

Sensors 2021, 21, 5547 22 of 26

(a)

(b)

Figure 14. Comparison of path lengths between graph-based planner and our proposed NMPH path
planner. (a) Path length between stabilization points. (b) Total length of generated paths.

In the final simulation test, obstacle avoidance for a moving object is tested while
the drone navigates through the environment. This is shown in Figure 15, where the
continuous regeneration of the path by the NMPH algorithm enables the drone to safely
navigate to the stabilization point.

Figure 15. Obstacle avoidance for a moving object. The object (sphere) is moving to the left.
The NMPH regenerates the red path continuously to avoid the object. The blue curve represents the
flight trajectory of the drone.

Sensors 2021, 21, 5547 23 of 26

6.2. Preliminary Real-Time Flight Test Results

For real-time hardware testing, a FlameWheel F550 hexacopter (DJI Technology, Shen-
zhen, China) was used. The vehicle is equipped with a Pixhawk 2.1 autopilot control board
running the PX4 flight control software [46], and an onboard Jetson TX2 (NVidia, Santa
Clara, CA, USA) computer running ROS. The communication between ROS and PX4 is
established through MAVLink. A RealSense T265 stereo camera and a RealSense L515
LiDAR camera (Intel, Santa Clara, CA, USA) are mounted on the hexacopter to provide
pose and RGB-D pointcloud data, respectively.

The preliminary flight test evaluates the path generation performance of NMPH
running onboard a real drone, whose Jetson TX2 has lower computational power than the
computer used in simulation. Also, local trajectory tracking and the functionality of the
motion planner are tested in this experiment, as shown in Figure 16. Note that hardware
flights in large-scale areas will be performed and evaluated in future work.

Figure 16. Preliminary flight test.

In the current setup, the optimization solver within NMPH was able to provide
continuous regeneration of the reference trajectories at rates approaching 70 Hz. This rate
was reduced to 5 Hz to minimize the computational load on the onboard system. The graph-
based motion planner was also tested by generating terminal points for NMPH. The latter
sent the predicted reference trajectories to the onboard PX4, and the hexacopter was able
to follow them. Figure 17 shows the hexacopter following a continuously regenerated
reference path to a terminal vertex.

(a) (b) (c)

Figure 17. Hardware flight testing: successive captures of screen (a–c) displaying sensed environment
(blocks) and planned path (red line) of drone.

7. Conclusions

This paper presented a methodological motion planning approach for drone explo-
ration in GPS-denied environments, which integrates our recently proposed NMPH path
planning approach with a graph-based planner. The NMPH formulation employs the
nonlinear system dynamics model with feedback linearization control inside an online
optimization-based process to generate feasible, optimal and smooth reference trajectories
for the vehicle. The performance of the overall motion planner is increased by introducing
methods for robust path generation and dynamic obstacle mapping and avoidance.

Sensors 2021, 21, 5547 24 of 26

The developed motion planner was evaluated through a series of simulation flights
as well as a real-time hardware flight test to validate the performance of the proposed
design on quadcopter and hexacopter drones navigating the environment. The results
show the ability our algorithm to improve motion planning performance over conven-
tional techniques and generate smooth and safe flight trajectories in a computationally
efficient way.

Future work will include testing the proposed motion planning methodology inside
large-scale GPS-denied environments such as subterranean mines.

Author Contributions: Conceptualization, Y.A.Y. and M.B.; methodology, Y.A.Y.; software, Y.A.Y.;
validation, Y.A.Y.; formal analysis, Y.A.Y.; investigation,Y.A.Y.; resources, M.B.; data curation, Y.A.Y.;
writing—original draft preparation, Y.A.Y.; writing—review and editing, M.B.; visualization, Y.A.Y.;
supervision, M.B.; project administration, M.B.; funding acquisition, M.B. Both authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by NSERC Alliance-AI Advance Program grant number 202102595.
The APC was funded by NSERC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors wish to thank Selina Leveugle and Ali Muneer for their extensive
work on the hardware drone platform.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. LaValle, S.M. Planning Algorithms; Cambridge University Press: New York, USA, 2006.
2. Sozzi, A.; Bonfè, M.; Farsoni, S.; De Rossi, G.; Muradore, R. Dynamic motion planning for autonomous assistive surgical robots.

Electronics 2019, 8, 957. [CrossRef]
3. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving

urban vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]
4. Ahmed, S.M.; Tan, Y.Z.; Lee, G.H.; Chew, C.M.; Pang, C.K. Object detection and motion planning for automated welding of

tubular joints. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,
Korea, 9–14 October 2016; pp. 2610–2615.

5. Dang, T.; Mascarich, F.; Khattak, S.; Papachristos, C.; Alexis, K. Graph-based path planning for autonomous robotic exploration
in subterranean environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 4–8 November 2019; pp. 3105–3112.

6. Quan, L.; Han, L.; Zhou, B.; Shen, S.; Gao, F. Survey of UAV motion planning. IET Cyber Syst. Robot. 2020, 2, 14–21. [CrossRef]
7. Corke, P. Robotics, Vision and Control: Fundamental Algorithms in MATLAB, 2nd ed.; Springer Tracts in Advanced Robotics; Springer:

Cham, Switzerland, 2017; Volume 118.
8. Grüne, L.; Pannek, J. Nonlinear Model Predictive Control: Theory and Algorithms; Springer: London, UK , 2017.
9. Al Younes, Y.; Barczyk, M. Nonlinear Model Predictive Horizon for Optimal Trajectory Generation. Robotics 2021, 10, 90.

[CrossRef]
10. Isidori, A. Nonlinear Control Systems, 3rd ed.; Springer: London, UK , 1995.
11. Marino, R.; Tomei, P. Nonlinear Control Design: Geometric, Adaptive, and Robust; Prentice Hall: London, UK, 1995.
12. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009.
13. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
14. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
15. Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363. [CrossRef]
16. Al-Mutib, K.; AlSulaiman, M.; Emaduddin, M.; Ramdane, H.; Mattar, E. D* lite based real-time multi-agent path planning in

dynamic environments. In Proceedings of the Third International Conference on Computational Intelligence, Modelling &
Simulation, Langkawi, Malaysia, 20–22 September 2011; pp. 170–174.

17. Likhachev, M.; Gordon, G.J.; Thrun, S. ARA*: Anytime A* with provable bounds on sub-optimality. In Proceedings of the 16th
International Conference on Neural Information Processing Systems, Whistler, BC, Canada, 9–11 December 2003; pp. 767–774.

http://doi.org/10.3390/electronics8090957
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1049/iet-csr.2020.0004
http://dx.doi.org/10.3390/robotics10030090
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TRO.2004.838026

Sensors 2021, 21, 5547 25 of 26

18. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environ-
ments. Int. J. Robot. Res. 2010, 29, 485–501. [CrossRef]

19. Yang, Y.; Pan, J.; Wan, W. Survey of optimal motion planning. IET Cyber-Syst. Robot. 2019, 1, 13–19. [CrossRef]
20. Siméon, T.; Laumond, J.P.; Nissoux, C. Visibility-based probabilistic roadmaps for motion planning. Adv. Robot. 2000, 14, 477–493.

[CrossRef]
21. LaValle, S.M.; Kuffner, J.J. Rapidly-exploring random trees: Progress and Prospects. In Algorithmic and Computational Robotics:

New Directions; Donald, B.R., Lynch, K.M., Rus, D., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 293–308.
22. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
23. Canny, J.; Rege, A.; Reif, J. An exact algorithm for kinodynamic planning in the plane. Discret. Comput. Geom. 1991, 6, 461–484.

[CrossRef]
24. Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning. In

Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 489–494.
25. Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow, H.; Pan, J.; Patil, S.; Goldberg, K.; Abbeel, P. Motion planning with

sequential convex optimization and convex collision checking. Int. J. Robot. Res. 2014, 33, 1251–1270. [CrossRef]
26. Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning.

In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 4569–4574.

27. Atkeson, C.G. Using local trajectory optimizers to speed up global optimization in dynamic programming. In Proceedings of the
6th International Conference on Neural Information Processing Systems, Denver, CO, USA, 29 November–2 December 1993;
pp. 663–670.

28. Perez, A.; Platt, R.; Konidaris, G.; Kaelbling, L.; Lozano-Perez, T. LQR-RRT*: Optimal sampling-based motion planning with
automatically derived extension heuristics. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation
(ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 2537–2542.

29. Nolte, M.; Rose, M.; Stolte, T.; Maurer, M. Model predictive control based trajectory generation for autonomous vehicles—An
architectural approach. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA,
11–14 June 2017; pp. 798–805.

30. Andersson, O.; Ljungqvist, O.; Tiger, M.; Axehill, D.; Heintz, F. Receding-horizon lattice-based motion planning with dynamic
obstacle avoidance. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA,
17–19 December 2018; pp. 4467–4474.

31. Andersson, O.; Wzorek, M.; Rudol, P.; Doherty, P. Model-predictive control with stochastic collision avoidance using bayesian
policy optimization. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 4597–4604.

32. Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwart, R.; Nieto, J. Voxblox: Incremental 3D euclidean signed distance fields for
on-board mav planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 1366–1373.

33. Steinbrücker, F.; Sturm, J.; Cremers, D. Volumetric 3D mapping in real-time on a CPU. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2021–2028.

34. Curless, B.; Levoy, M. A volumetric method for building complex models from range images. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), New Orleans, LA, USA, 4–9 August 1996;
pp. 303–312.

35. Oleynikova, H.; Millane, A.; Taylor, Z.; Galceran, E.; Nieto, J.; Siegwart, R. Signed distance fields: A natural representation for
both mapping and planning. In Proceedings of the RSS 2016 Workshop: Geometry and Beyond-Representations, Physics, and
Scene Understanding for Robotics, Ann Arbor, MI, USA, 19 June 2016.

36. Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M. Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph.
2013, 32, 169. [CrossRef]

37. Karaman, S.; Frazzoli, E. Sampling-based motion planning with deterministic µ-calculus specifications. In Proceedings of the Joint
48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, 16–18 December 2009;
pp. 2222–2229.

38. Moore, A.W. An Introductory Tutorial on kd-Trees, 1991. Available online: https://www.ri.cmu.edu/pub_files/pub1/moore_
andrew_1991_1/moore_andrew_1991_1.pdf (accessed on 17 August 2021)

39. Murray, R.M.; Li, Z.; Sastry, S.S.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL,
USA, 1994.

40. Houska, B.; Ferreau, H.; Diehl, M. ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic
Optimization. Optim. Control Appl. Methods 2011, 32, 298–312. [CrossRef]

41. Boggs, P.T.; Tolle, J.W. Sequential quadratic programming. Acta Numer. 1995, 4, 1–51. [CrossRef]
42. Ferreau, H.; Kirches, C.; Potschka, A.; Bock, H.; Diehl, M. qpOASES: A parametric active-set algorithm for quadratic programming.

Math. Program. Comput. 2014, 6, 327–363. [CrossRef]
43. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009.

http://dx.doi.org/10.1177/0278364909359210
http://dx.doi.org/10.1049/iet-csr.2018.0003
http://dx.doi.org/10.1163/156855300741960
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1007/BF02574702
http://dx.doi.org/10.1177/0278364914528132
http://dx.doi.org/10.1145/2508363.2508374
https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_1991_1.pdf
https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_1991_1.pdf
http://dx.doi.org/10.1002/oca.939
http://dx.doi.org/10.1017/S0962492900002518
http://dx.doi.org/10.1007/s12532-014-0071-1

Sensors 2021, 21, 5547 26 of 26

44. Kamel, M.; Stastny, T.; Alexis, K.; Siegwart, R. Model predictive control for trajectory tracking of unmanned aerial vehicles using
robot operating system. In Robot Operating System (ROS); Springer: Cham, Switzerland, 2017; pp. 3–39.

45. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 621–635.

46. Meier, L.; Honegger, D.; Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded
platforms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA,
26–30 May 2015; pp. 6235–6240.

	Introduction
	Related Work
	Nonlinear Model Predictive Horizon for Path Planning
	NMPH Algorithm for Optimal Trajectory Generation
	Feedback Linearization Control Law

	Motion Planning in GPS-Denied Environments
	Motion Planner Architecture
	Volumetric Mapping
	Graph-Based Path Planning
	Nmph for Local Path Planning
	Dynamic Local Obstacle Mapping
	Obstacle Avoidance Algorithm
	Robust Path Guidance Algorithm

	Application of Motion Planner to A Drone
	System Model
	Development of NMPH on a Drone Vehicle

	Experimental Results
	Simulation Results
	Preliminary Real-Time Flight Test Results

	Conclusions
	References

