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Abstract

Streptococcus pneumoniae is a major causative agent of pneumonia worldwide

and its complex interaction with the lung epithelium has not been thoroughly

characterized. In this study, we exploited both RNA-sequencing and microRNA

(miRNA)-sequencing approaches to monitor the transcriptional changes in

human lung alveolar epithelial cells infected by S. pneumoniae in a time-

resolved manner. A total of 1330 differentially expressed (DE) genes and 45 DE

miRNAs were identified in all comparisons during the infection process.

Clustering analysis showed that all DE genes were grouped into six clusters,

several of which were primarily involved in inflammatory or immune

responses. In addition, target gene enrichment analyses identified 11

transcription factors that were predicted to link at least one of four clusters,

revealing transcriptional coregulation of multiple processes or pathways by

common transcription factors. Notably, pharmacological treatment suggested

that phosphorylation of p65 is important for optimal transcriptional regulation

of target genes in epithelial cells exposed to pathogens. Furthermore, network-

based clustering analysis separated the DE genes negatively regulated by DE

miRNAs into two functional modules (M1 and M2), with an enrichment in

immune responses and apoptotic signaling pathways for M1. Integrated

network analyses of potential regulatory interactions in M1 revealed that

multiple DE genes related to immunity and apoptosis were regulated by

multiple miRNAs, indicating the coordinated regulation of multiple genes by

multiple miRNAs. In conclusion, time-series expression profiling of messenger

RNA and miRNA provides a wealth of information for global transcriptional

changes, and offers comprehensive insight into the molecular mechanisms

underlying host–pathogen interactions.

INTRODUCTION

The epithelial surfaces of the lung, with direct contact to

the atmospheric environment, provide an easy entry

point for microbes and, therefore, are prone to infectious

attack by a diverse range of microbial pathogens,

including bacteria, fungi, viruses and pathogenic

protozoa.1,2 Among these microbial pathogens, the Gram-

positive bacterium Streptococcus pneumoniae is the most

common causative pathogen of community-acquired

pneumonia, a major cause of infant mortality

worldwide.3 S. pneumoniae primarily colonizes the host

nasopharynx by adhering to mucosal surfaces of the

upper airway.4,5 An altered external environment or

weakened host immunity allows S. pneumoniae in the

upper respiratory tract to invade easily the lower airways,

causing pneumonia and provoking host inflammatory

and immune responses.3 Moreover, lung epithelial cells

have been demonstrated to prevent entry and foster

removal of pathogens by accumulating a physical mucus
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barrier, producing antimicrobial peptides and releasing a

wide range of proinflammatory cytokines in response to

S. pneumoniae.1,6 Thus, dissecting the host immune

responses to pneumococcal infection in detail will

provide valuable information for the prevention and

treatment of bacterial infections.1,2

During infection, a number of common host

transcriptional response genes have been reported to be

involved in host cellular responses to microbial pathogens

in the lungs.7–9 These mainly include genes that mediate

inflammation (e.g. CCL3, CCL4, CXCL1 and CXCL2),

genes that activate immune responses (e.g. BCL3, JUNB

and TRAF1) and genes that limit immune responses (e.g.

NFKBIA, TNFAIP3 and BIRC3).9 In addition, epithelial cell

apoptosis could be efficiently activated to remove infected

lung epithelial cells and pathogens as the infection

progresses, indicating the role of cell apoptosis in the

inhibition of inflammation.2 Increasing evidence has also

demonstrated that transcription factors (TFs) are key

regulators in modulating the activation of host immune

responses and production of several anti-inflammatory

cytokines during pathogen infection.7,10 Although studies

have addressed the changes in expression of genes involved

in cell apoptosis and transcription in the host during

infection, a comprehensive profile for these processes in

host lung epithelial cells during S. pneumoniae infection

remains to be elucidated.

Recently, the application of transcriptome sequencing

technology, including microarray and RNA-sequencing

(RNA-seq), has greatly facilitated genome-wide scanning

of host transcriptional responses to S. pneumoniae using

various in vitro and in vivo infection models.4,11–13 Global

transcriptional profiling of Detroit cells during infection

of S. pneumoniae showed that over one-third of induced

genes were mainly involved in transcriptional regulation

and signal transduction, in particular MAPK signaling

pathways.14 Microarray and bioinformatics analyses of

mouse whole lung have indicated the involvement of

interleukin (IL)-17A/IL-17F signaling and lipid

metabolism in acute S. pneumoniae infection.12 Reactive

oxygen species produced by S. pneumoniae can activate

the glutathione-dependent reactive oxygen detoxification

pathway in human lung epithelial cells, as suggested by

transcriptome changes observed using time-resolved dual

RNA-seq analysis.11 In addition, recent transcriptome

studies have shown the critical role of microRNAs

(miRNAs) in modulating cell apoptosis, immunity and

external stimulation.15,16 However, integrated analyses of

miRNA–messenger RNA (mRNA) transcriptome changes

have been scarcely reported in the time-resolved infection

of human lung epithelial cells by S. pneumoniae.

Serotype 3 encapsulated S. pneumoniae was an

important cause of invasive pneumococcal disease with

severe complications, including parapneumonic empyema

and hemolytic uremic syndrome.17,18 However, only few

studies have investigated the host transcriptomic

responses to this strain, and exploration of the response

of the epithelium during infection by serotype 3 might

provide new molecular insights into host–pathogen
interactions. In this study, we applied RNA-seq

technology to investigate the time-resolved gene

expression profiles of miRNAs and mRNAs in human

lung alveolar epithelial cells in response to S. pneumoniae

up to 8 h postinfection (hpi). We performed quantitative

reverse transcription-PCR (qRT-PCR) to further confirm

the high-quality data sets generated from RNA-seq and

miRNA-seq. Through a range of bioinformatics and

function-related analyses, we found several functional

clusters and key regulators associated with inflammatory

and immune responses. Finally, we built a regulatory

network among differentially expressed (DE) miRNAs

and DE target mRNAs to investigate the potential

biological function or relevance of miRNA–mRNA

interactions during infection.

RESULTS

RNA-seq generates high-quality data sets for

differential expression analysis

To examine how cell viability changes during infection,

we assessed the viability of alveolar epithelial carcinoma

cell line (A549) exposed to S. pneumoniae (serotype 3)

with a multiplicity of infection of 20 (i.e. 20

pneumococci per epithelial cell) at eight time points (0,

2, 4, 6, 8, 12, 18 and 24 hpi) using a Cell Counting Kit-8

assay. We found that there was no significant difference

in cell viability for mock-infected A549 cells at all time

points (P = 0.07, one-way ANOVA test; Figure 1a).

Although cell viability was different in the A549 cells over

all time points postinfection (P = 3.25 9 10–21, one-way

ANOVA test), it was not significantly impaired at 2, 4, 6

and 8 hpi compared with that of control cells; however,

cell viability was significantly reduced at 18 and 24 hpi

(P = 2.64 9 10-12 for 18 hpi; P = 4.63 9 10-13 for 24 hpi,

Figure 1a). Therefore, to further resolve the dynamic

nature underlying host transcriptional responses to

pathogen infection, we performed RNA-seq on A549 cells

to investigate global mRNA expression profiles in

response to S. pneumoniae at the five time points (0, 2, 4,

6 and 8 hpi) that would eliminate the effect of reduced

cell viability on host transcription levels.

To analyze the mRNA profiles in infected cells, we

obtained an average of 26.76 million raw reads with

lengths of 150 bp for each library from a total of 15

samples (three biological replicates for each time point).
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After removal of adapter sequences and low-quality base

trimming, we retained approximately 25.75 million clean

reads per sample with clean bases ranging from 6.62 to

9.9 Gb. In general, at least 95.07% of reads for each

sample were aligned to the human reference genome

(Supplementary table 1). Principal component analysis
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Figure 1. Genome-wide gene expression analysis from host transcriptomes during pathogen infection. (a) Cell viability analysis used Cell

Counting Kit-8 at different times for alveolar epithelial cells (A549) after pneumococcal infection at a multiplicity of infection of 20 (20

pneumococci per epithelial cell). Solid line and dashed line show the viability of infected and mock-infected epithelial cells, respectively. Data

points represent the means � s.d. obtained from six independent experiments with replicates. Statistical significance was assessed by one-way

ANOVA with P = 3.25 9 10�21 for infected cells and P = 0.07 for mock-infected cells. ***Significant Tukey post hoc test when the values were

compared with those of the control (P < 0.001). (b) Principal component analysis of all libraries based on detected genes in RNA-sequencing

(RNA-seq). The first component explains 63% of the variability and the second component explains 18%. (c) Number of differentially expressed

(DE) genes between libraries denoted by the histogram. The blue bars indicate the number of upregulated genes and the orange bars show the

number of downregulated genes. (d) Gene expression correlation was validated between RNA-seq and quantitative reverse transcription-PCR

(qRT-PCR). The RNA samples were obtained from three independent experiments with replicates and each point represents the log2 fold change

in DE genes in the two technologies. Each color represents a time point comparison from 10 comparisons. Each shape represents one of 10

validated DE genes (HMOX1, REPS2, CCND1, NFKBIA, COL7A1, TERT, CCNG2, ABCA1, CCL2 and SIRT1). The correlation coefficients were

calculated by Pearson’s test (R = 0.89, P = 6.1 9 10�32). hpi, hours postinfection.
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showed that all samples were clearly separated into five

groups with the same infection time for each group

(Figure 1b). Using the DESeq2 package in R with

expression cutoff values of > 1.5 fold change (FC) and

false discovery rate (FDR) < 0.05, we identified 1330 DE

genes in all comparisons during infection (Figure 1c,

Supplementary table 2). To further validate these DE

genes detected by RNA-seq, we performed qRT-PCR

analyses by selecting 10 DE genes for all comparisons on

independent RNA samples. A high correlation was

observed between the FCs in expression obtained by

qRT-PCR and RNA-seq [Pearson’s correlation (R) = 0.89,

P = 6.1 9 10�32], revealing the consistency in gene

expression between the two techniques (Figure 1d).

We also analyzed the contribution of DE genes to each

time point in comparison with mock-infected time (0

hpi). During this time course, a total of 1095 DE genes

were induced in the four comparisons (Supplementary

figure 1a). Of these, there were 139 DE genes in 2 hpi

(45 unique genes), 433 in 4 hpi (103 unique genes), 674

in 6 hpi (133 unique genes) and 730 in 8 hpi (234

unique genes). In comparison with 0 hpi, there were 27

upregulated and 21 downregulated unique genes in 2 hpi,

48 upregulated and 55 downregulated unique genes in 4

hpi, 58 upregulated and 75 downregulated unique genes

in 6 hpi and 162 upregulated and 74 downregulated

unique genes in 8 hpi (Supplementary figure 1b, c).

Cluster analysis of DE genes reflects biological

processes and pathways essential to host–pathogen
interactions

To classify the dynamic changes in transcription of the

1330 DE genes, we implemented clustering analysis on

temporal expression by adopting the Mfuzz package in R.

All DE genes were separated into six optimal clusters based

on the similarity of gene expression patterns over time,

which often tended to be functionally related or participate

in the same regulatory networks (Figure 2, Supplementary

table 3). To gain further insights into the potential

functions and biological characteristics of the DE genes in

each cluster, we performed Gene Ontology (GO) term

enrichment analysis and found several biological processes

associated with inflammatory or immune responses

(Figure 2). For instance, cluster 1 (C1) has a gradually

decreasing trend of gene expression from 0 to 4 hpi, with

significant enrichment in “response to tumor necrosis

factor” and “inflammatory response” GO terms. The genes

in C2 gradually increase in expression from 2 to 8 hpi and

were enriched in “regulation of apoptotic signaling

pathway.” Both “cytokine biosynthetic process” and

“cellular response to external stimulus” were found in C3

and C5, respectively (Figure 2, Supplementary table 4). In

addition, we found several biological processes associated

with transcriptional regulation, such as “regulation of

DNA-binding transcription factor activity” in C1 and

“positive regulation of DNA-binding transcription factor

activity” in C2 (Figure 2, Supplementary table 4). We also

performed the GO analysis for DE genes contributing to

each time point compared with 0 hpi and found several

common biological processes associated with cellular

response to external stimulus, regulation of DNA binding,

cell apoptotic and transcriptional regulation in these later

time points (Supplementary figure 2, Supplementary table

5). Moreover, several specific biological processes were also

found for a certain time point, such as “response to

oxidative stress” at 2 hpi and “intracellular receptor

signaling pathway” at 4 and 6 hpi (Supplementary table 5).

Moreover, to curate the important metabolic or

signaling pathways from Kyoto Encyclopedia of Genes and

Genomes (KEGG), we performed the KEGG pathway

enrichment analysis of the DE genes in each cluster, and

there were five clusters with significant enrichment (C1–
C5). Among these five clusters, we also found several

significantly targeted pathways (FDR < 0.05) involved in

inflammatory or immune responses (Figure 3,

Supplementary table 4). For instance, genes in C1 were

enriched in the largest number of pathways, among which

several pathways were relevant to inflammation and

immune response, including the “tumor necrosis factor

signaling pathway” and “IL-17 signaling pathway,” which

were also observed in C4 (Figure 3, Supplementary table

4). The majority of induced genes in these pathways

encode several cytokines, chemokines or transcriptional

regulators, such as CCL2, CXCL1, CXCL2, CXCL8, JUN,

TRAF3 and NFKBIA, which have been determined to play

a role in the immune response.6,14,19–21 In addition, the

“NF-kappa B signaling pathway” was also observed in both

C1 and C3, which participate in the coordination of the

inflammatory and immune responses through regulating

the expression of hundreds of immune relevant genes, in

particular those encoding proinflammatory cytokines and

chemokines. Notably, we also found the “AMPK signaling

pathway” specifically enriched in C2. The activation of

AMPK by activators could inhibit inflammatory responses,

indicating a role of AMPK signaling pathway in the

depression of inflammation.22 In particular, we also found

the “FoxO signaling pathway” in C5. FoxO signaling plays

a vital role in an evolutionarily conserved mechanism of

cross-regulation of metabolism and innate immunity, and

foxo mutants can be resistant to some infections.23 In

addition, we examined the pathway associated with

infection at each time point. KEGG enrichment analysis

showed that several pathways relevant to inflammation and

immune response were specifically enriched in a certain

time point (Supplementary figure 3 and Supplementary
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table 5). For instance, several inflammation and immune

response pathways including the “tumor necrosis factor

signaling pathway,” “IL-17 signaling pathway” and “B-cell

receptor signaling pathway,” were found to be induced 2

hpi. At 6 hpi, we found several pathways involved in kinase

signaling and transcriptional activation, such as the

“MAPK signaling pathway” and “NF-kappa B signaling

pathway.”

Given the crucial role of cell apoptosis and TFs in the

regulation of inflammatory and immune responses to

pathogen infection, we further investigated in detail the

functional dynamic changes in relevant DE genes. We

curated 155 DE genes potentially associated with

apoptosis from the THANATOS database,24 162 DE TFs

from a previous study10 and 359 DE genes involved in

innate immune response from the InnateDB database,25

which were provided in Supplementary table 6. By

applying the fuzzy c-means method, each category of

genes was appropriately classified into three clusters,

displaying complex expression patterns in response to S.

pneumoniae infection (Supplementary figure 4).

TF target-enriched clusters are coregulated by potential

key transcriptional regulators

TFs have been extensively demonstrated as important

regulators in mediating host responses to pathogens.8,26

We next explored the associations between the genes in the

six clusters at the TF level based on target gene enrichment

via the TRRUST database,27 and found 11 TFs that were

predicted to link at least one of the four clusters (Figure 4a,

Supplementary table 7). Among these TFs, there were six

for C1, three for C2, nine for C3 and three for C4.

Moreover, several TFs, such as NFKB1, p65, JUN, SP1 and

STAT3, were demonstrated previously to be involved in the

regulation of lung inflammation and immunity during

pathogen infection or external stimulation.1,7,8 Meanwhile,

we also found that both NFKB1 and p65 were significantly

enriched for target genes in four of the clusters (Figure 4a).

Among these target genes, 45/47 genes were coregulated by

NFKB1 and p65 (Figure 4b).

Both NFKB1 and p65 are important members of the

nuclear factor-kappa B (NF-jB) family, which are

recognized as essential regulators in inflammatory

processes and innate immunity, as well as in modulation of

the transcriptional activity of NF-jB.7,28 GO analysis

showed that these target genes were significantly enriched

in several biological processes associated with host

responses to pathogen infection or external stimuli, such as

“response to tumor necrosis factor,” “regulation of

apoptotic signaling pathway” and “positive regulation of

response to external stimulus” (Figure 4c). Furthermore,

KEGG analysis of these target genes revealed several critical

pathways associated with host responses against pathogens,

such as the “tumor necrosis factor signaling pathway,” “IL-

17 signaling pathway” and “NF-jB signaling pathway”

(Figure 4d). These analyses further confirmed the role of

both NFKB1 and p65 in the regulation of immune system

responses and NF-jB activation pathway. GO and KEGG

enrichment analyses for NFKB1 and p65 target genes in

each cluster also showed similar results to those in all

clusters (Supplementary figure 5).

In addition, we attempted to investigate the

phosphorylation level of p65 at different times during

infection. Although there were no significant changes in p65

expression at the mRNA and protein levels during S.

pneumoniae infection, the phosphorylation of p65 in A549

cells gradually increased in a time-dependent manner in

response to infection (Figure 4e). To further validate the

regulatory role of p65 phosphorylation (p-p65) toward

potential target genes, we utilized the NF-jB inhibitor

[pyrrolidine dithiocarbamate (PDTC)] to treat the A549

cells during S. pneumoniae infection and found that the level

of p-p65 was obviously decreased at any infection time with

PDTC treatment than without treatment (Figure 4e).

Similarly, the reduced levels of p-p65 during S. pneumoniae

infection were also observed in both nuclear and cytosolic

fractions of A549 cells with PDTC treatment

(Supplementary figure 6). We selected the DE genes

(including BCL3, CSF1, CXCL1, JUNB, NFKB1A and

TRAF1) coregulated by NFKB1 and p65 that were enriched

in the tumor necrosis factor signaling pathway belonging to

C4. These DE genes at 8 hpi showed increased expression

compared with 0 hpi, but more significantly increased

expression than 2 hpi (all P-values < 0.05, Figure 4f). Upon

treatment with PDTC, we found significant reductions in

the FCs of these genes between 8 and 2 hpi compared with

those determined by both RNA-seq and qRT-PCR without

PDTC treatment (all P-values < 0.05, Figure 4g).

Dynamic changes in miRNAs at different infection time

points

To investigate the dynamic change in miRNA expression

during infection, small RNA libraries paired with mRNA

libraries were prepared for miRNA-seq. However, because

of the failure of library construction and/or sequencing,

we finally obtained high-quality miRNA-seq data sets

from two biological replicates for each time point. After

filtering out low-quality reads, trimming off adaptors and

removing RNA fragments less than 18 nucleotides, we

retained an average of 6 713 283 clean reads per sample,

with an average mapping rate of 94.27% for small RNAs

(Supplementary table 8). Of these high-quality small

RNAs, the length distribution was similar throughout all

time points with approximately 90% of the small RNAs
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ranging from 21 to 24 bp in length (Figure 5a). In total,

we identified an average of 3 346 306 reads as known

miRNA sequences by aligning the reads to human

miRNA reference sequences in miRbase version 21

(Supplementary table 8). The principal component

analysis shows the distribution of all samples in the form

of a two-dimensional scatter diagram, indicating

significant discrimination for the overall expression

patterns of miRNAs at each time point (Figure 5b).

We next performed differential expression analysis of

miRNAs using the DESeq2 tool with thresholds of a FC > 2

and FDR < 0.05, and obtained 45 robust DE miRNAs in all

comparisons during infection (Figure 5c). In contrast to the

differential expression of mRNAs, there were more

downregulated miRNAs than upregulated miRNAs in most

comparisons, suggesting the role of miRNAs in the negative

regulation of their target mRNAs by either translational

repression or mRNA degradation (Figure 5c,

Supplementary table 9). For the contribution of DE

miRNAs to each time point in comparison with 0 hpi, we

found that there was a total of 19 DE miRNAs in the four

comparisons. Of these, there were nine DE miRNAs in 2 hpi

(three unique miRNAs), one in 4 hpi, four in 6 hpi (three

unique miRNAs) and 13 in 8 hpi with seven unique

miRNAs (Supplementary figure 7). To further evaluate the

miRNA-seq data, we performed qRT-PCR analyses on eight

miRNAs selected in all comparisons using independent

RNA samples. As a result, a relatively high correlation was

observed between the FCs obtained by qRT-PCR and

miRNA-seq: R = 0.88 and P = 2.47 9 10�26 (Figure 5d).

Among these 45 DE miRNAs, there were seven with peak

expression at 0 hpi, followed by nine at 2 hpi, six at 4 hpi, 21

at 6 hpi and two at 8 hpi (Figure 5e).

Integrative analysis of miRNA and mRNA expression

reveals the miRNA–mRNA networks associated with

host–pathogen interactions

In general, miRNAs negatively regulate the expression of

their target mRNAs by silencing or degradation.15

Considering the anticorrelated relationship between

miRNA and mRNA, we attempted to identify putative

miRNA–mRNA regulatory interactions for further

understanding of the host transcriptional response. From

19 567 shared DE miRNA–mRNA pairs by TargetScan and

miRanda predictions, we recognized 3885 DE miRNA–
mRNA pairs with anticorrelation analysis (R < �0.5),

from which 482 DE miRNA–DE mRNA pairs were

retained, consisting of 332 DE mRNAs and 35 DE miRNAs

(Figure 6a, Supplementary table 10). We adopted

enrichment analysis with hypergeometric tests to

quantitatively assess the effects of the DE miRNAs on 332

DE genes during infection, and found that 272 DE genes

targeted by 14 DE miRNAs were highly enriched in

different clusters (Figure 6b, Supplementary table 11). For

example, the target genes of three miRNAs (hsa-miR-941,

hsa-miR-6842-3p and hsa-miR-1299) were mainly

enriched in both C1 and C3. For hsa-miR-143-3p and hsa-

miR-9-5p, their target genes showed significant enrichment

in C2, C5 and C6 (Figure 6b). Moreover, the comparison

of the time-series expression trends of these 14 DE

miRNAs and their target mRNAs showed that these target

mRNAs were obviously negatively modulated by the DE

miRNAs in the enriched clusters (Supplementary figure 8).

To gain insight into the biological function and

interconnectedness of these 332 DE genes targeted by DE

miRNAs, we constructed an interconnected biological

network with 279 nodes and 3700 edges based on the five

types of biological relationships of these genes from

GeneMANIA (Supplementary figure 9). To further find the

functional module (highly interconnected regions) from

the complex biological network, we used the MCODE tool

to analyze the corresponding networks with the cutoff

criteria of an MCODE score > 5 and a degree cutoff > 3,

and identified the two most densely interconnected

modules: module 1 (M1) and module 2 (M2) (Figure 6c,

Supplementary figure 10a). Moreover, to further evaluate

the reality and significance of the observed modules, we

compared the number of nodes/genes and their edges/

connections in physical interactions from two modules

with those of 100 000 random iterations from the STRING

database. The permutation test analyses for M1 showed

significantly more nodes/genes (P = 2 9 10�5) and edges/

connections (P = 1 9 10�5) than random expectations

(Figure 6d), and statistical significance for the number of

genes (P = 2 9 10�5) and connections (P = 2 9 10�5)

was also observed in M2 (Supplementary figure 10b). In

addition, most of the DE genes in M1 were assigned to C2

and C5 (24 of 47). GO enrichment analysis revealed that

the DE genes in M1 are mainly associated with the

“negative regulation of NF-kappaB transcription factor

pathway,” “regulation of immunity,” “cell apoptotic

process,” and “glutamate receptor signaling pathway”

(Supplementary figure 11, Supplementary table 12).

However, no significant biological process enrichment for

DE genes was observed in M2.

Given the complex relationships between miRNAs and

their target genes, with one gene potentially regulated by

multiple miRNAs or multiple genes potentially regulated

by one miRNA, we performed network analysis to

investigate the regulatory relationships between DE

miRNAs and target DE genes in M1 and M2. The two

networks consisted of 48 DE genes regulated by 17 DE

miRNAs for M1 and 40 DE genes regulated by 18 DE

miRNAs for M2 (Figure 6e, Supplementary figure 10c).

For M1, we found that BCL6 targeted by hsa-miR-129-5p
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and miR-9-5p, and APLF and PNRC1 targeted by hsa-

miR-199a-3p are associated with regulation of immunity.

Remarkably, there were 11 DE genes related to apoptotic

signaling pathways regulated by 10 DE miRNAs, in which

several miRNAs were found to target genes involved in

the negative regulation of NF-jB TF activity, such as hsa-

miR-1299, hsa-miR-3158-5p, hsa-miR-9-5p, hsa-miR-

139-5p and hsa-miR-495-3p.

DISCUSSION

Lung epithelial cells contribute to the first line of host

defense against pathogen infections, often acting as

important mediators in the initiation of immune

responses by inducing the production of various

cytokines and chemokines for pathogen clearance.1,2

Pathogen infection in host cells is a complex

multifactorial interaction, which leads to abundant gene

expression changes involved in disease processes.1,9 RNA-

seq studies investigating the global gene expression

changes for epithelial infection of S. pneumoniae using

various cell lines have been performed.4,11 Compared

with these previous RNA-seq studies—especially, the

time-resolved dual RNA-seq analyses by Aprianto

et al.11—our in vitro transcriptomic analyses first used

serotype 3 S. pneumoniae for A549 infection, given that

9

1

10

2

3
1

21

8

1

12

9
7

17

0

10

20

30

N
um

be
r o

f D
E

 m
iR

N
A

s

Group
Down−regulated

Up−regulated

Group

(a)

(c)

(e)(b)

0

10

20

30

40

50

60

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Length

P
ro

po
rti

on
 (%

)

−2

−1

0

1

2

−5 −3 −1 1 3 5
PC1 (49%)

P
C

2 
(1

6%
)

0 2 4 6 8

hsa−miR−494−3p
hsa−miR−548k

hsa−miR−30b−5p

hsa−miR−339−5p

hsa−miR−328−3p

hsa−miR−4521

hsa−miR−125a−5p

hsa−miR−369−3p

hsa−miR−335−5p

hsa−miR−107

hsa−miR−590−3p

hsa−miR−548ah−3p

hsa−miR−941
hsa−miR−99b−3p

hsa−miR−493−3p

hsa−miR−7706
hsa−miR−1299

hsa−miR−151a−3p

hsa−miR−29c−5p

hsa−miR−6842−3p

hsa−miR−4746−5p

hsa−miR−3158−3p
hsa−miR−3158−5p

hsa−miR−1−3p

hsa−miR−2682−5p

hsa−miR−659−5p

hsa−miR−195−3p

hsa−miR−369−5p
hsa−miR−27a−5p

hsa−miR−126−3p

hsa−miR−147b−3p

hsa−miR−129−5p
hsa−miR−4684−3p
hsa−miR−143−3p
hsa−miR−199a−3p
hsa−miR−139−5p
hsa−miR−9−5p

hsa−miR−548am−3p

hsa−miR−451a
hsa−miR−3529−3p
hsa−miR−7−5p

hsa−miR−495−3p

hsa−miR−148a−3p

hsa−miR−200a−5p

hsa−miR−4664−3p

-1.5 -1 -0.5 0 0.5 1 1.5

(d)

0 hpi vs
. 2

 hpi

0 hpi vs
. 4

 hpi

2 hpi vs
. 4

 hpi

0 hpi vs
. 6

 hpi

2 hpi vs
. 6

 hpi

0 hpi vs
. 8

 hpi

2 hpi vs
. 8

 hpi

4 hpi vs
. 8

 hpi

4 hpi vs
. 6

 hpi

6 hpi vs
. 8

 hpi

0 hpi
2 hpi
4 hpi
6 hpi
8 hpi

0 hpi

2 hpi
4 hpi

6 hpi

8 hpi

hpi (hours post infection)

Normalized miRNAs expression

−2

−1

0

1

2

−1 0 1
log2 Flod Change (miRNA−seq)

lo
g 2 F

lo
d 

C
ha

ng
e 

(q
P

T−
P

C
R

)
DE miRNAs

hsa−miR−129−5p
hsa−miR−1299
hsa−miR−143−3p
hsa−miR−27a−5p
hsa−miR−3158−3P
hsa−miR−3158−5p
hsa−miR−3529−3p
hsa−miR−9−5p

R=0.88
P=2.47×10-26

Comparisons
0 hpi vs. 2 hpi
0 hpi vs. 4 hpi
0 hpi vs. 6 hpi
0 hpi vs. 8 hpi
2 hpi vs. 4 hpi
2 hpi vs. 6 hpi
2 hpi vs. 8 hpi
4 hpi vs. 6 hpi
4 hpi vs. 8 hpi
6 hpi vs. 8 hpi
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downregulated genes. Both false discover rate < 0.05 and fold change > 2 were set as the threshold for DE miRNAs. (d) Pearson’s test was used
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Figure 6. Identification of miRNA–mRNA regulatory networks associated with host–pathogen interactions. (a) Flowchart for detecting potential

interactions between differentially expressed (DE) miRNAs and DE mRNAs acting in A549 cells. DE miRNA indicates DE miRNA, and DE mRNA

indicates DE mRNA. (b) The heatmap shows the false discovery rate (FDR; hypergeometric test) for enrichment of DE miRNA target genes in each

cluster after correction for multiple comparisons. The intensity of color in each rectangle explains the enrichment degree of genes targeted by DE
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the node gene might be involved. miRNA, microRNA; mRNA, messenger RNA.
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the strain tend to cause severe complications of invasive

pneumococcal disease.17,18 In addition, we applied TF-

binding site enrichment analysis and identified several

key TFs, including common TFs observed in previous

studies (NFKB1 and p65) as well as several specific TFs

in our studies, such as JUN and SP1. Furthermore, we

used miRNA-seq data to monitor the miRNA expression

changes in a time-resolved manner that was not reported

in previous RNA-seq studies. Finally, our integrated

analyses of mRNA-seq and miRNA-seq identified several

candidate DE miRNAs associated with host inflammatory

and immune responses, such as miR-9, miR-27 and miR-

199. The application of time-resolved miRNA–mRNA

integrated analyses might provide a comprehensive

molecular basis underlying host cell responses to

pathogen infections.29

Interplay between various pneumococcal strains and

the epithelium often triggered the strain-dependent host

transcriptomic response.4,14,30 These can be explained

partly by difference in genetic background or

microinvasion between these strains with diverse capsular

serotypes, such as D39 (serotype 2), G54 (serotype 19F),

TIGR4 (serotype 4), BHN 418 (serotype 6B) and P1121

(serotype 23F).4,14 In comparison with mock-infected

epithelial cells, infection with serotype 3 strain

upregulated 89 genes at 2 hpi and 406 genes at 6 hpi,

which was comparable to that observed with D39 or 23F

but more than that observed with 6B.4,14 Similarly,

pathway enrichment analysis for the DE genes between 6

and 0 hpi also showed a broader number of biological

pathways than the 6B strain, consistent with TIGR4 and

23F strains (Supplementary table 5).4,14 Although our GO

and KEGG analyses also showed several common

inflammatory and immune response pathways induced by

serotype 3 strain as well as other serotype strains, we

found several specific biological processes or signaling

pathways based on cluster analysis, such as “the AMPK

signaling pathway” in C2, “negative regulation of calcium

ion transport” in C4 and “response to endoplasmic

reticulum stress” in C5. The activation of the AMPK

signaling pathway had a prominent effect in the

depression of inflammation.22 Previous studies have

suggested that Ca2+ fluxes in epithelial cells are activated

by pathogen contact and induce local cytokine and

mucin secretion.31–33 Pulmonary pathogens also cause

endoplasmic reticulum stress as a result of the

accumulation of unfolded proteins, which leads to

proinflammatory cytokine production in lung epithelial

cells.34

Consistent with the enrichment analysis of DE genes in

each cluster, several biological processes and KEGG

pathways on each time point also showed the relevance

to cell apoptotic and immune responses. However, several

specific enrichment for biological processes and pathways

was also observed at a certain time point. Many epithelial

glutathione-associated genes could be activated by

reactive oxygen species produced by S. pneumoniae,

indicating that the oxidative stress may be involved in the

host–pathogen interactions.11 In addition, several

components of the MAPK signaling pathways had been

induced by S. pneumoniae strains with different serotypes

and reported to play pivotal roles in cell growth,

inflammation and apoptosis.14

The role of extensive TFs identified in the genome of

Eukarya, Bacteria and Archaea has been elucidated.10,35,36

Considering the key regulatory role of TFs in determining

the host response to pathogenic stimuli,10 we performed

TF-binding site enrichment analysis and found that both

NFKB1 (processed to p50) and p65 (also called RELA) had

target gene enrichment in all clusters. Both TFs belong to

the NF-jB family, which comprises a group of key

regulators involved in diverse cellular processes associated

with inflammatory and immune responses against

pathogen infections.7,28 The role of these two TFs in

infection has been demonstrated by the host cells in

response to the adherence of S. pneumoniae strains with

different serotypes in vitro, including 6B, 23F and TIGR4.4

Extracellular stimulations induce the phosphorylation of

IjB family members, which undergo proteasomal

degradation, and lead to the nuclear translocation of

heterodimeric p50/p65 that finally modulates gene

expression.7 Moreover, previous studies have established

the role of p-p65 in the nuclear translocation of p65 and

enhancement of the transcriptional activity of NF-jB in

human epithelial cells following exposure to environmental

stimuli.37,38 Treatment of human lung epithelial cells with

thrombin was previously shown to increase p-p65 at Ser276,

which ultimately led to NF-jB activation and IL-8/CXCL8

release.37 Similarly, farnesol-induced phosphorylation of

p65 at Ser276 was shown to increase the transcriptional

activity of NF-jB and facilitate the expression of a number

of genes mediating immune and inflammatory responses in

human lung epithelial cells.38

In contrast to the 6B strain, serotype 3 strain induced

considerable enrichment of more diverse TFs with 11 TFs

predicted to link at least one of four clusters, similar to the

TIGR4 and 23F strains.4 Besides commonly enriched

binding sites for p50 and p65 among these diverse strains,

the responses to serotype 3 revealed the enriched binding

sites for STAT3 in C1 and C2, which was also observed in

response to the TIGR4 strain.4 Recent studies have

demonstrated the role of STAT3 in the control of lung

inflammation and immunity.6,39 Moreover, our analysis

revealed particular enrichment of binding sites for TFs

such as JUN and SP1. As a component of activator protein-

1, JUN showed binding site enrichment in C1 and C3, and
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is known to induce gene expression involved in mucus

biosynthesis and secretion, including MUC5AC and

MUC5B, from respiratory epithelial cells in response to

bacterial stimuli,40–42 consistent with the GO term

enrichment for DE genes in C3. In addition, the induction

of mucins such as MUC5AC and MUC5B by stimulants

was shown previously to lead to the activation of the TF

SP1,8,43–45 which we revealed to have target gene

enrichment in C3 and C4. These analyses of the regulatory

mechanisms of epithelial cells exposed to external stimuli

suggest the involvement of these identified TFs in the

inflammatory and immune responses to infections.

There has been an accumulating body of evidence

supporting the regulatory role of miRNAs in the

modulation of host–pathogen interactions.15,46 In our

study, module analyses showed two important modules

from the biological network constructed by 332 DE genes

negatively regulated by 35 DE miRNAs. We also found that

the top one (M1) showed enrichment in several processes

associated with immunity, apoptosis and transcriptional

regulation of NF-jB, consistent with previous studies.15

For instance, Sirtuin 1, the prototypic class III histone

deacetylase, had been reported to function in the induction

of immune and defense genes in pulmonary epithelial cells

by S. pneumoniae, and pharmacologic activation of Sirtuin

1 might indicate a novel treatment strategy for bacterial

infection.47,48 The knockout of TRAF3 in mice showed that

TRAF3 could regulate immune responses in myeloid cells

and act to inhibit inflammation in mice,21 although its role

in the epithelial cells remains unknown. These findings

also highlight several components of the biological

subnetworks which are targeted as part of the

pneumococcal evasion strategies. Moreover, several

candidate key DE miRNAs regulating DE gene targets in

M1, such as miR-9,49,50 miR-2751 and miR-199,52 have

been reported to be involved in inflammatory and immune

responses during infections. However, it should be noted

that each mRNA related to immunity and apoptosis in M1

is potentially regulated by multiple miRNAs or a single

miRNA may target multiple genes (Figure 6), indicating

the possibility of coordinated regulation of multiple targets

by multiple miRNAs.16 Considering the complexity of

miRNA–mRNA interactions, it is also necessary to validate

each potential regulatory miRNA employing genetic

modification of miRNAs in cell or animal models, which

will aid in refining our understanding of these complicated

systems.15,16

Nevertheless, there are some limitations to our study.

One limitation is the limited biological replicates per

time point for RNA-seq and miRNA-seq, although to

ensure consistency and robustness of positive findings, we

performed qRT-PCR replication for selected gene

expression. It might still neglect several DE genes or

miRNAs that contribute to host response to infection,

thus more replicates are needed to fully characterize the

expression changes associated with host–pathogen
interactions. Our infection model relied on only one

pneumococcal serotype strain and one type of cell line,

leading to our findings limited by direct comparisons

with multiple pneumococcal serotype strains and types of

epithelial cell lines or primary cells. It is well-known that

different pneumococcal strains often cause distinct host

response because of diverse capsular serotypes.4,14

Similarly, cell origin and type may cause differences in

the abilities of S. pneumoniae adhesion and invasion.5 It

is therefore necessary to further explore the transcriptome

of multiple types of epithelial cells during infection using

different pneumococcal serotype strains. Furthermore,

many of the DE miRNAs found in this study need to be

further investigated to determine their biological function

and likely regulated role in infection process.

In conclusion, we have described comprehensive

transcriptional changes in human lung alveolar epithelial

cells in a time-resolved manner using RNA-seq and

miRNA-seq. Of particular note, these data sets have been

successfully used to identify several crucial biological

processes and key regulators associated with inflammatory

and immune responses based on bioinformatics or

function-related analyses, providing more biological

insight into the pathogenesis of infection. Finally, our

integrative analysis of the regulatory interactions between

DE miRNAs and DE mRNAs might help us to

comprehensively understand the molecular basis

underlying host cell responses to pathogen infections.

METHODS

Culture of the epithelial cell line and S. pneumoniae

The A549 cell was purchased from the Cell Resource Center,
Shanghai Institutes for Biological Sciences of Chinese Academy
of Sciences, and cultivated in Dulbecco’s modified Eagle’s
medium (Gibco, Waltham, MA, USA) containing 10% fetal
bovine serum (Gibco), penicillin (100 U mL�1) and
streptomycin (100 mg mL�1) at 37°C in a humidified incubator
with 5% CO2. Twenty-four hours before the experiments, the
cells were grown in medium without antibiotic supplements. S.
pneumoniae serotype 3 strain (ATCC 6303) was purchased from
American Type Culture Collection (ATCC, Manassas, VA,
USA). Single-colony isolates of S. pneumoniae were grown
overnight on blood agar plates at 37°C with 5% CO2.

Infection studies and measurement of cell viability

For infection of A549 cells, single colonies were expanded by
resuspension in brain heart infusion broth and incubation at
37°C until the midlog phase (OD600, 0.3–0.4), and then were
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harvested by centrifugation. A549 cells were inoculated with S.
pneumoniae resuspended in cell culture medium without
antibiotics at 37°C and 5% CO2. For each experiment, a new
aliquot of bacteria was slowly thawed and added to the cell
medium at a multiplicity of infection of 20 (i.e. 20
pneumococci per epithelial cell). All experiments were
performed in triplicate.

A549 cells were seeded at a density of 5 9 104 cells per well
(100 lL) in 96-well plates. At 70–80% confluence, the cells
were incubated with S. pneumoniae at 37°C for the indicated
times. Cell viability was measured using Cell Counting Kit-8
(Dojindo Molecular Technologies, Kumamoto, Japan),
following the manufacturer’s instructions. The absorbance was
measured in a multifunction microplate reader (BioTek,
Winooski, VT, USA) at 450 nm.

RNA extraction, library construction and sequencing

Total RNA was isolated from A549 cells after pneumococcal
infection according to standard procedures using TRIzol
Reagent (Thermo Fisher Scientific, Waltham, MA, USA). The
purity and quality of the RNA were examined using a Nano
Photometer spectrophotometer (Implen, Munich, German)
and the Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA); RNA samples having an
RNA integrity number > 7.0 were used for further analysis.
About 5 lg of total RNA per sample (with three biological
replicates) was used as input material for complementary
DNA (cDNA) library construction using an Illumina TruSeq
RNA Sample Preparation Kit (Illumina, San Diego, CA, USA).
Approximately 3 lg of total RNA from each sample (with
three biological replicates) was used to prepare a small RNA
library generated using the NEBNext Multiplex Small RNA
Library Prep Set for Illumina (NEB, Ipswich, MA, USA),
following the manufacturer’s protocol. The quality of each
cDNA library and small RNA library was assessed on the
Agilent Bioanalyzer 2100 system. The cDNA and small RNA
libraries were sequenced on the Illumina HiSeq 4000 platform
with 150-bp paired-end reads generated.

Data preprocessing

RNA-seq raw reads were processed in a similar manner as
previously described.53,54 Both 30 and 50 adapter contaminants
were removed by Cutadapt, and the full-length reads were
processed as FASTA format using an in-house pipeline.55 After
preprocessing, the quality of these reads was evaluated by
FastQC and further visualized by SplicingViewer software.56

Read alignments to the human genome and count detections
were conducted using Hiast2 and StringTie, respectively.

For the small RNA library sequencing data, high-quality
trimmed reads were obtained after quality control, including
removal of low-quality reads from the raw data and reads with
adapter contaminants. The remaining reads with lengths
ranging from 18 to 35 nucleotides were chosen for further
analysis. The clean data were mapped to the hg38 reference
sequence and aligned against miRbase version 21 by Bowtie.57

Differential expression analysis and validation of DE

genes or miRNAs by qRT-PCR

DE genes and DE miRNAs in cells infected by bacteria
between any two points were identified by the DESeq2
package in R58 based on the raw counts obtained from the
previous steps. The P-values for differential expression analysis
were corrected by the Benjamini and Hochberg FDR
procedure in DESeq2. For the RNA-seq data, both FDR < 0.05
and FC > 1.5 were set as the thresholds for DE genes. For the
miRNA-seq data, both FDR < 0.05 and FC > 2 were set as the
thresholds for DE miRNAs.

The selected DE genes were validated by qRT-PCR to confirm
the robustness of RNA-seq. Each cDNA was synthesized from
1 lg of total RNA using the GoTaq 2-Step qPCR System Kit
(Promega, Madison, Wisconsin, USA). qRT-PCR was
performed on the Applied Biosystems QuantStudio Real-time
PCR Instrument (Thermo Fisher Scientific), according to the
manufacturer’s protocols. All measurements for each sample
were performed in triplicate, and the FC in a gene was
calculated based on the 2–MMCt method after normalization
against b-actin. All relevant primers are listed in Supplementary
table 13. The correlation between RNA-seq FCs and FCs from
qRT-PCR was calculated using Pearson’s test.

For the validation of expression data generated by miRNA-
seq, each cDNA was synthesized from 1 lg of RNA by the
miScript II RT Kit (Qiagen, Dusseldorf, Germany). qRT-PCR
was performed for each sample in triplicate with U6 as an
internal control. The qRT-PCR instrument and the calculation
of FCs in miRNAs were identical to those described
previously. The Bulge-loop miRNA qRT-PCR primer sets (one
RT primer and a pair of qPCR primers for each set) specific
for eight miRNAs were designed and synthesized by RiboBio
(Guangzhou, China). The correlation between miRNA-seq FCs
and FCs from qRT-PCR was calculated by Pearson’s test.

Time-series clustering of DE gene enrichment

We clustered DE genes along a time series using Mfuzz
(version 2.42.0) in the R package based on the fuzzy c-means
method.59 Log transformations of the average expression value
of each gene at each time point were processed to construct
an ExpressionSet object and standardize the expression values.
The standardized expression data were used as input to
generate the clusters with membership values over 0.5 for each
DE gene and at least 90% of the DE genes were assigned to a
unique cluster.

Key regulators for DE genes in each cluster

We determined whether DE genes in all clusters were
regulated by TFs based on predictions using the TRRUST
database.27 A transcriptional regulatory relationship between a
TF and DE genes in each cluster was considered statistically
significant with the following thresholds: a corrected P
value < 0.05 and gene counts > 5. The TF target networks
were constructed by Cytoscape version 3.4.0.60
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Protein extraction, western blot assay and drug

treatment

Total protein was extracted from cultured cells at different time
points using a protein extraction kit (KeyGen Biotech, Nanjing,
China). After infection, the cultured cells were simultaneously
treated with the NF-jB inhibitor PDTC (Sigma Chemical
Company, St. Louis, MO, USA) at 25 lM for the different time
intervals to inhibit p-p65. An equal amount of extracted protein
was separated by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and transferred to a polyvinylidene difluoride
membrane. After blocking with 5% skim milk in Tris-buffered
saline, 0.1% Tween 20 (TBST) for 1 h at room temperature, the
membrane was incubated with antibodies against p65 (Catalog
number: 8242; Cell Signaling Technology, Boston, MA, USA) or
p-p65 at Ser536 (Catalog number: 3033; Cell Signaling
Technology). Antibodies against glyceraldehyde 3-phosphate
dehydrogenase (Catalog number: 10494-1-AP; Proteintech,
Rosemont, USA) and proliferating cell nuclear antigen (Catalog
number: 10205-2-AP; Proteintech, Rosemont, USA) were used
as endogenous control for nucleus and cytosol, respectively.
Image Lab version 5.2 software was used to calculate the relative
expression levels of each protein. Data were presented as the
means � s.d. from three independent experiments. Significant
differences between groups were determined using a two-tailed
unpaired Student’s t-test or one-way analysis of variance.
Cytoplasmic and nuclear fractionation from A549 cells was
performed according to standard procedures using Nuclear and
Cytoplasmic Extraction Reagents (catalog number: 78833;
Thermo Fisher Scientific).

miRNA target prediction and correlation analysis

To identify potential interactions of miRNAs with their target
mRNAs, we predicted the target DE miRNA–mRNA pairs
using TargetScan61 and the miRanda database.62 DE miRNA–
mRNA pairs detected simultaneously in both data sets were
used for subsequent analysis. We next calculated Pearson’s
correlation coefficient (R) between expression levels of each
DE miRNA and its predicted mRNAs, in which only those DE
miRNA–mRNA pairs with R < �0.5 were chosen. Then, we
extracted the DE miRNA–DE mRNA pairs based on the DE
mRNAs identified in this study.

Network construction using MCODE and permutation

analysis

The interactive network for all DE genes was built using the
GeneMANIA software based on physical interactions, genetic
interactions, predicted functional relationships, colocalization
and coexpression.63 Then, we employed the MCODE plugin in
Cytoscape to detect higher connected modules in the network
with scores > 5.64 By adopting a permutation test with 100 000
iterations based on the ranking of genes and their connections,
we assessed statistical significance for the number of interacting
genes and connections relative to random expectations. All the
networks were visualized using Cytoscape version 3.4.0.

Enrichment analysis using Gene Ontology terms and

Kyoto Encyclopedia of Genes and Genomes pathways

In this study, GO analysis was used to annotate genes and gene
products, and dissect the biological characteristics of associated
gene set.65 The KEGG analysis was used to analyze functional
and metabolic pathways from the associated gene set.66 GO
enrichment analysis in biological process and KEGG were used
to annotate genes by the “enrichGO” and “enrichKEGG”
function of the clusterProfiler67 package in R, respectively. GO
terms and KEGG pathways with corrected P-values (FDR) <
0.05 were considered to be meaningful enrichments.
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