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Abstract: Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious zoonotic
virus first reported into the human population in September 2012 on the Arabian Peninsula. The
virus causes severe and often lethal respiratory illness in humans with an unusually high fatality
rate. The N-terminal domain (NTD) of receptor-binding S1 subunit of coronavirus spike (S) proteins
can recognize a variety of host protein and mediates entry into human host cells. Blocking the
entry by targeting the S1-NTD of the virus can facilitate the development of effective antiviral drug
candidates against the pathogen. Therefore, the study has been designed to identify effective antiviral
drug candidates against the MERS-CoV by targeting S1-NTD. Initially, a structure-based pharma-
cophore model (SBPM) to the active site (AS) cavity of the S1-NTD has been generated, followed by
pharmacophore-based virtual screening of 11,295 natural compounds. Hits generated through the
pharmacophore-based virtual screening have re-ranked by molecular docking and further evaluated
through the ADMET properties. The compounds with the best ADME and toxicity properties have
been retrieved, and a quantum mechanical (QM) based density-functional theory (DFT) has been
performed to optimize the geometry of the selected compounds. Three optimized natural com-
pounds, namely Taiwanhomoflavone B (Amb23604132), 2,3-Dihydrohinokiflavone (Amb23604659),
and Sophoricoside (Amb1153724), have exhibited substantial docking energy >−9.00 kcal/mol, where
analysis of frontier molecular orbital (FMO) theory found the low chemical reactivity correspondence
to the bioactivity of the compounds. Molecular dynamics (MD) simulation confirmed the stability of
the selected natural compound to the binding site of the protein. Additionally, molecular mechanics
generalized born surface area (MM/GBSA) predicted the good value of binding free energies (∆G
bind) of the compounds to the desired protein. Convincingly, all the results support the potentiality
of the selected compounds as natural antiviral candidates against the MERS-CoV S1-NTD.
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1. Introduction

Coronavirus (CoVs) is a member of the family Coronaviridae, containing a single-
stranded positive-sense RNA genome [+ssRNA] that has a length between ~27 kb to
32 kb. The virus causes illness ranging from the common cold to more severe diseases in
humans and animals [1]. Genetically diverse coronaviruses cycles in nature among its three
principal hosts, which are the natural host (bats, mice), intermediate host (camels, masked
palm civets, swine, dogs, and cats), and humans [2]. Four common human coronaviruses
(HCoVs) NL63 and 229E (α-CoVs); OC43 and HKU1 (β-CoVs) circulate widely in the
human population, each capable of causing severe disease ranging from common colds to
self-limiting upper respiratory infections in immunocompetent people.

Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and MERS-
CoV are other known human beta CoVs (β-CoVs) capable of causing epidemics [3,4]. They
are zoonotic in characters and infections with the virus resulting in various clinical severity
featuring respiratory and extra-respiratory manifestations [5]. The number of global people
infected with coronavirus has risen rapidly, which began with the pandemic of SARS-CoV
in 2003, followed by the MERS-CoV in 2012 and, most recently, the SARS-CoV-2 outbreaks
with a fatality rate of ~10%, ~35%, and 0.1% to over 25%, respectively [6,7]. Among the
animal coronaviruses, MERS-CoV has the highest fatality rate in humans and animals, but
effective antiviral candidates are not available to treat the infection caused by the pathogen.

Receptor recognition is an initial and key step of a virus to infections into the host cells.
MERS-CoV class I membrane fusion trimeric S glycoprotein of the virion can recognize host
receptor that mediates entry into the cells. The S trimer of highly pathogenic MERS-CoV can
recognize the host cellular receptor dipeptidyl peptidase 4 (DPP4), resulting in membrane
fusion and viral entry [8]. The trimeric ectodomain segment of MERS-CoV-S protein can
be divided into two subunits, the first one is the receptor binding S1 subunit and another
one is the membrane-fusion S2 subunit. The receptor binding S1 subunit of the virus can
also be divided into two independent domains, namely the N-terminal domain (S1-NTD)
and C-terminal domain (S1-CTD), which can function as a receptor-binding domain (RBD)
for the S protein [9]. The S1-NTD of MERS-CoV can identify specific sugar moieties upon
primary attachment and help in the prefusion-to-post fusion transition, which is critical
in determining tissue tropism, host ranges, and cross-species infection [10]. Therefore,
targeting the S1-NTD of the MERS-CoV S protein can inhibit the primary attachment to the
host and block the prefusion-to-post fusion transition and will be an effective prophylactic
against the virus [11].

The S1-NTD targeting natural compounds with potent inhibitory activity can be a
focus on the improvement of therapeutic interventions of the virus [12]. Many studies
reported different neutralizing antibodies and chemically synthesized compounds as drug
candidates previously, for example, folic acid showed activity against NTD from the
mammalian expression medium [10,13]. Sometimes, this type of antibody can induce
resistance against the virus and chemically synthesized compounds can causes adverse
side effect of the host [14]. Natural compounds having low toxicity and side effect can be
developed as antiviral candidates by targeting S1-NTD that will be novel therapeutics for
MERS-CoV [15]. We thus sought to identify potential natural antiviral drug candidates
against the MERS-CoV by targeting S1-NTD.

Nowadays, computer-aided drug design (CADD) has become an effective and power-
ful technique in different therapeutic development. The technique has helped to overcome
the long-term and expensive process that costs billions of dollars previously during drug
design and development [16]. The importance of the in-silico drug design technique is
greater than ever before in the modern drug design process [17]. Therefore, the study
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utilized different in-silico technique includes pharmacophore modeling, virtual screening,
molecular docking, ADMET, QM calculation, MD simulation, and MM/GBSA to identify
effective and potential natural drug candidates against MERS-CoV.

2. Results
2.1. Results of Pharmacophore Modeling

Pharmacophore can be defined as an ensemble of common steric and electronic
chemical features that indicates a compound-specific mode of action to the active site of a
targeted biological macromolecule. The pharmacophore features can be observed during
ligand–protein interaction and helps in screening a large chemical database for retrieving
novel scaffolds as a lead compound [18].

To identify novel scaffolds as a lead compound against MERS-CoV S1-NTD, two differ-
ent pharmacophore models were generated based on the protein PDB ID: 5VYH and 6PXH
in complex with folic acid (FOL409) and dihydro-folic acid (DHF428), respectively. The
ligand (FOL409) in complex with the protein 5VYH generated a total of 14 pharmacophore
features includes two aromatic ring (AR), eight hydrogen bond acceptor (HBA), and four
hydrogen bond donor (HBD) features, where complex of DHF428 and 6PXH produced 10
pharmacophore features includes one AR, one hydrophobic (H), four HBA, and four HBD
features shown in Figure 1A,B. This two-pharmacophore model was aligned and merged
to interpolate overlapping features, which generated a total of 20 pharmacophore features
including three AR, one H, two negative ionizable area (NI), 10 HBA, and four HBD fea-
tures shown in Figure 1C. The overlapped and duplicate pharmacophore features from the
aligned pharmacophore models have been removed to optimize and relaxed the geomet-
rical confirmation of the model. After removing the duplicate pharmacophore features a
total of 11 features includes three HBD, one H, three HBA, three AR, and one NI feature
were selected for further study shown in Figure 1D. Exclusion volume coat generated
during the pharmacophore modeling process has not been considered in the study.
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Figure 1. The overall pharmacophore model generated during the study. Herein, (A) pharmacophore features generated
from 5VYH (PDB)-Folic Acid (yellow) complex interaction, (B) 6PXH (PDB)-Dihydrofolic Acid (red) complex interaction,
(C) merge pharmacophore features, and (D) final pharmacophore features utilized for virtual screening. The hydrogen
bond donor (HBD) features have shown in green, hydrogen bond acceptor (HBA) in red, negative ionizable area (NI) in red
astricts, aromatic ring (AR) in blue, and hydrophobic (H) features in yellow color.
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2.2. Molecule Library Preparation

Virtual screening can be defined as a cheminformatics technology that utilizes dif-
ferent computational techniques to screen a large number of molecules and identify the
structures of interest for biological assays [19]. The accuracy of a cheminformatics model
depends on the data mining process that is related to database preparation. Therefore, to
accurately mine the database, a total of 11,295 natural compounds have been retrieved
from the Ambinter, and a library has prepared for virtual screening. The geometry of all the
molecular structures has been optimized by conforming MMFF94 force field available at
the LigandScout tool and a molecular library has been prepared [20]. The library prepared
through the software has further utilized for the virtual screening process.

2.3. Active Compounds Identification and Decoy Set Generation

Validation of a pharmacophore model is essential before a large database screening
process can provide reliable outcomes on a real-life project. The SBPM can be validated
through known active compounds together with inactive compounds called “decoys”.
Ideally, active compounds for model validation should be selected based on experimental
data [19]. Therefore, 12 experimentally active compounds against MERS-CoV S protein
have been identified and retrieved from the ChEMBL database. The active compounds
have been selected based on their half maximal inhibitory concentration IC50 (nM) value
shown in Figure 2. The active compounds then submitted into the DUDE-E decoy database
and a total of 1326 decoys correspondence to active compounds has been retrieved. The
geometry of the compounds has also been optimized by using the MMFF94 force field and
converted into the LDB file format through LiganScout software.
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Figure 2. List of active compounds identified against MERS coronavirus S1-NTD protein. The IC50 value and correspondence
ChEMBL identity for each compound has also been provided.

2.4. Pharmacophore-Based Virtual Screening

In-silico virtual screening is a type of computational approach by which molecules
with desired properties can retrieve structures with similar properties from large molecule
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libraries. During the drug design and development process, this technique helps to identify
small molecules as hits and further optimization as lead candidates [21]. Furthermore,
this process can help to reduce the assay-to-lead attrition rate that has excluded time and
expensive experiments require during the drug design and development process. A specific
3D pharmacophoric pattern searching approach to screen large molecule libraries is now
being considered as the next step in the drug design process. Therefore, the study utilized
a 3D pharmacophore models-based virtual screening process to identify hit compounds
against the targeted protein. The structure-based virtual screening process retrieved 32
active compounds as hits with a geometric fit score of 65.46 to 67.75, where the number of
conformations generated during the screening was a minimum of eight and a maximum of
25 shown in Table S1.

2.5. Pharmacophore Model Performance Analysis

To determine the performance of the pharmacophore model, the ROC curve generated
during the virtual screening process has been analyzed. Receiver-operating characteristic
(ROC) is a simple and useful graphical tool for evaluating the accuracy of a statistical
model. The ROC curve in the virtual screening process provides information regarding
the discrimination ability of the model from active to inactive (decoy) set [19]. The overall
summary of the model accuracy can be calculated from the Area Under the Curve (AUC)
that represents the degree of discrimination ability. The AUC value ranges between 0.0 to
1.0, where a value between 0 to 0.5 indicates random chance of discrimination, 0.51 to 0.7
indicates acceptable, 0.71 to 0.8 indicates good, and 0.81 to 1.0 indicates the excellence of
the model [19]. The enrichment factor in the pharmacophore model provides an idea about
the number of active compounds found from a specific model compared to hypothetically
active compounds found from a randomly screened model. The EF factor can range from 1
to >100, where 1 indicates the number of randomly sorted molecules and >100 indicates
the least number of compounds need to screen in vitro to find a large number of active
compounds. The AUC and EF values found in the study were 0.74 and 1.1, respectively,
indicating good discrimination ability and robustness of the pharmacophore model shown
in Figure 3.Molecules 2021, 26, x FOR PEER REVIEW 6 of 26 
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2.6. Binding Site Identification and Receptor Grid Generation

A binding site can be defined as a specific amino acid (AA) residue in a protein
to which ligands can binds and is fundamentally important for guiding drug design.
Identification of the location of protein binding sites is essential during molecular docking
simulation, which helps to generate enough contact points with the protein and significantly
increases the docking efficiency [22]. Binding site is evolved to be optimized to bind a
particular substrate, therefore the binding site of the protein has been identified in this
study. Analysis of previously identified complex protein–ligands (PDB: 5VYH) interaction
found eight binding site residues in the protein. The eight-binding site residues was resided
at TRP44, PRO45, ALA123, GLY128, THR129, ILE140, TRP310, and ALA312 in the S1-NTD
protein has been represented in a ball shape and shown in Figure 4.
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structure. Ball shape 3D representation of the binding site with the grid box shown on the left side in the figure, where 2D
binding site position has also been represented on the right side of the figure.

PyRx is a grid-based docking program that requires the definition of receptor grid box
size before initiating the molecular docking process. Grid box fixation before the molecular
docking process helps to generate more reliable scoring to the ligand poses. Therefore,
to identify more reliable ligand poses towards the protein, a receptor grid box with a
dimension X = 30.69 (Å), Y = 33.36 (Å), and Z = 43.41(Å) has been generated based on
previously identified binding residues position of the protein.

2.7. Molecular Docking Simulation

Molecular docking in CADD is an important technique that helps to determine the
bound geometry and interaction between a small molecule and a protein at the atomic
level. The technique has become an increasingly important tool for drug discovery due to
the ability to screen large compound libraries [23]. The technique also helps to determine
the behavior and predict how a protein (enzyme) interacts with small molecules (ligands)
to the binding site of target proteins. To elucidate the ligand–receptor binding mechanism,
a molecular docking simulation has been performed in this study. The 32 hits identified
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previously through the structure-based virtual screening process have been docked to the
binding site of the MERS-CoV S1-NTD protein. The docking score found for the 32 hits
has a range between −6.4 and −9.2 kcal/mol provided in Table S1. Based on the binding
affinity top (10%), four compounds Amb6600135 (−9.2 kcal/mol), Amb23604132 (−9.1
kcal/mol), Amb23604659 (−8.6 kcal/mol), and Amb1153724 (−8.1 kcal/mol) with zero
upper and lower RMSD value have been chosen for further evaluation listed in Table 1.

Table 1. List of the top four compounds and their chemical name, molecular formula, binding affinity (kcal/mol), and
pharmacophore fit score.

Ambinter ID Molecule Name Formula Structure Binding Affinity
(kcal/mol)

Pharmacophore
Fit Score

Amb6600135
Nicotinamide

adenine
dinucleotide

C21H28N7O14P2+
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Lipophilicity Log Po/w (Cons) -5.39 4.37 3.70 0.45 
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2.8. ADME Analysis

ADME properties of chemical compounds play an important role in the likelihood of
success of a drug. Optimization of the ADME properties can reduce the pharmacokinetics-
related failure in the clinical phases, which is difficult and challenging in the drug de-
velopment and discovery process [24]. It has been found that early-stage evaluation of
ADME can reduce the attrition rates during the clinical drug development phase. There-
fore, the study utilized the SwissADME web tool for the early-stage evaluation of ADME
properties for selected four compounds. The server evaluated the ADME properties
of selected four (Amb6600135, Amb23604132, Amb23604659, and Amb1153724) com-
pounds based on lipophilicity, solubility, pharmacokinetics, medicinal chemistry, and
drug-likeness properties.

All the compounds have maintained an optimum pharmacokinetics property except
the compounds Amb6600135, which has negative Log Po/w value, active P-glycoprotein (P-
GP) substrate (Figure S1) and violated the maximum Lipinski’s rule of five (RO5) listed in
Table 2. On the other hand, the synthesis accessibility of the compound (Amb6600135) was
higher (difficult to synthesize) than the other three compounds. Therefore, the compound
has not been considered for further stages of evaluation.
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Table 2. List of pharmacokinetics (ADME) properties includes physicochemical properties, lipophilicity, water-solubility,
drug-likeness, and medicinal chemistry of selected four compounds.

Properties Amb6600135 Amb23604132 Amb23604659 Amb1153724

Physico-chemical
Properties

MW (g/mol) 664.43 568.53 540.47 432.38

Heavy atoms 44 42 40 31

Aro. atoms 15 28 28 16

Rotatable bonds 11 5 4 4

H-bond acceptors 17 10 10 10

H-bond donors 8 4 5 6

TPSA (Å2) 337.88 155.89 166.89 170.05

Lipophilicity Log Po/w (Cons) -5.39 4.37 3.70 0.45

Water Solubility Log S (ESOL) High Soluble Soluble Moderate

Pharmacokinetics

GI absorption Low Moderate Moderate Low

BBB permeant No No No No

P-GP substrate Yes No No No

Drug likeness Lipinski violations 3 1 1 1

Medi. Chemistry Synth. accessibility Medium Easy Easy Medium

2.9. Toxicity Test

Analysis of toxicity is an important and one of the main steps in drug design that helps
to identify the harmful effects of chemical substances on humans, animals, plants, or the
environment. Traditional assessment of compounds toxicity requires in vivo animal model,
which is time-consuming, expensive, and subject to be ethical considerations [25]. Therefore,
computer-aided in silico toxicity measurement of chemical substances can be considered
useful in the drug design process. The study utilized the ProTox-II web server to identify the
toxicity of the compound computationally, as it is not time-consuming, non-expensive, and
requires no ethical considerations. The three compounds (Amb23604132, Amb23604659,
and Amb1153724) selected previously through different screening process have been
submitted in the ProTox-II web server that determines the acute toxicity, hepatotoxicity,
cytotoxicity, carcinogenicity, and mutagenicity of the compounds listed in Table 3. All three
compounds have shown no oral toxicity or organ toxicity effect.

Table 3. List of compounds toxicity endpoints includes acute toxicity, hepatotoxicity, cytotoxicity,
carcinogenicity, and mutagenicity of selected three compounds.

Classification Target Amb23604132 Amb23604659 Amb1153724

Oral toxicity LD50 (mg/kg) 5000 5000 5000

Toxicity Class 5 5 5

Organ toxicity Hepatotoxicity Inactive Inactive Inactive

Toxicity
endpoints

Carcinogenicity Inactive Inactive Inactive

Mutagenicity Inactive Inactive Inactive

Cytotoxicity Inactive Inactive Inactive

2.10. Theoretical Calculation
Geometry Optimization

Geometry optimization is a quantum chemical technique used by most computational
biologist, chemists, academics, and researchers to find the configuration of minimum
energy with the most stable form of a chemical structure. It is a method of taking rough
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geometric approximations and making them as exact as possible [26]. The geometry
with the lowest energy is the most stable because molecules with lowest energy state
spontaneously decrease its energy by emitting. Therefore, the best optimized molecular
geometry with the lowest energy value has been determined by using the default basis set
6-31G(d,p) in Jaguar. The 2D structures and 3D optimized geometries of the compounds
Amb23604659, Amb23604132, and Amb1153724 have been plotted in Figure 5. Additionally,
the bond angles, bond lengths (bohr, angstroms), and torsional angles optimized during
the process have been provided in Supplementary text file format (renamed as Geometry).
The optimized structure has been retrieved for further evaluation through molecular
docking simulation.
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2.11. Frontier Molecular Orbital HOMO/LUMO Calculation

The FMO is now significantly used in organic chemistry to explain the structure and
reactivity of molecules. The theory can describe the electronic and optical properties of
molecules by utilizing HOMO-LUMO bandgap energy [27]. The energy gap between the
two orbitals HOMO and LUMO also helps to determine the sensitivity of atoms toward
electrophilic and nucleophilic attacks, chemical kinetic stability, chemical hardness, and
softness of a molecule [26]. The electrons localized from the HOMO orbital is most free to
participate in the nucleophilic reaction, where the LUMO participates in the electrophilic
reaction. A molecule with low HOMO-LUMO gap energy should have a high chemical
reactivity and low kinetic stability that can be considered as a soft molecule. In this process,
a molecule with a high frontier (HOMO-LUMO) orbital gap should have low chemical reac-
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tivity or bioactive and high kinetic stability due to the low probability of adding an electron
to the high-energy LUMO. The molecules with a high FMO energy gap are energetically
stable related to low chemical reactivity and high kinetic stability compared to a molecule
having a low FMO energy gap [27]. Therefore, to evaluate the chemical reactivity and
kinetic stability of the selected three compounds the HOMO, LUMO, and HOMO-LUMO,
gap energy was calculated from Equation (3) and shown in Figure 6, the hardness and
softness of the molecules have also been calculated and listed in Table S2. The calculated
FMO energy band gap values found for the compounds Amb1153724, Amb23604132, and
Amb23604659 was 4.48 eV, 3.60 eV, and 4.35 eV, respectively, which was considerably
higher, indicating kinetic stability and low chemical reactivity of the molecules.
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2.12. Re-Docking, Interaction, and Pharmacophore Analysis
2.12.1. Redocking Score

The re-docking process has been performed to identify the possible docking poses in a
restricted area by using the previously obtained binding sites of the S1 protein. The
geometry optimized structure has been docked and the score found for the selected
three compounds Amb23604132, Amb23604659, and Amb1153724 were −10.2 kcal/mol,
−9.5 kcal/mol, and −9.2 kcal/mol, which was better than the previously obtained binding
score (Table 1). Therefore, it can be considered that the QM-based optimization of the
compounds was effective for the selected three compounds.

2.12.2. Protein–Ligands Interaction Interpretation

Understanding the potential interactions between a protein–ligand complex is an
important part of the field of drug discovery, which helps to identify hits to leads as a
potential drug candidate. Interaction analysis also helps to navigate the position of small
molecules in a protein and determine the behavior on biological networks. Accurate
identification of protein–ligand interactions play a key role in drug development and
disease treatment. Therefore, the interaction between the selected three compounds and
desire S1-NTD protein has been analyzed by using the BIOVIA Discovery Studio Visualizer
tools. Analysis of the complex structure identified different bonding interaction includes
hydrogen bond (Conventional H-B, Carbon H-B, and Pi-Donor H-B), electrostatic (Pi-
Anion), hydrophobic (Alkyl, Pi-Alkyl, Pi-Pi T-shaped, and Pi-Sigma) between the protein
and ligand listed in Table 4 and depicted in Figure 7.

Complex structure analysis of Amb1153724 found a total of eleven bonding interaction
including seven hydrogen bonds (four conventional H-B, two carbon H-B, and one Pi-
Donor H-B), one electrostatic (Pi-Anion), and three hydrophobic (two Pi-Alkyl, one Pi-Pi
T-shaped) bonds to the different binding site residues of the protein, which have bonds
distance range between minimum 1.99 Å to maximum 5.61 Å shown in Figure 7A and
listed in Table 4.

The compounds Amb23604659 have been found to form a total of ten bands including
five hydrogen bonds (four conventional H-B and one carbon H-B), one electrostatic (Pi-
Anion), and four hydrophobic bonds (one Alkyl, two Pi-Alkyl, one Pi-Pi T-shaped) with
the protein in different residual position having a distance between 2.0 Å to 5.10 Å shown
in Figure 7B.

For the compound Amb23604659, a total of seven bonds have been found to form,
which have a bond distance range between a minimum of 2.0 Å to a maximum of 5.10 Å.
The compounds formed four conventional hydrogen bonds, an electrostatic (Pi-Anion)
bond, and one Pi-Sigma hydrophobic bond with the S1 protein shown in Figure 7C.
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Table 4. List of the interaction between the selected three compounds and MERS-CoV S1-NTD
protein found during the complex structure analysis and generated through the docking simulation.

Compound Residues Bond Distance
(Å) Category Bond Types

Amb1153724

GLN37 2.93083 Hydrogen Bond Conventional
H-B

TRP44 1.96777 Hydrogen Bond Conventional
H-B

HIS81 2.39932 Hydrogen Bond Conventional
H-B

LYS42 1.99029 Hydrogen Bond Conventional
H-B

GLN37 3.53458 Hydrogen Bond Carbon H-B

ASN104 3.56047 Hydrogen Bond Carbon H-B

ASP41 4.46727 Electrostatic Pi-Anion

MET84 2.6909 Hydrogen Bond Pi-Donor H-B

TYR314 5.61379 Hydrophobic Pi-Pi T-shaped

MET84 4.9701 Hydrophobic Pi-Alkyl

MET84 4.95866 Hydrophobic Pi-Alkyl

Amb23604132

GLN37 2.54483 Hydrogen Bond Conventional
H-B

LYS42 2.04393 Hydrogen Bond Conventional
H-B

MET84 2.12397 Hydrogen Bond Conventional
H-B

PHE40 2.49011 Hydrogen Bond Conventional
H-B

ASP108 3.4188 Hydrogen Bond Carbon H-B

ASP108 4.6773 Electrostatic Pi-Anion

TYR314 5.74845 Hydrophobic Pi-Pi T-shaped

MET161 4.84458 Hydrophobic Alkyl

MET84 4.15196 Hydrophobic Pi-Alkyl

MET84 5.10244 Hydrophobic Pi-Alkyl

Amb23604659

GLN37 2.99559 Hydrogen Bond Conventional
H-B

ARG46 2.60436 Hydrogen Bond Conventional
H-B

MET84 2.18527 Hydrogen Bond Conventional
H-B

ASP41 2.59464 Hydrogen Bond Conventional
H-B

ASP108 4.05492 Electrostatic Pi-Anion

MET161 3.87544 Hydrophobic Pi-Sigma

MET84 4.80802 Hydrophobic Pi-Alkyl

MET84 5.05152 Hydrophobic Pi-Alkyl
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Figure 7. (A): The interaction between the MERS-CoV S1-NTD and Amb1153724 compounds. The 3D interaction has
represented left side of the figure, where 2D interaction has depicted in right side of the figure accordingly. (B): The
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interaction has been depicted in the right side of the figure accordingly.
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2.12.3. Pharmacophore Features Analysis

Pharmacophore features of a compound play an important role during the molecular
recognition process of targeted biological macromolecules. The pharmacophore of a com-
pound can be described based on the H, AR, HBA or HBD, PI, NI features. These features
can derive from the ligand or projected points believe to reside in the protein that helps to
identify and design a new drug for the treatment of a selected disease.

These features retain the necessary geometric arrangement of atoms requires to pro-
ducing a specific biological response. Therefore, the pharmacophore features of the selected
three compounds include Amb23604659, Amb23604132, and Amb1153724 have been an-
alyzed and compared with the query pharmacophore features shown in Figure 8. The
14 pharmacophore features used to screen the compounds generated 32 hits, which has
further screened through the different screening process and identified three compounds
as potential drug candidates. Each of the compounds generated 25 confirmations that have
better pharmacophore properties than the query pharmacophore features. Therefore, the
selected compounds should be effective to our target protein.
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2.13. MD Simulations Analysis

MD simulations help to determine the physical movements of atoms and molecules
by simulating the system at an atomistic scale. The invaluable technique for observing
biomolecular structure and dynamics has expanded dramatically in recent years. The MD
simulation offers a great and distinct approach to investigate the stability of a ligand to a
targeted macromolecule. Therefore, to identify the stability of the selected three compounds
with the desired protein, a 200 ns MD simulation has been performed for each complex
structure and described based on the RMSD, RMSF, and protein–ligand contact mapping.

2.13.1. RMSD Analysis

RMSD of a protein–ligand complex system helps to determine the average distance
generated through the dislocation of an elected atom during a specific time compared
to a mentioned time [4]. RMSD of the selected three compounds has been observed to
identify the changes in protein structure as compared to the starting point. It also helps
to determine the equilibration state of the protein determined from the flattening of the
RMSD curve. Initially, the protein frames and the reference frame backbone were aligned



Molecules 2021, 26, 4961 15 of 25

during the MD simulation and then the RMSD of the system has been calculated based on
the atom selection. The complex system with a time frame x should have the RMSD that
can be calculated from the following Equation (1).

RMSDx =

√
1
N

N

∑
i=1

(r′ i(tx))− ri

(
tre f

)
)

2
(1)

Here, the RMSDx is the calculation of RMSD for the specific number of frames, N is the
number of selected atoms; tref is the reference or mentioned time, and r′ is the selected atom
in the frame x after superimposing on the reference frame, tx is the recording intervals.

The RMSD of the selected three compounds and the protein has been analyzed to
determine the system has equilibrated or not. The RMSD of selected three compounds
Amb23604659, Amb23604132, and Amb1153724 complex structure has been compared
with the native S1 protein structure to observe the changes of the order shown in Figure 9.
The RMSD for all the compounds was in a range between 1.0 Å to 2.5 Å that was perfectly
acceptable compared to the structure of the native protein. The highest fluctuations
(<3.0 Å) found for the compounds Amb1153724 between 185 ns to 200 ns simulation time
and gradually stabilize, however, indicate that the compound has undergone a small
conformational change during the simulation. It has been found that the simulation was
converged between 20 ns to 160 ns for all the compounds and the RMSD values have
been stabilized around a fixed value within the time. The fluctuations for all the selected
compounds towards the end of the simulation were around some thermal average structure.
Therefore, the selected compounds can be considered as stable to the targeted protein.
Additionally, the RMSD for all the selected three ligands was observed to show how stable
the ligand was concerning the desired protein and its binding site (Figure S3). The values
observed for the ligand were closer than the RMSD of the S1-NTD protein, then it has been
considered that the ligand will not be diffused away from its initial binding site.
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2.13.2. RMSF Analysis

The RMSF is important to observe the local changes of a protein that helps to measure
the displacement of a specific atom compared to the reference structure by calculating the
average change observe over the number of atoms [19,22]. This is a numerical calculation
like RMSD useful for characterizing a protein, which can determine the residue flexibility
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and fluctuation during the simulation. The RMSF for residue i has been calculated from
the following Equation (2).

RMSFi =

√
1
T

T

∑
t=1

< (r′ i(t))− ri

(
tre f

)
)

2
> (2)

where T is the overall trajectory time, ri is the residue location, tref is the reference time, r’ is
the location of atoms in residue i after aligned on the reference, and the angle brackets (< >)
are the average of the square distance.

The RMSF of the selected three complex structures has been analyzed to measure the
displacement of a particular atom during the simulation. The RMSF of the selected three
complex structures has been compared with the native S1-NTD protein structure to observe
the atomic changes of the order shown in Figure 10. On this figure, the peaks indicate
the protein fluctuation of the Amb23604659, Amb23604132, and Amb1153724 complex
structure, which found minimal between 30 to 340 AA residue of the most rigid secondary
structure elements includes alpha-helices and beta-strands. The highest fluctuation founds
for all the three compounds before 30 AA and after 340 AA residue due to the location of
the N- and C-terminal domain. Therefore, it can be considered that the displacement of
a particular atom or a group of atoms will be lower in a real-life environment for all the
selected three compounds.
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2.13.3. Protein–Ligands Contact Analysis

Protein interactions with the selected three ligands Amb23604659, Amb23604132, and
Amb1153724 have been monitored throughout the SID. The hydrogen bonds, hydrophobic,
ionic, and water bridge interactions found during the MD simulation have been observed
and shown in the stacked bar charts (Figure 11). The different types of bonding interaction
play a significant role in ligand binding to the targeted protein, where hydrogen-bonding
properties in drug design play an important role to influence drug specificity, metaboliza-
tion, and adsorption. The hydrogen bonding interaction found for all three compounds was
observable until the last AA residue during the simulation. For all the complex structures,
it has also been found to form multiple interactions (hydrogen bonds, hydrophobic, ionic,
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and water bridges) at the same residue position of the protein with the ligand represented
by a darker shade of orange, according to the scale to the right of the plot (Figure S2). The
compound Amb23604659 generated multiple (more than two) interactions at ASP41, HIS81,
MET84, TYR85, ASP108, VAL109, and LYS110 residues with an interaction fraction (IF)
value 0.50, 0.45, 0.75, 0.25, 0.40, and 0.98, respectively indicating that 50%, 45%, 75%, 25%,
40%, and 98% of the simulation time the specific interaction is maintained by the multiple
contacts of the same subtype with the ligand accordingly. The compound Amb23604132
formed multiple interaction at ASP41 (0.1), LYS42 (0.09), ARG62 (0.5), THR63 (0.68), HIS81
(0.1), LYS99 (0.38), GLN261 (0.2), TYR270 (0.05), GLN 280 (0.3) residues maintained by 10%,
9%, 50%, 68%, 10%, 38%, 20%, 5%, and 30% simulation time accordingly. In the case of
the compound Amb1153724, it has found to form multiple interactions at the position of
ASP41 (0.85), HIS81 (0.99), MET84 (1.3), and GLN107 (0.58) suggests that 85%, 99%, 130%,
and 58% of the simulation time the specific interaction is maintained and helped to make a
stable binding with the desired protein.
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2.13.4. Ligand Properties Analysis

Ligand properties were analyzed to evaluate the stabilities of the selected three com-
pounds Amb23604659, Amb23604132, and Amb1153724 under the MD simulation. The
ligands properties were analyzed based on the RMSD of the ligands, Radius of Gyration
(rGyr), Intramolecular Hydrogen Bonds (intraHB), Molecular Surface Area (MolSA), Sol-
vent Accessible Surface Area (SASA), and Polar Surface Area (PSA), which found favorable
for all the three compounds shown in Figure S3. Additionally, the selected three ligands
and the co-crystal ligand (folic acid) RMSD have combined analysis and been compared,
which has been provided in Figure S4.

2.14. MM/GBSA Analysis

The MM/GBSA methods have been used to calculate the end-point binding free
energy of the protein–ligand complex. The MM/GBSA of the complex system has been cal-
culated from the single trajectory collected from the respective 200 ns simulation (Table S3).
Analysis of MM/GBSA found higher net negative binding free energy values for the
selected compounds Amb1153724, Amb23604132, and Amb23604659 in complex with
MERS-CoV S1-NTD protein (Figure 12). The complex analysis of MM/GBSA found
−32.47 kcal/mol, −24.75 kcal/mol, and −26.18 kcal/mol binding free energy for the com-
pounds Amb1153724, Amb23604132, and Amb23604659, respectively, at the last stage of
the MD simulation. Therefore, the screened compounds will be able to maintain a durable
interaction with the desired protein. Additionally, analysis of physico-chemical compo-
nents for the selected three compounds revealed a significant contribution of GBind Coulomb
(Coulomb energy) and GBind vdW (Van der Waals interaction energy) shown in Figure 11.
From the above result it can be suggested that the selected three compounds can maintain
a long-term interaction with the MERS-CoV S1-NTD protein binding site and result in
inhibition of the desired protein.
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Amb1153724, (B) Amb23604132, and (C) Amb23604659 from respective 200 ns MD simulation trajectories.

3. Discussion

Since the emergence of MERS-CoV in 2012, necessary steps to revoking the infection
caused by the pathogen have become a major research focus. However, to date, no effective
anti-viral drug candidates against the zoonotic pathogen have developed yet. It has been
found that the distinctive NTD of the virus S1 subunit functioning as a RBD, which plays an
important role to determine the host range resulting in cross-species infection [9]. Therefore,
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the study aimed to inhibit the function of S1-NTD of the virus to identify a novel and
effective antiviral drug candidate against MERS-CoV infections.

In this study, we first identified the available experimental protein structure of MERS-
CoV S1-NTD in complex with different inhibitory compounds from the protein databank.
The MERS-CoV S1-NTD having a complex structure was used to generate an SBPM to the
active site cavity of the protein. All the individual pharmacophore models generated from
the complex structure have merged, and a combined final pharmacophore model has been
generated to screen 11,295 natural compounds collected from the Ambinter natural com-
pounds database. The pharmacophore model has validated using 12 experimentally known
active compounds with their correspondence 1326 decoy compounds, where the AUC
under the ROC curve indicated good discrimination ability of the model. The validated
pharmacophore model has been utilized for the virtual screening process and retrieved
32 compounds as hits, which has been further screened through molecular docking simula-
tion methods. Based on the molecular docking score, the top four compounds having a
binding score of >8.0 kcal/mol have been chosen for further validation.

The selected four compounds Amb6600135, Amb23604132, Amb23604659, and Amb1153724
have been evaluated based on the ADME properties, where all compounds except the compound
Amb6600135 have shown a good value of the ADME properties. The compound Amb6600135
disobeyed maximum (three) Lipinski’s rule of five, on the other hand, the P-GP efflux pump was
active of the compound (Figure S1), therefore the compound has skipped for further evaluation.
The compound with good ADME properties has been further evaluated through the toxicity
properties to measure the harmful effect on humans or animals. Analysis of toxicity found no or
low toxicity of the selected three compounds.

To investigate and optimize the geometry of the compounds a computational DFT-
based QM simulation has been performed. The geometry optimized through the DFT
has been retrieved and re-docked with the desired protein, which exhibited substantial
docking energy >−9.00 kcal/mol. The FMO based HOMO-LUMO energy gap was also
calculated to evaluate the chemical reactivity of the compounds. The HOMO-LUMO gap
energy found for all the compounds was high >3.50 eV which confirms the low reactivity
correspondence to the bioactivity of the compounds.

The geometry optimized re-docked complex structure have been stimulated again by
the MD simulation approach to identify the stability of the compounds to the binding site
of the protein. The 200 ns simulation trajectories have been retrieved, and analysis based on
the RMSD, RMSF, protein–ligand contact mapping, and ligand torsion properties (Figure S5)
that confirm the stability of the compounds to the binding sites of the protein. Additionally,
the MM/GBSA calculated from the single trajectory found a high ∆Gbind value, indicating
the stability of the selected protein–ligand complex for long-term simulation.

4. Conclusions

To the best of our knowledge, this study offers the first compressive in-silico ap-
proaches to identify potential natural antiviral drug candidates against MERS-CoV S1-NTD.
An integrative structure-based pharmacophore modeling, virtual screening, molecular
docking, ADMET, QM calculation, MD simulation, and MM/GBSA approaches revealed
Taiwanhomoflavone B, 2,3-Dihydrohinokiflavone, and Sophoricoside as potential drug
candidates that will help to inhibit the activity of the S1-NTD of the virus. Further evalua-
tion through different lab-based experiment techniques can help to determine the activity
of the compound that will provide alternatives for MERS-CoV immunotherapy.

5. Materials and Methods
5.1. Pharmacophore Modeling

The crystallographic structure of MERS coronavirus S1-NTD submitted between
2012 to 2021 was searched in Protein Data Bank (PDB). A total of 16 S1-NTD protein
structures generated through X-ray crystallographic method were identified from the PDB
and filtered based on the protein resolution, having a range between 1 to 2.5 Å. After
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filtration six protein structures were retrieved, where two (PDB ID: 5VYH and 6PXH)
protein structures were in a complex with potential inhibitors and selected as an input to
generate a SBPM. This two-crystal structure corresponding to MERS coronavirus S1-NTD
protein is complexed with its potential inhibitor Folic Acid (FOL409: A) and Dihydrofolic
Acid (DHF428: A), were chosen to generate the pharmacophore model [10,13]. The protein
structure in complex with different inhibitors was optimized by using the MMFF94 force
field available at LigandScout 4.4 software [20]. The LigandScout tools were also used
to generate and analyze the pharmacophore features originated from the two selected
crystallographic structures based on protein–ligands interaction. Initially, two separate
pharmacophore models were developed by using the protein 5VYH and 6PXH in complex
with Folic Acid and Dihydrofolic Acid, respectively. The pharmacophore features generated
from the complex structure were centrally coordinated for alignment perspectives. After
center coordinates of all the structures, a final pharmacophore model was created by using
the align and merge pharmacophore features option available at the LigandScout tool. The
software generated a combined pharmacophore model and provided a fit value by aligning
the molecule on the pharmacophore model. The pharmacophore features observed in the
study were described based on Hydrogen Bond Donor (HBD), Hydrogen Bond Acceptor
(HBA), Positive Ionizable Area (PI), Negative Ionizable Area (NI), Hydrophobic Interactions
(H), and Aromatic Ring (AR) features.

5.2. Molecule Library Preparation

Ambinter (www.ambinter.com) is a brand and worldwide supplier of advanced
chemicals that supporting the scientific community by providing active compounds for
drug discovery. The Ambinter database contains over 36 million molecules including
screening molecules as well as a large collection of natural compounds. Therefore, the
database contains a targeted library of SARS-CoV-2 has retrieved for the further screening
process. LigandScout can screen single or multi-conformational compounds from a large
database for drug design and discovery. The tool can recognize and screen molecular
libraries having the proprietary LDB as a file format. Hence, it is important to convert the
compounds library into the LDB file format before the virtual screening. In this study, the
LigandScout tools have been utilized to prepare the molecular library.

5.3. Active Compounds Identification and Decoy Set Generation

Experimentally validated active compounds against MERS coronavirus S1-NTD have
been identified from the ChEMBL database (https://www.ebi.ac.uk/chembl, accessed on
03 April 2021) [28]. The active compounds identified from the ChEMBL database have been
submitted to DUDE-E (Database of Useful Decoys: Enhanced) decoy database available at
(http://dude.docking.org/, accessed on 03 April 2021) [29]. The DUDE-E decoy database
identified and generated a decoys compounds list correspondence to the active compounds.
The decoy compounds have been retrieved and converted into LDB file format by using
the LigandScout tool for the validation of the pharmacophore model.

5.4. Model Performance Analysis

To determine the performance and ability of discrimination between an active set from
a decoy set a receiver operating characteristics (ROC) curve has been developed in this
study. From the ROC curves, the Area under (AUC) the ROC Curve has been evaluated,
which helps to measure the 2D area underneath the entire ROC curve. The ROC curve also
helps to evaluate the Enrichment Factor (EF) of the pharmacophore model.

5.5. Virtual Screening

In-silico 3D pharmacophore-based virtual screening of the molecule libraries has been
performed by using the LigandScout virtual screening tools. The final pharmacophore
model generated in this study has been utilized as filter criteria for the database screen-
ing process. During the multitude pharmacophore screening processes, the parameters

www.ambinter.com
https://www.ebi.ac.uk/chembl
http://dude.docking.org/
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pharmacophore-fit has been chosen as the scoring function, match all query features as the
screening mode, and first matching confirmation as the retrieval mode, where a maximum
of five pharmacophore features have been omitted. The excluded volume clashes gener-
ated during the pharmacophore modeling have not been checked in the screening process.
Before running the pharmacophore-based virtual screening process the natural compounds
database were marked as active, where decoy compounds have been marked as inac-
tive databases. After finishing the screening process, hit compounds with the number of
confirmations and geometric fit scores were investigated for further evaluation.

5.6. Protein and Ligands Preparation

The crystal structure of MERS-CoV S1-NTD has been retrieved from the RCSB (
www.rcsb.org, accessed on 03 April 2021) protein data bank (PDB ID: 5VYH) consisting of
343 amino acids (AA) length with a resolution value of 2.00 Å [13]. The S1-NTD protein was
prepared by removing water, metal ions, and cofactors from the complex structure. The
nonpolar hydrogen atoms were merged, polar hydrogen atoms were added, and Gasteiger
charges were calculated for the protein [19]. The hits generated during pharmacophore-
based virtual screening have been retrieved and prepared by adding gasteiger charges
and AD4 atom types to the molecules. The non-polar hydrogens were merged, and
aromatic carbons were detected to setting up the ‘torsion tree’ of the molecules by using
AutoDockTools and were saved in PDBQT format for the further screening process.

5.7. Binding Site Identification and Grid Box Generation

Binding sites can be identified through the analysis of similar pockets from known
protein–ligands interaction. The known and experimental validated S1-NTD protein
structure in complex with the ligand folic acid was retrieved from the PDB (PDB ID: 5VYH)
and the binding site of the protein has been analyzed through BIOVIA Discovery Studio
Visualizer v19.1 (BIOVIA). The binding site determined from the complex structure has
been utilized for the receptor grid generation during the molecular docking simulation by
using the PyRx virtual screening tool.

5.8. Molecular Docking Simulation

To identify the best hit candidates against the desired protein, a molecular docking
simulation has been performed by using the PyRx tool [30]. PyRx is an open-source virtual
screening tool that includes both AutoDock 4 and AutoDock Vina as a docking wizard
which can screen a large compounds database against a specific biological targeted macro-
molecule. The AutoDock Vina wizard with default configuration parameters of PyRx has
been used for molecular docking simulation. The top 10% compounds, having the highest
binding affinity (kcal/mol) to the desired protein, have been chosen for further evaluation.

5.9. ADME Analysis

In the early stage of the drug design and development process assessment of ADME, it
is necessary to understand the safety and efficacy of a drug candidate that will be processed
by a living organism. The ADME properties describe pharmacokinetics behavior and the
movement of drugs into, though, and out of the body. Traditionally, the ADME properties
were evaluated at the last stage of the drug discovery process, but in-silico tools can be pre-
dicted the properties at the early stages of the drug design process and help to optimize the
pharmacodynamic response. To evaluate and understand the pharmacodynamic response
of selected drug candidates, the SwissADME (http://www.swissadme.ch, accessed on
03 April 2021) web tool has been used in this study [24]. The freely accessible web server
helps to predict the physicochemical, pharmacokinetics, and drug-likeness properties of
the selected drug candidates.

www.rcsb.org
www.rcsb.org
http://www.swissadme.ch
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5.10. Toxicity Test

Toxicity testing in the drug design and development process is essential to evaluate
the compound’s toxic properties and the dose level requirements for the treatment of a
specific disease. The toxicity profile of drug candidates gives an idea about the health and
environmental risks and safety/toxicity of a chemical’s substances. Nowadays, computer-
aided in-silico toxicity testing is playing an important role in the assessment of compounds
toxicity more accurately without using the experimental animal models. Therefore, to
evaluate the early-stage toxicity of the selected drug candidates ProTox-II (http://tox.
charite.de/protox_II, accessed on 03 April 2021) webserver has been used, which helps
to determine acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, and
immunotoxicity of the selected compounds [25].

5.11. Quantum Mechanics (QM)-Based Calculation

Conformation analysis of a ligand to the binding site of a protein is an essential part
to identify potential active conformation, binding affinity, and strain discipline associated
with the binding mechanism. This type of binding possess can be achieved through the cal-
culation of minimum energy conformation and structural optimization, which is dependent
on the solution phase and associated gas-phase energy. The classical molecular mechanics
(MM) process is unable to describe the process properly due to the presentation of metal
ions in a ligand–protein complex system [31]. In the last few years, QM-based calculations
have helped to enhance the scoring functions that can describe the electronic structure,
electronic changes, and system-specific charges during a reaction of a molecular system. In-
terestingly, more than 80–90% of all QM-based calculations are nowadays solve depend on
density functional theory (DFT). Therefore, this study performed the DFT methods-based
QM calculations of selected three compounds. Initially, the bond lengths, bond angles, and
dihedral angles for potential compounds were optimized, then the DFT of the compounds
has been calculated by using the Schrödinger Jaguar version 10.9 [27]. Calculation of DFT
has been performed by utilizing a mix of conventional functionals Becke’s three parame-
ters with Lee-Yang-Parr functionals (B3LYP) and a dispersion correction energy term D3
combinedly known as B3LYP-D3. The conventional mix functionals B3LYP-D3 has been
chosen in this study to not alter the wavefunction or any other molecular property directly,
and 6-31G**, also known as 6-31G (d, p), has been chosen as a basis set to represent the
electronic wave function of the molecules.

5.12. Frontier Molecular Orbital HOMO/LUMO Calculation

The highest energy occupied molecular orbital (HOMO) and lowest energy unoccu-
pied molecular orbital (LUMO) are central to the frontier molecular orbital (FMO) theory
or Fukui functions developed by Kenichi Fukui in the 1950s. The FMO of a molecule is
the “frontier” of an electron that helps to determine the energy difference between two
orbitals HOMO and LUMO. HOMO is mainly an electron donor (nucleophilic) and LUMO
is an electron acceptor (electrophilic) in nature and the interaction between electron donor
and electron acceptor pair can dominate other chemical reactivity of a molecule [32]. Dur-
ing the electrophilic-nucleophilic reaction, electrons from the HOMO jump to the LUMO
and produce an energy difference between two molecular orbitals. The energy difference
between two molecular orbitals is known as the HOMO-LUMO gap, which can explain
the photochemistry and the strength and stability of transition metal complexes of organic
molecules. To understand the sensitivity of atoms toward electrophilic and nucleophilic
attacks, the HOMO and LUMO energy were calculated by using the Schrödinger Jaguar
version 10.9 [27], and the energy difference between two molecular orbital HOMO-LUMO
gaps was calculated from the following Equation (3).

∆E(gap) = ELUMO − EHOMO (3)

http://tox.charite.de/protox_II
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where, ∆E is the HOMO-LUMO gaps, ELUMO is the lowest energy unoccupied molecular
orbital energy, and EHOMO is the highest energy occupied molecular orbital energy.

5.13. Re-Docking and Interaction Analysis

Geometry optimized through the DFT-based QM method of selected three compounds
has been retrieved and docked again to the same binding site of the MERS-COV S1-NTD.
A rigid molecule docking was conducted in this study due to rigid molecules that are
not change their spatial shape during the docking process. The docking was performed
through the PyRx tools AutoDock vina by using the default parameter as a setting [23].
Herein, the best binding poses with the lowest root-mean-square deviation (RMSD) have
been selected for binding interaction analysis. The complex protein–ligand interaction has
been analyzed through BIOVIA Discovery Studio tools.

5.14. MD Simulation

To analyze the physical movements and behavior of the selected compounds in
the macromolecular environment, the protein–ligand complex structure obtained from
the re-docking studies was evaluated through 200 ns MD simulations. The physical
motions of atoms in the protein molecules have been observed through the Desmond
module of Schrödinger (Release 2020-3) under a Linux environment [19]. Initially, the
predefined simple point-charge (SPC) water model has been used to solvate the complex
system for obtaining the correct density and dielectric permittivity of water. The boundary
condition selected in this study was orthorhombic (box shape), and a buffer box has been
chosen as a calculation method with a box distance of 15 Å. To obtain and maintain a
salt concentration of 0.15 M, the system has been neutralized by adding Na+ and Cl-
ions. The isothermal-isobaric (NPT) ensemble has been performed at constant pressure
(1.01325 bar) and temperature (300 K) with an energy value of 1.2. The atomic movement
of the molecules has been recorded for every 2 ps recording interval and OPLS-2005 is set
as a force field to obtain the trajectory as an output for 200 ns simulation.

Analysis of MD Trajectory

The simulation snapshots for each atomic movement have been recorded for 2 PS
intervals were rendered by using Schrödinger maestro interface v9.5. The simulation
event has been analyzed through the Simulation Interaction Diagram (SID) available at the
Schrödinger package. From the trajectory output, root-mean-square fluctuation (RMSF),
RMSD, and protein–ligand contacts (P–L contact) have also been analyzed.

5.15. End-Point Binding Free Energy Calculation with MM/GBSA

MM/GBSA are nowadays getting more popularity for estimating ligand-binding
affinities in many systems. They are typically based on the MD simulations of the receptor-
ligand complex, which is more accurate than most scoring functions of molecular docking
and computationally less demanding to alchemical-free energy methods [33]. Therefore,
to estimate ligand-binding free energy (∆Gbind) of the selected three compounds to the
S1-NTD protein, the MM/GBSA methods have been performed by using the using Prime
MM/GBSA module in the Schrödinger-Maestro package [26].

Supplementary Materials: The following are available online, Figure S1: Showing the blood brain
barrier (BBB) and P-gp P-glycoprotein (P-GP) substrate activity of the selected four compounds,
Amb6600135, Amb1153724, Amb23604132, and Amb23604659; Figure S2: Showing the contact
mapping of the protein-ligands interactions for the selected three compounds found during the 200
ns simulation run. Herein, showing the selected three ligands (A) Amb23604659, (B) Amb23604132,
and (C) Amb1153724 contact map with the desire S1-NTD protein; Figure S3: Depicted the RMSD
((Å), rGyr (Å), intra-HB, MolSA (Å2), SASA (Å2), and PSA (Å2 of the selected three compounds in
complex with the MERS-CoV S1-NTD protein. Herein, showing the value of the compounds (A)
Amb23604659, (B) Amb23604132, and (C) Amb1153724; Figure S4: The RMSD values the selected
three complex structures and Folic acid in complex with the protein S1-NTD (PDB:5VYH). Herein,
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showing the RMSD of the compounds Amb23604659 (orange), Amb23604132 (Yellow), Amb1153724
(gray), and folic acid (blue) colors; and Figure S5: Depicted the torsion properties of the selected
three compounds (A) Amb23604659, (B) Amb23604132, and (C) Amb1153724 during the 200 ns MD
simulation run, Table S1: A list of 32 compounds generated as hits during pharmacophore based
virtual screening process with there geometric fit score, conformation number and binding affinity
(kcal/mol) with desire protein; Table S2: List of HOMO, LUMO, HOMO-LUMO gap, softness and
hardness of the selected three compound; and Table S3: List of MM/GBSA component and their
energy with standard error value of the selected three compound.
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