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Clinical islet transplantation has the potential to cure type 1 diabetes. Despite recent
therapeutic success, it is still uncommon because transplanted islets are damaged by
multiple challenges, including instant blood mediated inflammatory reaction (IBMIR),
inflammatory cytokines, hypoxia/reperfusion injury, and immune rejection. The
transplantation microenvironment plays a vital role especially in intraportal islet
transplantation. The identification and targeting of pathways that function as “master
regulators” during deleterious inflammatory events after transplantation, and the induction
of immune tolerance, are necessary to improve the survival of transplanted islets. In this
article, we attempt to provide an overview of the influence of microenvironment on the
survival of transplanted islets, as well as possible therapeutic targets.

Keywords: islet transplantation, microenvironment, instant blood, mediated inflammatory reaction, inflammatory
cytokine, therapeutic target
INTRODUCTION

Although type 1 diabetes cannot be prevented or reversed, islet transplantation—which restores
insulin independence and prevents severe hypoglycemia—is currently proving to be a promising
treatment (1, 2). However, the results of multiple clinical trials have shown that most transplant
recipients fail to achieve complete insulin independence. Although the immunosuppressive regimen
reported from Edmonton, Canada, has achieved unprecedented success in achieving insulin
independence in islet transplantation (3), there are still some problems that affect the outcome of
islet transplantation. Advancements in the acquisition of pancreatic islets, immunosuppression of islet
recipients, and an increase in the number of transplanted islets are required (4). The average human
pancreas has 300,000 to 1.5 million pancreatic islets, and only 60% of this islet cell mass is needed to
maintain a normal glucose metabolism (5). However, 72% of islet recipients still require more than
two successfully processed islet preparations to obtain a sufficient beta cell mass to compensate for islet
death in the post-transplantation period (6). However, the source of pancreatic islets is limited.

It was observed that only 10% of recipients remain insulin dependent for more than 5 years and
that most recipients re-use insulin because of a decline in the islet function over time (7). During
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transplantation, islet grafts are damaged by multiple challenges,
including enzyme and mechanical damage caused by the
isolation process, hypoxia, inflammation, immune rejection
and toxicity of immunosuppressive drugs (8). The liver is
currently the preferred transplantation site because the
procedure is minimally invasive, easy to perform, and has low
rates of bleeding and thrombosis (9). Early inflammatory
responses strongly influence islet engraftment and survival
after intrahepatic transplantation. This early immune response
is triggered by immediate blood-mediated inflammatory
response (IBMIR) and ischemia-reperfusion injury (10).
Elevated inflammatory cytokines interleukin-1b (IL-1b), tumor
necrosis factor a (TNF-a), interferon-g (IFN-g), were observed
during islet transplantation, and macrophages also involved in
regulating the cell injury of transplanted pancreatic islets (11). It
was observed that concomitant transplantation of islets and
vascular endothelial cells in diabetic rats can prolong the
survival of islet grafts (12). Previous studies have found that
cytokine inhibitors or drugs that inhibit the activation of liver
macrophage activation can improve the function of pancreatic
islets after transplantation (13, 14). Changes in the
microenvironment, mainly involving inflammatory cytokines,
endothelial cells, and immune cells, play a key role in the
survival of islet grafts.

This review discusses the changes in the microenvironment
(inflammatory cytokines, immune cells, endothelial cells, etc.)
during clinical intraportal islet transplantation, and their
influence on the survival of the islet grafts, with the aim of
improving the success of clinical islet transplantation
STATUS AND RECENT PROGRESS OF
CLINICAL INTRAPORTAL ISLET
TRANSPLANTATION

In 1990, David Scharp et al. reported the first case of type 1
diabetes allogeneic intraportal islet transplantation resulting in a
short-term insulin independence, which opened the prelude to
clinical islet transplantation (15). The International Islet Registry
collected data from 267 islet allogeneic transplants from multiple
centers between 1990 and 2001, only 12.4% of cases achieved
insulin independence periods of at least 1 week, and 8.2%
maintained insulin independence for more than 1 year.
Appropriate immunosuppression remained a critical piece of
the unsolved puzzle in order to improve long-term graft function
and sustained insulin independence (16). Until 2000,
Edmonton’s group reported that insulin independence was
achieved in seven patients with type 1 diabetes who underwent
islet transplantation. This protocol established the need for
sufficient islet b cell mass for transplantation and also
proposed a glucocorticoid-free immunosuppressive regimen
(3). Since the publication of the Edmonton protocol, many
countries around the world have successively carried out
allogeneic islet transplantation for the treatment of type 1
diabetes. Extended follow-up of these trials sho wed a gradual
loss of insulin independence over time with renewed need for
Frontiers in Immunology | www.frontiersin.org 2
exogenous insulin, with only 10% of patients showing insulin
independence at 5 years after transplantation (7). Hering et al.
reported in 2016 that the North American Clinical Islet
Transplant Consortium conducted a multicenter, single-arm,
phase 3 trial to further evaluate the efficiency of allogeneic islet
transplantation. The assay, using product purified human
pancreatic islets, achieved an HbA1c of 5.6% in the absence of
severe hypoglycemia (17). A subsequent multicenter, open-label,
randomized controlled trial in Europe reconfirmed the benefit of
islet transplantation over intensive insulin therapy in patients
with type 1 diabetes with severe hypoglycemia or after kidney
transplantation (18). Recently, Marco et al. proposed that
vitamin D alone or in combination with other anti-
inflammatory agents may serve as a new immunomodulatory
strategy to reduce the recurrence of autoimmune/allogeneic
transplant rejection in intraportal islet transplantation, but its
safety and efficacy further validation in large prospective studies
is required (19). In intraportal islet transplantation model, islet
pretreatment with mitomycin C prolonged graft survival by
suppressing pro-inflammatory events and inducing latent
regulatory lymphocytes (20). Xenogeneic and stem cell-derived
islet tissues have entered early clinical trials, although much
remains to be learned about the in vivo physiology and
immunogenicity of various products. These advances provide
more options for cellular therapy in diabetes treatment,
providing an unlimited source of pancreatic islet tissue for
future applications (21).
INTRAPORTAL ISLET TRANSPLANTATION
CHALLENGES AND STRATEGIES

Instant blood mediated inflammatory reaction (IBMIR)
The IBMIR, which is triggered by exposed tissue factor on the

islet surface and characterized by platelet activation and
aggregation, and activation of the coagulation and complement
systems, is a major obstacle after islet transplantation. Moreover,
it increases the infiltration of neutrophils, monocytes and
macrophages (13). These reactions are thought to cause the
immediate loss of most of the transplanted islets (22), and may
also increase the risk of islet rejection later through adaptive
immune responses (23). Potential means for reducing islet
inflammation and protecting islets can be achieved by the
addition of anti-inflammatory agents, anticoagulants or coating
islets with various protective macromolecules during islet culture
(24). In vitro and in vivo experiments demonstrated that low
molecular weight dextran sulfate prevented IBMIR, leukocyte
infiltration was eliminated at high doses, and transplanted pig
islets survived significantly longer in recipients treated with low
molecular weight dextran sulfate (25). Another phase II,
multicenter, active-controlled, randomized study, the Clinical
Islet Transplant Consortium 01 study, revealed that systemic low
molecular weight dextran sulfate treatment showed similar
efficacy to heparin treatment in preventing IBMIR and
promoting islet engraftment (26). However, the reason for the
current reluctance to use it is that its target- activated partial
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thromboplastin time is 3 times longer than heparin’s (27). The
use of biotin/avidin technology to bind preformed heparin
complexes to the islet surface resulted in protection against
IBMIR in vitro loop model and in an allogeneic porcine model
of clinical islet transplantation (28). In vitro and in vivo data
suggested that activated protein C exerted anti-inflammatory and
anti-apoptotic activities by directly acting on cells after exposure of
hepatic endothelial cells to pancreatic islets (29). However, the
above remain to be verified by clinical studies (30, 31). And it has
been confirmed that Cibinetide can reduce IBMIR related platelet
consumption in a pro-inflammatory environment and protect
isolated human islets (32). The evidence showed that a-1
antitrypsin inhibited IBMIR, which resulted in improved
outcome of intraportal islet transplantation in mouse model
(33). Currently, the addition of heparin is the standard approach
but it is insufficient (27).
COMPLEMENT SYSTEM

Complement activation is triggered by natural immunoglobulin
(Ig)G or IgM. When isolated islets are exposed to blood,
the complement system is rapidly activated and causes lysis of
islet cells (34). Complement activation occurs via the classical
pathway and an alternative pathway, which leads to the
formation of a complex composed of C5b-9, which forms a
“channel” through the cell membrane, leading to cell lysis
and death. Another major function of the complement
system is the production of anaphylatoxins C3a and C5a,
which enhance the inflammatory response to islets (23). C3a
and C5a produced by complement activation are powerful
chemoattractants for macrophages and neutrophils (10).
Activation through the C5a receptor can cause granulocytes to
release enzymes, such as myeloperoxidase and elastase,
and promote monocytes to release cytokines, such as IL-1, IL-
6, IL-8, and TNF-a. C5a stimulates endothelial cells to release
heparin sulfate, upregulate tissue factor, secrete von Willebrand
factor and express P-selectin, which is conducive to fibrin
deposition and which enhances thrombin-mediated platelet
aggregation and polymorphonuclear leukocyte adhesion
(23). Tissue factor and many adhesion molecules can be
expressed by endothelial cells triggered by soluble C5b-9
(sC5b-9) (35). Complement activation may therefore induce
direct inflammation and indirect effects mediated by
endothelial cells.

In allogeneic transplantation, C3 is one of the important
factors triggering rejection in mice (36, 37) and humans (38).
Numerous studies have shown that the combination of C3
fragment C3dg with an antigen can be used as a strong
adjuvant to promote both cellular and humoral responses (39).
Therefore, it can be reasonably expected that complement
activation and C3dg binding will trigger an immune response,
leading to an adaptive immune response to the graft (34).
Therefore, small interfering RNA (siRNA) targeting C3 and
C5a receptors may increase the viability of transplanted
islets (40).
Frontiers in Immunology | www.frontiersin.org 3
HYPOXIC DAMAGE

Islets are easily damaged under hypoxic conditions prior to
transplantation (including pancreas procurement, islet isolation
and culture) and exposure to hypoxic environment of the
transplant site after transplantation (41). Hypoxia damages
islet b cell function, which manifested anaerobic glycolysis,
showed elevated lactate and reduced responsiveness to high
glucose levels (42). The decrease of blood oxygen partial
pressure can lead to irreversible b cell dysfunction, resulting in
higher fasting blood-glucose and lower C-peptide levels (43).
Calcium influx into islet cells has also been shown to cause cell
damage in rat and human islets cultured under hypoxic
conditions (44). In order to cope with the impact of hypoxia
on the quality and function of islets, the following explorations
were attempted: (1) Compared with static cold storage, perfusion
effectively reduced anoxic death of islet cells, and islet production
was higher after perfusion (45, 46). Perfluorohexyloctan, a
semi-fluorinated liquid fluorocarbon, maintained higher
intrapancreatic pO2 and improved islet viability and function
with porcine pancreas (47, 48). In addition, oxygen supply can be
increased and oxygenation of islets can be improved by
decreasing the culture density of islets before transplantation
(46, 49). (2) Photosynthesis of thermostable microalga
(Chlorella sorokiniana) was applied as a method to supply
oxygen to cultured islets coencapsulating in alginate gel (50).
Microparticle-mediated-oxygenation has been studied to improve
islet transplantation.Co-transplantation of oxygen-generating
microparticles and minimal islet mass within fibrin-conjugated
heparin/VEGF collagen scaffold has enormous potential to
enhance islet revascularization, diabetes reversal and oxygenation
(51). (3) As mentioned above, the influx of calcium ions into islet
cells can also induce islet injury. It was found that potassium
channel activator (diazoxide) and calcium channel blocker
(nifedipine) were helpful to restore the synthesis of insulin
protoplasts and islet cell necrosis caused by hypoxia when used
as preconditioning agents (44, 52). (4) Curcumin has the ability to
protect b cells from hypoxia damage (53). Puerarin could alleviate
b cell apoptosis and malfunction by hypoxic injury of b cells in
corpulent mice induced by cobalt chloride induced via PI3K/Akt
pathway activation (54). (5) Reconstructing the capillary network
in islets is very important to prevent hypoxia and preserve
function. Previous studies have shown the effectiveness of
prevascularization of the graft bed for subcutaneous islet graft
survival (55–58). The use of islet-cell cluster in clinical islet
transplantation may be a strategy to prevent islet loss caused by
hypoxia after transplantation (59).
IMMUNOSUPPRESSIVE DRUG TOXICITY
AND IMMUNE TOLERANCE INDUCTION

During intraportal islet transplantation, isolated islets are
exposed to high levels of immunosuppressive drugs, which are
detrimental to islet engraftment/survival and long-term function
(60). Previously, the standard protocol of immunosuppression
March 2022 | Volume 13 | Article 849580
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for islet transplantation included a combination of corticosteroids,
calcineurin inhibitors (tacrolimus and cyclosporine), and purine
analogs (mycophenolate mofetil). Many of the above drugs had
been shown to be diabetogenic, impairing insulin secretion (61).
The Edmonton protocol in 1999 took a major step forward in islet
transplantation with the introduction of steroid-free therapy based
on low-dose sirolimus, tacrolimus, and daclizumab (3). Although
the results of multicenter clinical trials suggested that this protocol
could provide short-term insulin independence and reduce the
incidence of acute rejection (62), patients receiving long-term
immunosuppressive drugs are susceptible to multiple adverse
effects, such as infections (63), malignancies (64), de novo
diabetes (65) and organ toxicities (66).

Immune tolerance induction is a promising strategy to accept
histocompatibility complex (MHC)-mismatched allografts
without reducing resistance to infection or increasing other
complications (67). For immunological tolerance to allografts,
the high proportion of MHC alloreactive T cell is considered as a
major barrier to tolerance induction. Central T cell tolerance
refers to the deletion of reactive clones in the thymus during
negative selection. Peripheral T cell tolerance includes peripheral
deletion, anergy/exhaustion, and suppressive function of
regulatory T cells (Treg) (68). At present, how to apply the
inherent immune tolerance mechanism of the human system to
induce donor-specific immune tolerance is the key to solving
transplant rejection (69). Singh et al. reported that apoptotic
donor lymphocyte infusion prior to transplantation induced
long-term tolerance (>1 year) of islet grafts in a non-human
primate (NHP) model, which had made a breakthrough
in the tolerance induction protocol for allogeneic islet
transplantation (70).

Intrathymic inoculation of recipient APCs pulsed with
allopeptides can induce intrathymic tolerance, however it is an
invasive technique and the thymus regresses with age and
has limited potential in adults (71). Another potentially
more effective approach to achieving central tolerance is
the generation of hematopoietic chimerism or mixed
allogeneic chimerism, with lethal total body irradiation or
sublethal total body irradiation (assisted by anti-CD4, CD8
monoclonal antibodies or costimulatory blockade) in the
prospective transplant recipients, in order to make room for
the transplanted bone marrow. Bone marrow cell transplantation
can reconstitute the recipient’s hematopoietic compartment
with donor hematopoietic stem cells, inducing donor-
specific tolerance to islet allografts (62, 72). Another strategy
to induce tolerance is to deplete alloreactive T cells prior to
transplantation, promoting a hyporesponsive environment that
drives tolerance transition (73). T cell depletion can be achieved
by total body irradiation, lymphocyte depleting alloantibodies.
Among them, antithymocyte globulin (ATG) is a potent inducer
of T cell depletion, and ATG alone or in combination with other
drugs can prolong the survival of allografts (74, 75). Other
pathways for inducing immune tolerance include costimulatory
signal blockades, induction and expansion of regulatory T (Treg)
cells, etc (62). And in the intrahepatic mouse allogeneic islet
transplantation model, Lee et al. demonstrated for the first time
Frontiers in Immunology | www.frontiersin.org 4
that short-term single administration of anti-CD154 monoclonal
antibody could induce FoxP3+ Treg cell-mediated immune
tolerance (67).
KEY INFLAMMATORY FACTORS AND
CELLS ASSOCIATED WITH ISLET
CELL DYSFUNCTION

Several mediators have been found to cause islet dysfunction
and/or cellular death after islet transplantation, including
inflammatory cytokines (IL-1b, TNF-a, and IFN-g), nitric
oxide (NO), and nitric oxide synthase (iNOS) (76).
IL-1b

IL-1b is one of the most important mediators of islet injury and
plays an important role in the process of pancreatic islets
dysfunction, which may represent an early inflammatory
marker of graft failure (77). IL-1b is secreted by Kupffer cells,
islet resident macrophages, and neutrophils around the
transplantation site (78). IL-1b secretion increases during islet
acquisition, islet isolation, islet culture, and islet transplantation
(77). IL-1b binds to the IL-1b receptor (IL-1bR) on the surface of
pancreatic islet cells, causing TNF receptor-related factor 6
(TRAF6) to be activated by IL-1 receptor-related kinase
(IRAK), which in turn leads to the phosphorylation and
degradation of IkB. Then NF-kB is released from inhibitory
IkB, transferred from the cytoplasm to the nucleus, and regulates
the transcription of various genes, including IL-1, IL-6, TNF-a,
and iNOS (76, 79) (Figure 1). Activation of iNOS results in the
production of NO, which is directly related to b-cell
apoptosis (80).

The damage of islet cells starts from the donor. Although
most pancreatic islet transplants use organs from heart-beating
brain-dead (BD) donors, acute physiological changes after brain
death of BD donors may still cause significant damage to islets
from inflammatory events. Brain death can stimulate various
cells to produce pro-inflammatory cytokines, and produce a so-
called “cytokine storm”, including IL-1b in BD donors, which
greatly reduces the islet yield, functionality, vitality, and
engraftment after transplantation (8). One study has shown
that the administration of exendin-4 to BD donors can reduce
the expression of IL-1b, thereby increasing both the islet viability
and insulin secretion in the pancreas after glucose stimulation in
a BD rat model (81). In the BD rat model, treatment with a
selective neutrophil elastase inhibitor, sivelestat sodium,
decreased the expression of IL-1b, significantly improved the islet
yield and function in vitro, and suppressed hypercytokinemia-
mediated beta-cell death (82).

Then, in the process pancreas digestion and islet purification,
enzymatic and mechanical stress can induce inflammatory
mediators, such as IL-1b, in the islets (77). The islet basement
membrane is lysed during the digestion and separation of the
March 2022 | Volume 13 | Article 849580
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pancreas, which interrupts the communication between islet
basement membrane proteins and the integrins expressed by the
islets (83). The loss of the interaction between the internal cells and
the external microenvironment also interrupts the transmission of
pro-survival signals (84). The isolation of pancreatic islets
eventually leads to the increased expression of many stress
kinases, which subsequently activates pro-inflammatory and
pro-apoptotic pathways (43, 85). Furthermore, the functional
clustering of differentially expressed genes revealed the
upregulation of genes related to cell growth, angiogenesis,
inflammation, and apoptosis after isolation and culture (43). A
study has shown that islets in early culture (2 days) express more
genes, including IL-1b, than islets in long-term culture (7-11 days).
It seems that culturing islets before transplantation is beneficial for
reducing the expression of inflammatorymediators (86). However,
in cultured adult porcine islets, IL-1b mRNA was continuously
detected at 1, 4, 8, and 11 days after isolation, and slightly increased
over time (87). It is worth noting that a pretreatment culture with
anakinra (IL-1 receptor antagonist) prior to human islet
transplantation can improve the survival and function of human
islets during culture (88).

The early damage of pancreatic islets is mainly manifested by
an IBMIR, leading to a cytokine storm, involving IL-1b, TNF-a,
and IFN-g. These cytokine-activated macrophages produce IL-
1b, which triggers the cytokine storm at the transplantation site,
Frontiers in Immunology | www.frontiersin.org 5
leading to a negative chain of events (89). Syngeneic transplant
models have shown that the nonspecific inflammatory response
increases IL-1b at the transplant site and affects early graft
failure. In that study, the expression of IL-1b mRNA was
maximal on day 1 after transplantation and then declined
towards pre-transplantation levels on day 7 (90). Previous
animal studies have indicated that approximately 60% of islet
grafts lose their function via non-specific inflammation within 3
days after transplantation (91, 92). The overexpression of IL-1b
receptor antagonist protein in transplanted islets can improve
the outcome of the transplantation (93).
TNF-a

In humans, it appears that IL-1b must act in combination with
IFN-g and/or TNF-a (76). After TNF-a binds to the TNF receptor
(TNF-R), it forms a trimer and undergoes conformational
changes, which leads to the exposure of the intracellular death
domain, and initiates the activation of NF-kB, the activation of the
MAPK pathway, and the induction of apoptosis (40). Wen et al.
revealed that TNF-a was significantly elevated in patients
following allogeneic islet cell infusion compared with patients
receiving autologous transplantation (94). Recently, multiple
studies have shown that after pancreatic islet allotransplantation,
the early use of a combination of anti-IL-1b (anakinra) and TNF-
a (etanercept) inflammation blockade is beneficial for reducing
islet damage caused by nonspecific inflammation and presumably
led to better engraftment (95) (Figure 1).
IFN-g

IFN-g binds to the IFN-g receptor (IFN-gR) and causes the
activation of JAK1 and JAK2. JAK2 then activates signal
transducers and activators of transcription 1 (STAT1), which
then transfers to the nucleus, where it performs gene regulation
(96). One study showed that IFN-g transcripts were found in
allografts at 1, 3, 5, and 7 days after transplantation, and peaked
on day 5, but there were no such cytokines in syngeneic grafts
(97). Some studies have shown that combined cytokines such as
IL-1b, TNF-a, and IFN-g lead to islet cell dysfunction or
death (98).
NO AND INDUCIBLE NITRIC
OXIDE SYNTHASE

Cytokines, such as IL-1b, TNF-a and IFN-g, mainly stimulate
the large expression of iNOS in b cells and macrophages to
synthesize excessive NO, thereby causing damage to the
pancreatic islets (99); the latter can form a highly active free
radical peroxynitrite (ONOO-) by losing an electron and
combining with superoxide free radicals, which have strong
cytotoxicity and promote apoptosis (100, 101) (Figure 1). NO
affects many physiological b-cell processes, including inhibition
FIGURE 1 | Schematic diagram demonstrating the intracellular cascade of
events that occur in the pancreatic islet after stimulation by IL-1b, IFN-g and
TNF-a. IL-1b binds to the IL-1b receptor (IL-1bR), causing TNF receptor-
related factor 6 (TRAF6) to be activated by IL-1 receptor-related kinase
(IRAK), then NF-kB is released from inhibitory IkB, transferred from the
cytoplasm to the nucleus, and regulates the transcription of various genes,
including IL-1, IL-6, TNF-a, and iNOS; TNF-a binding to the TNF receptor
(TNF-R), initiates the activation of NF-kB and the induction of apoptosis; IFN-g
binds to the IFN-g receptor (IFN-gR) and causes the activation of JAK1 and
JAK2. JAK2 then activates signal transducers and activators of transcription 1
(STAT1), which then transfers to the nucleus, where it performs gene regulation.
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of oxidative metabolism, changes in the expression of target
genes, inhibition of glucose-stimulated insulin secretion, damage
to DNA, and induction of endoplasmic reticulum (ER) stress. If
exposure to NO is prolonged, it activates various signal cascades
and eventually leads to the death of b cells (102). In xenogeneic
islet transplantation animal models, selective iNOS inhibitors
can suppress the production of induced NO, to prevent early islet
graft failure (103).
IMMUNE CELLS

Macrophages
Macrophages, which are one of the cellular components of the
innate immune system, show great heterogeneity in physiological
and pathological conditions. They can be polarized into
pro-inflammatory macrophages (M1) or anti-inflammatory
macrophages (M2) in different environments (104).
Lipopolysaccharide and interferon IFN-g can activate M1
macrophages to secrete TNF-a, iNOS and superoxide anion to
play pro-inflammatory and host defense functions. In contrast,
M2 macrophages have a protective role in the immune response
and inflammation. Other studies showed that M2 macrophages
can be activated by interleukin (IL)-4 and IL-13, and play an
immune regulatory and anti-inflammatory role, through the
secretion of IL-1Ra, IL-1,TNF-a, IL-10, and other cytokines
(104, 105).

After the islets are infused into the portal vein, the activated
liver-resident macrophages (Kupffer cells) play a central role in
the inflammatory responses within the liver, secreting a series of
factors (including arachidonic acid metabolites, TNF-a, IFN-g,
IL-1, IL-6, complement, coagulation factors, reactive oxygen
species and nitrogen) to recognize and respond to various
Frontiers in Immunology | www.frontiersin.org 6
signals from the surrounding microenvironment, directly
affecting the survival of intrahepatic islets (11, 106, 107).
Furthermore, Kupffer cells can induce a response of other non-
immune cell subsets, including endothelial cells (108). In
addition, it has been suggested that ischemia reperfusion
phenomena may directly trigger the activation of sinusoidal
endothelial cells and help trigger nonspecific inflammatory
responses (109). The transplanted islets, residual endotoxin
produced in the process of islet isolation, and liver sinusoidal
endothelial damage can all activate Kupffer cells (11, 110). In
addition, tissue damage can recruit inflammatory macrophages
(M1), which in turn cause islet damage (111). At the same time,
dying b cells also produce high mobility group box 1 (HGMB)
and iNOS, attracting more macrophages to the liver, and
enhancing inflammation and b cell death (14, 112) (Figure 2).

Macrophage depletion can significantly reduce the expression of
IL-1b and TNF-a, indicating the role of macrophages in the
production of inflammatory cytokines (11). Gou et al.
demonstrated that Alpha-1 antitrypsin can protect the survival of
islet grafts, in part by inhibiting the polarization of M1
macrophages both in vivo and in vitro (14). One study has
mentioned that the local sustained-release of dexamethasone in
grafts promotes the survival of mouse pancreatic islet grafts by
inducing the differentiation of M2 macrophages in the graft
microenvironment as well as the secretion of anti-inflammatory
factors (104). Chappell et al. showed that activated M2
macrophages could improve the survival conditions of grafts in a
mousemodel by improving revascularization or neovascularization,
which had a repair function in the graft reaction (113).

Lymphocytes
Type I diabetes is characterized by the autoimmune-mediated
damage of islet b-cells, and the transplanted islets will also be
FIGURE 2 | Interaction between various types of cells after islet transplantation. Macrophages secreting TNF-a and iNOS, which act on beta-cells and endothelial
cells to play a pro-inflammatory function; Kupffer cells secreting a series of substances (including IL-1b, IFN-g and TNF-a), directly affecting the survival of intrahepatic
islets and endothelial cells; Antigen presenting cells (APCs) take and process antigens from donor and present antigens to host T cells, then reactive CD8+, CD4+
T-cells destroy transplanted islet b cells.
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attacked by the same stresses that destroy host b-cells (40). CD8+
T cells and CD4+ T cells are the major players in the destruction
of b cells. Activated T cells produce cytokines such as IFN-g,
TNF-a, and lymphotoxin to induce b cell apoptosis. T cells also
express ligands for the Fas receptor and TNF-related apoptosis-
inducing ligands, both of which lead to apoptosis by activating
effector caspases. In addition, CD8+ T cells directly contact and
promote the release of granzyme B into the cytoplasm of target
cells through perforin, thereby activating nucleases and caspases
to kill the target cells (40, 98). In some studies, CD8+ T cell
infiltration was observed in the pancreas of type 1 diabetic
patients and the transplanted pancreas (114, 115). In mouse
models, deficiency of CD4+ T cells was observed to stop
progression to insulitis (116).

During the rejection of allogeneic transplantation, the host
immune response can directly or indirectly be activated by T cells
recognizing the donor tissue. Direct graft recognition involves an
interaction between the donor tissue resident antigen-presenting
cells (APCs) and host T cells via major histocompatibility
complex (MHC) (117). Indirect recognition involves the
treatment of donor graft peptides by host APCs and
corresponding MHC interactions to stimulate host T cells
(118). APCs, including macrophages, dendritic cells (DC),
passenger leukocytes, from both donors and host are involved
in the antigen presentation (40). The activation and maturation
of T cells depends on the signals from the above APCs. If these
signals are blocked, T cells will undergo apoptosis (Figure 2).

DCs can not only initiate an immune response, but also
induce central or peripheral immune tolerance (40). Mature or
activated DCs can initiate a positive immune response, while
immature DCs or DC precursors show tolerance. is a
transcription factor that is necessary for DC differentiation and
maturation. The inhibition of the pathway has been
shown to produce tolerogenic DCs (119). RelB is a major
protein, which inhibits the expression of MHC-II, CD80, and
CD86, and ultimately prevents the maturation of dendritic cells.
RelB silenced DCs can inhibit antigen-specific alloreactive
immune rejection and reduce the proliferation of antigen-
specific T cells (120). In another study, tolerogenic DCs were
generated by inhibiting the expression of CD80 or CD86. The
administration of modified dendritic cells (DC) can prolong the
survival of allografts, thereby inducing T cell hyporesponsiveness
and apoptosis (121).

Granulocytes
The poor outcome of intraportal islet transplantation can be
explained by IBMIR, one of which is characterized by leucocyte
infiltration. The islets were mixed with ABO-compatible blood in
a heparinized tube, and the first neutrophilic granulocytes
appeared in the islets after 15 minutes, increasing at 1 hour
and peaking at 2 hours (122). Neutrophilic granulocytes induce
cell damage through cytotoxic attack and phagocytosis. After
neutrophil activation, superoxidase is produced to form reactive
oxygen species (ROS) and release protease, both of which are
involved in killing microbes (123). Neutrophilic granulocytes
are also known to contain a large number of cytokines, which are
Frontiers in Immunology | www.frontiersin.org 7
released upon activation, and there is much evidence that
cytokines have a damaging effect on pancreatic islets (124).
And their infiltration results in the release of chemokines such
as TNF-a and macrophage inflammatory protein 1a (MIP-1a)
from T cells and macrophages. The mobilization of this immune
effector may have effects on specific immune systems, inducing
and enhancing cellular rejection (122). The massive infiltration
of neutrophilic granulocytes not only causes functional
impairment or reduces the mass of the implanted islets, but
may also amplify the subsequent immune response, causing
direct damage to the islets (125). Therefore, the development
of drugs targeting neutrophil toxicity may markedly improve the
outcome of intraportal islet transplantation.

Endothelial Cells
Pancreatic islets have an extensive capillary network, which—in
addition to providing nutrients and oxygen to the islet endocrine
cells and transporting hormones to the peripheral circulation—is
an important source of signals for improving the survival rate and
function of islet b cells (126). While islets only constitute 1% of the
weight of the pancreas, they receive approximately 15% of the
blood flow of the pancreas (127). In the process of the isolation,
the islets are disrupted from the surrounding tissue and the
capillary networks. Therefore, revascularization of the islets after
transplantation is important for the function and survival of the
islet graft. The endothelial cells retained in the islets after islet
isolation are lost after the islets are cultured for 7 days. The isolated
islets are considered to be an avascular tissue, and
revascularization is carried out through the blood vessels that
grow from the host organ to the islets (128). Angiogenesis begins
on the first day after transplantation, and vascular remodeling may
continue for up to 3 months (129). In comparison to cultured
islets, transplantation of freshly isolated islets containing
numerous endothelial cells may significantly improve the
vascularization of transplanted islets, which in turn leads to an
enhanced endocrine function and the survival of islet grafts (130).
Olsson et al. observed that islet grafts obtained from freshly
isolated islets have higher vascular density and oxygen tension,
as well as higher ability to cure chemically induced diabetes, in
comparison to islet grafts obtained from cultured islets (131).

Pancreatic islets and vascular endothelial cells secrete high
levels of vascular endothelial growth factor (VEGF), which can
recruit neovascularization (132). Cheng et al. used adenovirus
containing cDNA from human VEGF isoforms to transfected
islets and transplanted it into diabetic nude mice. It was found
that the blood glucose was normal and that the revascularization
of islets was improved (133). Johansson et al. demonstrated that
the production of hepatocyte growth factor (HGF) in vitro by
endothelial cells increased the proliferation of beta cells, which in
turn required VEGF from beta cells (134). VEGF can also
stimulate the release of interleukins and increase blood flow to
ischemic tissues (135) (Figure 2). However, the supplementation
of VEGF in islet grafts may have a negative impact, which
recruits and amplifies inflammation, which may destroy islets
(133). Previous in vitro and in vivo studies have shown that
resident liver macrophages and endothelial cells can mediate
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early islet dysfunction by secreting cytokines and activating
inducible iNOS (103).
CONCLUSION

Islet transplantation remains a promising treatment to improve
the quality of life for many individuals with type 1 diabetes. If the
restoration of normal glucose tolerance can be achieved, non-
specific inflammation during transplantation can be reduced,
and immune tolerance to islet tissue can be induced, it will be an
ideal treatment for this disease. However, during the process of
islet transplantation—including isolation, culture, and islet
implantation—inflammation, ischemia, hypoxia, and immune
responses will occur, resulting in the loss of the graft. The
transplantation microenvironment plays an important role.
Cytokine-mediated non-specific inflammation, immune cell-
mediated rejection, and endothelial cells participate in post-
transplant vascular remodeling, which directly and indirectly
affect graft survival. Some cytokine inhibitors and siRNA
targeting complement receptors have been shown to improve
the viability of transplanted islets. Understanding the influence
of the microenvironment on the survival of transplanted islets, as
well as possible therapeutic targets is significant for the future of
Frontiers in Immunology | www.frontiersin.org 8
islet transplantation. The improvement of the microenvironment
and the continuous progress of transplantation strategies will
eventually improve the prognosis of transplant recipients.
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