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Constraining modelled global 
vegetation dynamics and carbon 
turnover using multiple satellite 
observations
Matthias Forkel   1*, Markus Drüke2, Martin Thurner3, Wouter Dorigo4, Sibyll Schaphoff2, 
Kirsten Thonicke   2, Werner von Bloh2 & Nuno Carvalhais5

The response of land ecosystems to future climate change is among the largest unknowns in the 
global climate-carbon cycle feedback. This uncertainty originates from how dynamic global vegetation 
models (DGVMs) simulate climate impacts on changes in vegetation distribution, productivity, biomass 
allocation, and carbon turnover. The present-day availability of a multitude of satellite observations 
can potentially help to constrain DGVM simulations within model-data integration frameworks. Here, 
we use satellite-derived datasets of the fraction of absorbed photosynthetic active radiation (FAPAR), 
sun-induced fluorescence (SIF), above-ground biomass of trees (AGB), land cover, and burned area to 
constrain parameters for phenology, productivity, and vegetation dynamics in the LPJmL4 DGVM. Both 
the prior and the optimized model accurately reproduce present-day estimates of the land carbon cycle 
and of temporal dynamics in FAPAR, SIF and gross primary production. However, the optimized model 
reproduces better the observed spatial patterns of biomass, tree cover, and regional forest carbon 
turnover. Using a machine learning approach, we found that remaining errors in simulated forest carbon 
turnover can be explained with bioclimatic variables. This demonstrates the need to improve model 
formulations for climate effects on vegetation turnover and mortality despite the apparent successful 
constraint of simulated vegetation dynamics with multiple satellite observations.

Terrestrial ecosystems compensate currently for around 1/3 of all anthropogenic carbon emissions from fossil fuel 
burning, cement production and land use change1. However, it is uncertain if land ecosystems will remain a sink 
of carbon under future climate change conditions2. The uncertainty in the future land carbon uptake is related 
to how dynamic global vegetation models (DGVMs) account for net primary production (NPP), soil carbon 
decomposition, vegetation dynamics (i.e. processes that control changes in the area coverage of vegetation types), 
and vegetation carbon turnover3. While DGVMs generally predict an increase in NPP, the future changes in the 
terrestrial vegetation carbon storage, or biomass, differ largely among models4. These different future trajectories 
in simulated vegetation biomass and carbon turnover are related to various processes such as plant phenology, 
forest succession and regrowth, initiated by disturbances such as fires, and by drought and temperature effects on 
plant mortality3–6. For example, DGVMs do not sufficiently represent climate-induced effects on vegetation car-
bon turnover, e.g. through frost or drought stress and insect outbreaks, resulting in insufficiently modelled spatial 
patterns of vegetation biomass6. In contrast, regional patterns of forest biomass and turnover rates as derived from 
satellite-based products can largely be explained by climate variables and hence it should be feasible to accurately 
simulate these processes in DGVMs7.

Satellite observations provide information on several ecosystem properties that can potentially help to con-
strain model simulations of vegetation productivity, biomass and vegetation dynamics8. For example, decadal 
time series of vegetation greenness (i.e. normalized difference vegetation index, NDVI or the fraction of absorbed 

1Technische Universität Dresden, Institute of Photogrammetry and Remote Sensing, Helmholtzstr. 10, 01069, 
Dresden, Germany. 2Potsdam Institute for Climate Impact Research, Telegraphenberg A 62, Potsdam, Germany. 
3Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberg Gesellschaft für Naturforschung, 
Senckenberganlage 25, 60325, Frankfurt am Main, Germany. 4TU Wien, Department of Geodesy and 
Geoinformation, Gusshausstr. 27-29, Vienna, Austria. 5Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 
10, Jena, Germany. *email: matthias.forkel@tu-dresden.de

OPEN

https://doi.org/10.1038/s41598-019-55187-7
http://orcid.org/0000-0003-0363-9697
http://orcid.org/0000-0001-5283-4937
mailto:matthias.forkel@tu-dresden.de


2Scientific Reports |         (2019) 9:18757  | https://doi.org/10.1038/s41598-019-55187-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

photosynthetic active radiation, FAPAR) are widely used to identify short- to long-term changes in land sur-
face phenology and photosynthetic capacity9–11. Multi-year land cover maps provide information on spatial dis-
tributions and long-term changes of vegetation types12,13. Satellite retrievals of sun-induced fluorescence (SIF) 
are closely linked to gross primary production (GPP)14,15 and can constrain photosynthesis in DGVMs16,17. 
Satellite-derived maps of above-ground biomass provide information about the spatial distribution of vegetation 
carbon18–20. Biomass maps can be used together with data-based estimates of GPP and NPP to estimate total eco-
system and vegetation carbon turnover times, respectively7,21,22.

Previously, satellite observations of vegetation greenness or leaf area index have been intensively used to 
improve DGVM simulations of phenology and plant productivity23–26. Thereby optimization algorithms are used 
to estimate model parameters and their uncertainties within formal model-data integration approaches27,28 or 
more specifically within carbon cycle data assimilation systems29–32. For example, we previously optimized phe-
nology, light absorption, and productivity-related parameters of the LPJmL (Lund-Potsdam-Jena managed Land) 
DGVM33 against 30 years of satellite-derived FAPAR, 10 years of vegetation albedo and a data-based estimate of 
mean annual GPP23. In addition to improvements of the model performance in comparison to these data sets, 
the optimization resulted also in a better representation of high-latitude tree cover and biomass23, and seasonal 
dynamics and trends in global productivity and atmospheric CO2 seasonality34,35. It has been also shown that the 
vegetation distribution in Russia as simulated by another variant of LPJ can be improved by optimizing param-
eters against a land cover map36. Hence, these studies suggest that it might be possible to jointly constrain the 
simulated vegetation productivity, dynamics and carbon turnover of a DGVM with satellite observations.

Here, we aim to explore how the combined information from satellite data on FAPAR, SIF, above-ground 
biomass of trees, and tree cover distribution can be used to constrain parameters of the LPJmL (version 4.0)33 
DGVM and hence to improve simulations of regional to global vegetation distribution and carbon turnover 
(Fig. 1a). Based on these satellite datasets, we compute a multivariate cost function (i.e. model-data error, see 
Methods) to optimize model parameters that regulate the simulated phenology, photosynthesis, vegetation car-
bon turnover, establishment, mortality and bioclimatic limits of plant functional types (PFTs) (see Supplementary 
Table S1). In addition, we directly prescribe a satellite data set of burned area into the fire module of LPJmL4 to 
constrain the occurrence and spatial extent of fires with observations. Our approach could provide the basis for 
new state-of-the art strategies to improve parameterizations of and simulations from DGVMs.

Results
Effects of individual data sets on changes in the multivariate model-data cost.  We performed 
three independent optimization experiments for the boreal, temperate and tropical zones, respectively (Fig. 1b). 
The optimization resulted in all zones and for all data sets in a reduced cost, i.e. an improved model performance 
(Fig. 1c–e). For all climatic zones, the cost reductions were largest for SIF, PFT fractions and biomass. The smallest 
reductions occurred for FAPAR, against which LPJmL had been optimized previously23. The used cost function 
allows quantifying the contribution of changes in model-data bias, variance ratio, and correlation on the overall 
cost. For example, the cost for SIF was in all zones reduced mostly because of a reduction in the bias whereas var-
iance and correlation had only small changes. The changes in the cost of biomass and PFT fractions were caused 
by regionally diverse changes in bias, variance ratio or correlation.

In the boreal zone, the reductions in cost were largest for SIF and for the coverage of the summer-green tree 
and herbaceous PFTs (Fig. 1c). For FAPAR, the cost was reduced because of an improved variance but an increase 
in bias and a decline in correlation occurred.

In the temperate zone, reductions in the cost were largest for the coverage of broad-leaved summer-green 
and needle-leaved evergreen tree PFTs, SIF and biomass (Fig. 1d). Despite the overall improvement for the bio-
mass, there was an increased bias. As biomass was included as a static map in the optimization, this result points 
towards that biomass will be under- or overestimated in the temperate zone although the spatial distribution 
(indicated by improved correlation) and variability (indicated by improved variance) were better reproduced.

In the tropical zone, the cost reduced mostly because of an improved variance of the rain-green tree PFT 
(Fig. 1e). However, we found that the optimum parameter set and other individual parameter sets with low total 
costs generally coincided with a bias in herbaceous vegetation cover and an increased error for broad-leaved 
evergreen tree cover (Supplementary Fig. S1). When we used the optimum parameter set in a global model run, 
we found that across the tropical Savannah regions, tree cover was generally over- and herbaceous cover under-
estimated. Therefore, we selected an alternative individual parameter set from the optimization results with a bias 
component <0.1 for herbaceous vegetation cover and with reduced costs for the tree PFTs, for the bias in biomass 
and for the correlation in SIF and FAPAR (Supplementary Fig. S1a). Unlike the initial “optimal” parameter set, 
the selected parameter set resulted in reduced costs for all data sets and had even slightly better performances for 
biomass and broad-leaved evergreen tree cover (Fig. 1e shows the results for the selected parameter set). We then 
used the best-performing parameter sets (i.e. the optimum for the temperate and boreal zone and the selected set 
for the tropical zone, Supplementary Table S2) to run and evaluate a global model simulation.

Data constraints on parameter values and uncertainties.  Generally, we found various 
PFT-dependent changes in model parameter values (Fig. 2, Supplementary Figs. S2–3). By investigating the 
uncertainty of model parameters after optimization, we are able to identify which parameters were well con-
strained with the used model-data integration framework. In the following, we use the term “well-constrained” 
for parameters that had a posterior uncertainty of <20% relative to the prior uncertainty (Fig. 2, see Eq. 3 in 
Methods). Broadly speaking, photosynthesis-related parameters were better constrained than parameters that 
control phenology, turnover, establishment, mortality and bioclimatic limits. Among the photosynthesis-related 
parameters, parameters that control the SIF-GPP relationship were well constrained for tropical and boreal PFTs 

https://doi.org/10.1038/s41598-019-55187-7


3Scientific Reports |         (2019) 9:18757  | https://doi.org/10.1038/s41598-019-55187-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

but had larger uncertainties for temperate PFTs. The upper limit for the temperature optimum of photosynthesis 
was generally weakly constrained.

In addition, some parameters that control phenology, turnover, mortality or bioclimatic limits were well 
constrained. Phenology-related parameters control the sensitivity of leaf development and senescence to tem-
perature, water availability or light. The temperature-related parameters were best constrained. Water-related 
and light-related phenology parameters were well constrained for PFTs that grow in water- (tropical herbaceous 
and rain-green tree PFTs, boreal summer-green PFT) and light-limited (boreal PFTs) climates, respectively. 
Phenology parameters were generally poorly constrained for the temperate evergreen tree PFT.

Leaf longevity, the turnover time of sapwood to heartwood, and most establishment and mortality-related 
parameters were well constrained. Parameters that control fire-induced mortality were poorly constrained. 
Bioclimatic limits, especially the lower and upper temperature limits for establishment and survival of PFTs, were 
well constrained for most boreal and temperate PFTs.

We then investigated which parameters were causing the increasing bias in herbaceous vegetation cover in the 
tropical optimization experiment. We found that the bias in herbaceous cover was especially related to a parame-
ter that controls the phenology of the tropical herbaceous PFT at high temperatures (i.e. TMAX_BASE_TrH) and 

Figure 1.  Overview of the model-data integration setup and changes in the model-data cost. Panel (a) shows 
how the used satellite data and the LPJmL model were integrated to estimate model parameters using a genetic 
optimization algorithm. Panel (b) shows the spatial distribution and the distribution with respect to tree above-
ground biomass and fractional tree cover of grid cells that were used for the three optimization experiments 
in the boreal, temperate and tropical zones. Panels (c–e) show for each optimization the changes in the cost 
for each data set and for the components of the cost that are related to model-data bias, variance ratio and 
correlation.
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to the leaf longevity and light extinction coefficient parameters of TrH as well as one parameter that controls the 
SIF-GPP relationship in the broadleaved rain-green PFT (Supplementary Fig. S4). All of these parameters mostly 
affect the magnitude and dynamics of FAPAR and hence of GPP and SIF. Overall, our results demonstrate that 
parameters for productivity, phenology and vegetation dynamics within a DGVM can be jointly estimated from 
the multitude of satellite observations.

Improved simulations of global vegetation distribution and biomass.  The optimized model better 
reproduced the global distribution of above-ground tree biomass and tree cover, and of GPP in northern latitudes 
(Fig. 3). While LPJmL with original parameters (LPJmL-prior) overestimated biomass globally, the optimized 
model had a better performance especially across the tropical and boreal forests (Fig. 3a,d). However, the opti-
mized model had a deteriorated performance for biomass in some regions, especially in the eastern United States. 
Globally, the optimized runs had improved description of total tree cover, especially across the arctic-boreal 
regions and in temperate and tropical semi-arid regions (Fig. 3b,e). The prior model overestimated GPP in com-
parison to the independent FLUXCOM37 product in temperate and boreal regions. After the optimization, this 
overestimation was substantially reduced across the boreal zone and in some parts of tropical forests (Fig. 3c,f).

The simulated spatial distribution of PFTs in the optimized model was more similar to the observations than 
the prior model across large areas (Supplementary Fig. 5). The simulated PFT distribution especially improved 
in large parts of Siberia, Africa and the Amazon. The optimized model reproduced better the coverage of 
broad-leaved evergreen trees in the tropics, of broad-leaved deciduous trees in northern high latitudes (>50°N) 
and of needle-leaved evergreen trees in northern mid-latitudes (20–40°N) (Supplementary Fig. 6). However, 
the optimization resulted in an overestimation of the coverage of needle-leaved deciduous trees in boreal for-
ests of North America and in an underestimation of herbaceous cover in Australia and parts of southern Africa 
(Supplementary Figs. 6 and 7).

Simulated FAPAR, SIF and GPP from both the prior and the optimized model were highly correlated (r > 0.8) 
with observations across many regions (Supplementary Fig. 8). Weak correlations (r < 0.3) occurred for all 
three variables over tropical forests where optical satellite observations are generally hampered by cloud cover. 
Interestingly, the correlations for SIF and GPP were higher than for FAPAR which shows that LPJmL can better 
capture dynamics in productivity than in seasonal canopy development. The correlation with SIF and GPP did 
not change between the prior and optimized model in many regions but the optimized model had weaker corre-
lations in various arid regions. The correlations with FAPAR improved in the optimized model in boreal forests 
but deteriorated in arctic and semi-arid regions.

Impacts on simulated global carbon cycling and vegetation carbon turnover.  Globally, the opti-
mized model simulated lower carbon fluxes and stocks than the prior model (Table 1). For example, global GPP 
was reduced by 6%, NPP by 9% and vegetation carbon stocks by 7% and remains within the uncertainty range of 
global data-driven estimates38. However, both versions of LPJmL simulated higher fire carbon emissions (+86% 
and +59% for the prior and optimized model) than the estimates from the Global Fire Emissions Database39. 
Note that the simulated fire carbon emissions are not confounded by potential limitations of the model to sim-
ulate the occurrence and extent of fires because we prescribed observed burned area to both model simulations. 
The prior model had clearly higher global vegetation carbon stocks (543.5 PgC) than suggested by the uncertainty 
limits (343–539 PgC) of a global satellite-derived estimate21. The optimized model (504.6 PgC) was within this 
uncertainty range. Despite these changes in total carbon stocks and fluxes, the optimization affected also the 

Figure 2.  Relative uncertainty of model parameters after optimization, grouped by processes. The relative 
uncertainty is the ratio of posterior/prior uncertainty. Low and high values of relative uncertainty indicate 
strongly and weakly constrained parameters, respectively. All parameters are defined by PFT (coloured dots). 
The black lines are added to support visual interpretation and show the relative uncertainty of each parameter 
averaged across PFTs. Note that for the tropical PFTs the uncertainties refer to the optimized parameter set but 
are not associated to the selected best parameter set that is used for global model simulations.
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magnitude of carbon cycle trends: The optimized model had weaker positive trends in global NPP and biomass 
but stronger negative trends in vegetation carbon turnover time than the prior model (Fig. 4a–c).

The optimized model had globally a slightly higher vegetation carbon turnover time (+3%) than the prior 
model because of the slightly stronger relative changes in global vegetation carbon stocks than in productiv-
ity. Globally, the changes in vegetation carbon turnover time were clearly dominated by changes in biomass. 
However, the changes in vegetation turnover time between the prior and the optimized model varied regionally: 
increased turnover time in boreal forests and in some semiarid regions and decreased turnover time in tropi-
cal regions (Fig. 4d,e). In order to evaluate the simulated vegetation carbon turnover in the optimized model, 
we computed an approximation of forest carbon turnover time (τf) from simulations and from the AGB and 
GPP datasets (see Methods). LPJmL overestimated τf in most tropical forests and in parts of boreal forests but 
underestimates τf in central and eastern Siberia, in western North America and northern Australia (Fig. 5a). 
We then applied the random forest (RF) machine learning approach to explain the residuals (LPJmL – data) in 
τf with bioclimatic, land cover, and human-related predictor variables. RF is able to reconstruct the model-data 
residuals mainly by using climate-related predictors (MEF = 0.96, Fig. 5b,c). Globally, annual precipitation is the 
most important predictor for τf residuals and is most important in tropical forests and in southern boreal forests 
(Fig. 5d). Given the overestimation of biomass in tropical forests, this indicates that LPJmL has a too high sensi-
tivity of above-ground biomass and hence of forest carbon turnover to precipitation. The overestimation of τf in 
some parts of boreal forests is strongly related to the maximum temperature of the warmest month and to diurnal 
temperature range, indicating that the model approach in LPJmL underestimates the role of heat and drought 
effects on forest carbon turnover (Fig. 5e,f). Land cover- and human related variables were of minor or of only 
local importance (Fig. 5g,h).

Figure 3.  Global patterns of mean annual aboveground biomass (2009–2011), tree cover (1992–2015) and 
gross primary production (1982–2010). Panels (a–c) show latitudinal gradients from the LPJmL prior and best 
model runs and from each reference dataset. Panels (d–f) show percentage changes in the absolute average error 
( = | − |aAE s o ) whereby blue colours indicate that LPJmL improved after the optimization. Regions with 
>20% cropland cover are masked (grey colours).

GPP
(PgC yr−1)

NPP
(PgC yr−1)

FireC
(PgC yr−1)

Rh
(PgC yr−1) VegC (PgC) τveg (yr) SoilC (PgC)

LPJmL prior 125.3 56.4 4.1 43.5 543.5 9.6 1898

LPJmL best 117.4 51.3 3.5 39.1 504.6 9.9 1456

Reference 123 (102–135)A38 2.2 (1.8–3)B39 442 (343–539)A21 2397 (1837–3257)A21

Table 1.  Global carbon fluxes, stocks and turnover times as simulated by LPJmL averaged for the period 
1982–2016. GPP: gross primary production, NPP: net primary production, FireC: fire carbon emissions, Rh: 
heterotrophic respiration, VegC: vegetation carbon, τveg; vegetation carbon turnover time, SoilC: soil carbon. 
ARanges are 95% confidence intervals as reported in the references; BThe range is the reported annual minimum 
(2013) and maximum (1997) value39.
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We previously showed that most DGVMs (including a previous version of LPJmL) poorly represent relations 
between forest carbon turnover rates and climate variables in temperate and boreal forests6,7. We here repeated 
these analyses with results from the prior and optimized LPJmL model (Supplementary Information 3). The new 
results showed that relations between forest turnover rate and the number of icing days and the maximum length 
of warm-dry periods did not change between the prior and optimized model (Supplementary Figs. 10 and 11). 
Overall, our results demonstrate that errors in simulated vegetation carbon turnover after model optimization 
can be predicted from climate data. This indicates that LPJmL misses regionally important disturbances and 
plant-stress functions such as frost damage, drought and heat effects on mortality in boreal and tropical for-
ests. Hence, the simulated vegetation dynamics and carbon turnover in LPJmL cannot be improved further with 
parameter estimation but requires the improvement of model structures.

Discussion
In summary, the use of satellite-derived datasets of FAPAR, SIF, above-ground biomass, land cover, and burned 
area within a joint model-integration framework constrained simulated global and regional patterns of GPP, 
biomass and tree cover in LPJmL. The optimization most strongly constrained model parameters for photosyn-
thesis and some parameters controlling phenology, turnover, mortality and bioclimatic limits. Hence, our results 
demonstrate the feasibility of constraining key aspects of vegetation dynamics in a DGVM with satellite observa-
tions and helps to identify missing process representations.

In agreement with MacBean et al.16, we found that SIF data can strongly constrain simulated GPP in a DGVM. 
As we were using datasets that are representative for both photosynthetic carbon uptake (FAPAR and SIF) and 
vegetation carbon turnover (AGB, land cover and burned area), we were also able to constrain many model 
parameters that control carbon stocks and different processes of carbon turnover such as phenology, mortality 
and bioclimatic limits. Novel datasets on leaf and sapwood biomass40 could further help to constrain parameters 
that control different biomass compartments. However, the largest uncertainty in the size of land carbon stocks is 
largely caused by different data-based estimates for soil carbon21,41. Given these uncertainties, we did not include 
estimates of soil carbon in the model-data integration to potentially constrain total-ecosystem carbon turnover. 
However, unlike the recent study by Wu et al.41, we demonstrate that land carbon cycle simulations in DGVMs 
can be improved with state-of-the art datasets on biomass. In agreement with Wu et al., we found the largest 
improvements for biomass in northern ecosystems. Contrary to our results, Wu et al. report that simulated bio-
mass can be only weakly constrained in tropical forests within their model-data integration framework because 
of large differences between the two used AGB datasets. We here rely only on one dataset of tropical AGB, which 
shows better agreement with reference data than other data sets18. Having said that, it is currently not possible to 
use realistic uncertainty estimates of large-scale tropical biomass in model-data integration because all available 
data sets are not independent of each other.

Our results reveal diverse changes in simulated vegetation distribution and carbon turnover. A challenging 
result of the optimization is the overestimation of tree cover and the corresponding underestimation of herba-
ceous cover in savannah regions. The observed bimodal distribution of tree cover in savannah regions has been 

Figure 4.  Effect of the model optimization on global vegetation carbon turnover. Shown are global annual 
totals of (a) net primary production, (b) vegetation carbon and (c) vegetation carbon turnover times for the 
LPJmL4 prior and best models runs relative to the values in 1982. Panel (d) shows global pattern of vegetation 
carbon turnover time from the LPJmL4 best model run, calculated by assuming the steady-state assumption. 
Panel (e) shows the change in vegetation carbon turnover time between the LPJmL best and prior model runs.
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previously explained through fire feedbacks42. Here we prescribed observed burned area to LPJmL to represent 
fire feedbacks on vegetation realistically. However, globally consistent time series of burned area are only available 
since 2000. As we recycled the observed burned area from the years 2000–2016 before 2000, we might overes-
timate real fire return intervals but might underestimate total burned area before 2000 given that burned area 
declined in Savannah regions like the Sahel43. Altogether, this might result in a misrepresentation of post-fire 
regrowth trends. However, given the relatively short fire return interval in savannahs, our results suggest moreo-
ver that fire impacts on vegetation (i.e. combustion, post-fire mortality) or the adaptation of vegetation to fires are 
not sufficiently represented to yield an accurate distribution of woody and herbaceous vegetation in savannahs. 
A similar result was recently found for the JSBACH model44. Another reason for the overestimation of tree cover 
might be the abundance of animals that strongly regulate the productivity and biomass in savannah ecosystems45, 
which is however not considered in most DGVMs. Hence, the inappropriate simulation of tree and grass cover 
distributions suggests that the effect of abiotic and biotic disturbances on ecosystem carbon stocks need to be 
revised in DGVMs to accurately simulate savannah ecosystems.

We found that model-data errors in forest carbon turnover after the optimization of LPJmL are still related to 
bioclimatic variables. The importance of precipitation and of maximum temperatures in explaining these errors 
suggest that drought- and heat effects on turnover and mortality need to be improved as already suggested by 
several previous studies6,46,47. Currently, bioclimatic limits are used in DGVMs to allow the establishment and 

Figure 5.  Explanation of residuals in simulated forest carbon turnover time (τf) from the optimized LPJmL 
model using the random forest machine learning approach. (a) Spatial distribution of τf residuals between 
simulations from the LPJmL-best model run and from data-derived estimates. Grey areas are croplands (>20%) 
or non-forests (tree cover < 40%). (b) The residuals in τf between LPJmL and data-derived estimates were 
re-constructed from several predictor variables (bioclimatic variables, observed land cover and the human 
footprint index) using the random forest (RF) machine learning algorithm (MEF = 0.96). (c) Distributions of 
the grid cell-level importance of predictor variables in RF. Variable importance D is defined as the RMSE per 
grid cell between RF predictions and RF predictions after perturbing the selected predictor variable. Annual 
precipitation has the highest importance in predicting model-data residuals (d). As further examples, are shown 
the importance of maximum temperature in the warmest month (e), mean monthly diurnal temperature range 
(f), broad-leaved evergreen tree cover (g), and the human footprint index (h).
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mortality of PFTs and hence to control the spatial distribution of vegetation types. From a process-oriented point, 
bioclimatic limits prescribe the effect of biotic and abiotic disturbances or vegetation sensitivity to frost or heat on 
mortality in a simple manner. The random forest-based results allow identifying regional drivers of forest carbon 
turnover and hence suggest that the current use of bioclimatic limits in DGVMs should be rather replaced with 
more mechanistic functions that relate carbon turnover or mortality to extreme climate conditions.

Furthermore, biotic disturbances and forest management are equally important for tree mortality like fire 
but are not considered in LPJmL (and in most other DGVMs)48. Historic mortality events and past forest man-
agement cause a regrowth of forests and are important for the current land carbon sink5. Hence, an accurate 
simulation of regrowth and carbon uptake trends requires that models can sufficiently simulate mortality in 
response to climate variability and that management-related vegetation changes can be prescribed from data sets. 
Current-generation global multi-temporal satellite-based land cover data sets realistically depict regional trends 
in forest cover12,13. However, it is unclear if such datasets contain signals of forest mortality. Regionally, the use of 
higher resolution satellite imagery allows mapping forest disturbances over decades49 but such datasets are not 
readily available over large scales for use in DGVMs. Recent developments to map biomass and forest structure 
will help to better constrain dynamics and changes in forest carbon turnover50,51.

In conclusion, we show that simulated global vegetation dynamics and turnover from current-generation 
DGVMs can be constrained through a joint use of satellite observation of vegetation greenness, sun-induced fluo-
rescence, biomass, land cover and burned area. To exploit the full potential of model-data integration approaches 
in the future, better quantifications of data set uncertainties, novel large-scale and long-term datasets on eco-
system disturbances, and improved representations of mortality processes in DGVMs are needed. Thereby, 
machine-learning approaches can help to identify model deficiencies52 and to potentially derive improved model 
formulations for climate effects on vegetation carbon turnover.

Methods
LPJmL dynamic global vegetation model.  LPJmL is a process-oriented DGVM that simulates global 
vegetation distribution, carbon and water fluxes and stocks in natural and agricultural land ecosystems33. Here 
we use version 4 of LPJmL33 which is based on the original LPJ model53 and its extension for agricultural areas54, 
fire55, permafrost56, and phenology23. LPJmL simulates the land coverage by different plant functional types (PFT) 
as the so called foliar projective cover (FPC)53. Changes in the FPC depend on changes in biomass, and on the 
establishment or mortality of individuals. Establishment and mortality depend on bioclimatic limits that control 
the ability of a PFT to grow or to survive under specific climatic conditions53. Additionally, mortality can occur 
because of heat stress, low productivity, fire, and age (expressed as background mortality). If mortality occurs, a 
certain number of individuals is killed, FPC reduced and the corresponding biomass is transferred to the litter 
carbon pools. FPC, FAPAR, GPP, and biomass form a positive vegetation cover-productivity-biomass feedback in 
LPJmL that is modified through changes in phenology, establishment, and mortality.

In order to use SIF observations in the model optimization, we additionally need to compute SIF in LPJmL. 
Based on previous work that used linear relationships between SIF and GPP for model optimization16, we com-
pute SIF as:

= ∗ +SIF a GPP b (1)

The regression slope a and intercept b were treated as model parameters in LPJmL. A list of all model param-
eters that was included in this study is given in Supplementary Table S1.

LPJmL was run at 0.5° spatial resolution by using the default input data and spin up procedures33,35. Different 
to the default setup, we here used daily climate input data from the GLDAS reanalysis dataset (version 2.0 for the 
period 1948–2000 and version 2.1 between 2000 and 2016)57,58. For the model spinup we recycled the climate data 
for the period 1948 to 1977. The spinup was first computed for 5000 years by only simulating natural vegetation. 
Then we restarted the model from these conditions and computed a second spinup for 390 years with historical 
land use change data. The transient model run was then restarted from the conditions after the second spinup and 
simulated for the period 1948 to 2016. During the optimization, we re-started all iterations from the first spinup 
but repeated each time the second spinup. This is sufficient to bring vegetation carbon pools into a new equilib-
rium caused by the new model parameters.

Satellite data sets.  We used satellite datasets on FAPAR, SIF, PFT cover and aboveground biomass 
to optimize LPJmL (Supplementary Table S3). FAPAR was taken from the Moderate-resolution Imaging 
Spectroradiometer (MODIS) MOD15A2 product59. FAPAR observations for the period 2000 to 2015 were aver-
aged to monthly time steps and to 0.5° resolution.

SIF data was taken from the GlobFluo product based on measurements from the Global Ozone Monitoring 
Experiment-2 (GOME-2) instrument. The retrieval algorithm is described by Köhler et al.60. Monthly SIF data 
was used for the period 2007 to 2014.

Estimates of above-ground forest biomass (AGB) were taken from forest biomass maps for the tropics18 and 
for northern forests19. The tropical biomass map is approximately representative for the period 2000–2010 and the 
northern biomass map is based on measurements from the Advanced Synthetic Aperture Radar (ASAR) instru-
ment on board the Envisat satellite between October 2009 and February 2011. To compare these forest biomass 
maps with LPJmL, we computed the average above-ground biomass of tree PFTs for the years 2009 to 2011 from 
LPJmL simulations.

The coverage of PFTs was derived from the PFT maps based on the European Space Agency (ESA) Climate 
Change Initiative (CCI) land cover dataset (ESA Land cover_cci v 2.0.7)12. These PFT maps include the frac-
tional cover of trees, shrubs, natural grass and crops and separate tree types by leaf longevity (i.e. evergreen vs. 
deciduous) and leaf type (broadleaf vs. needleleaf). We added the cover of shrubs to the corresponding tree PFTs 
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because LPJmL does not separate between these growth forms. As LPJmL separates PFTs by climate zone (i.e. 
boreal, temperate and tropical PFTs), we reclassified the PFT maps to the PFT nomenclature of LPJmL using the 
Köppen-Geiger classification61 (Supplementary Table S4 and Fig. S9).

We used a satellite dataset of burned area to directly prescribe the occurrence, timing and spatial extent of fires 
in the LPJmL-SPITFIRE fire module55. Burned area was taken from the ESA CCI fire datasets which is based on 
MODIS observations for 2001 to 2016 (ESA Fire_cci v 50)62.

An independent data-driven estimate of gross primary production (GPP) was used to evaluate global model 
simulation (FLUXCOM Meteo dataset, 1982–2010)37. All satellite datasets were aggregated to 0.5° × 0.5 resolu-
tion of LPJmL.

Model-data integration setup.  To optimize LPJmL model parameters, we combined satellite observa-
tions and LPJmL simulations in a multi-variable cost function (Fig. 1a). The cost function includes time series 
of monthly FAPAR (2000–2015) and SIF (2007–2014), annual time series of FPC per tree PFT (1992–2015), 
mean annual FPC of all herbaceous PFTs (averaged over 1992–2015), and mean annual biomass (averaged over 
2009–2011). As cost function, we used a modification of the Kling-Gupta efficiency (KGE)63. KGE is based on the 
Euclidean distance in a three-dimensional space of model performance measures that account for the bias, ratio 
of variance and correlation between simulations s and the observations o. We extended the KGE by defining it for 
multiple data sets d:

∑
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where s  and o are mean values (bias component) over space (i.e. different grid cells) and time (e.g. months) of 
simulations s and the observations o, respectively. σs and σo are variances (variance component) and r is the 
Pearson correlation coefficient over space and time. To account for the spatial-temporal data uncertainty in the 
cost function, we computed the weighted mean, weighted variance and weighted correlation by using the uncer-
tainty of each observation as weights (w = 1/unc). This implies that uncertainties are considered only for obser-
vations within a dataset but potential differences in the uncertainty between data sets are not considered. We 
belief that this in an appropriate choice because uncertainty estimates from different data sets (and hence different 
uncertainty estimation approaches) are not comparable.

We used a genetic optimization algorithm (GENOUD64) to estimate model parameters. A more detailed 
description of the application of this algorithm for LPJmL can be found in our previous work23. For each zone 
(tropical, temperate or boreal), we ran the optimization algorithm for approximately 25 generations and 1000 
individual parameter sets per generation. We included several LPJmL parameters in the optimization that reg-
ulate leaf phenology, light absorption, photosynthesis, biomass turnover, background mortality, heat stress 
mortality, mortality from fire, and bioclimatic limits for the establishment and survival of PFTs (Supplementary 
Table S1). All parameters are defined per PFT. The prior values for all parameters are taken from Schaphoff et al.33 
and uniform prior uncertainties are defined by lower and upper boundaries of each parameter (Supplementary 
Figs. S2–3). The relative uncertainty U of a parameter after optimization as shown in Fig. 2 was computed as:

=
−
−

U u l
u l

( )
( ) (3)

o o

p p

where up and lp are the upper and lower boundaries of the prior parameter range and uo and lo are the maximum 
and minimum values of the parameter from the individual parameter sets with low cost that emerged during the 
optimization (i.e. cost < percentile 5% of the costs from all individual parameter sets).

Burned area was directly prescribed to the LPJmL-SPITFIRE fire module, i.e. the simulated burned area was 
replaced with observations and only fire intensity, fuel consumption and fire emissions were simulated.

Optimization experiments and spatial sampling.  We performed a multi-site optimization of LPJmL, 
i.e. model parameters were estimated by running the model and computing the cost function based on multi-
ple grid cells at once. Unlike in previous studies that did multi-site optimizations for grid cells where one PFT 
dominates23,26,65, we here selected grid cells in which several PFTs co-occur to account for potential competition 
between PFTs and to constrain vegetation dynamics. However an optimization of all PFTs at once increases the 
number of target parameters and hence might hamper the possibility to estimate parameters. As a trade-off, we 
performed three optimization experiments for the PFTs of the boreal, temperate, and tropical zones, respectively:

•	 Boreal zone with the following PFTs: boreal needle-leaved evergreen trees (BoNE), boreal needle-leaved sum-
mer-green trees (BoNS), boreal broad-leaved summer-green trees (BoBS) and polar herbaceous vegetation 
(polar C3 grasses, PoH);

•	 Temperate zone: temperate needle-leaved evergreen trees (TeNE), temperate broad-leaved summer-green 
trees (TeBS), temperate broad-leaved evergreen tree (TeBE) and temperate herbaceous vegetation (temperate 
C3 grasses, TeH);

•	 Tropical zone: tropical broad-leaved evergreen trees (TrBE), tropical broad-leaved rain-green PFTs (TrBR) 
and tropical herbaceous vegetation (C4 grasses, TrH).
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We sampled 102 grid cell per zone (Fig. 1b). The sampling was done randomly but stratified by PFTs, by the 
statistical distribution of above-ground biomass per PFT, and by grid cells that are likely representative for veg-
etation dynamics (i.e. grid cell with multiple PFTs, without a dominant PFT, or with large fires) (Supplementary 
Information SI5). The sampled grid cells cover the global and zonal distributions of tree above-ground biomass 
and tree cover (Fig. 1b). After the three optimization experiments, we used the best-performing parameter sets 
from each zone to make a global model run and to evaluate model results for all global grid cells (excluding agri-
cultural areas, i.e. cropland cover >20%) (Supplementary Information SI2).

Analysis of carbon turnover times and residuals.  To analyse the effect of the model optimization 
on simulated carbon turnover, we computed vegetation carbon turnover time τVeg assuming the steady state 
assumption21:

τ =
VegC
NPP (4)Veg

where VegC is the total carbon in vegetation (above- and belowground) and NPP is the net primary production. 
This definition is used for Table 1 and for the maps in Fig. 4. Vegetation turnover time as shown in Fig. 4c were 
calculated as following4:

τ =
Δ −

VegC
VegC NPP (5)Veg

where ΔVegC is the difference in total vegetation carbon between consecutive years.
We also evaluated residuals between vegetation carbon turnover times from the optimized model and from 

data-derived estimates (Fig. 5a). As the satellite-derived biomass map for the tropics only represents above-ground 
biomass of trees18 and as we do not have a data-derived estimate on above-ground NPP, we performed this eval-
uation only for forested grid cells (tree cover > 40%) and approximated the forest turnover time as 
τ = × .AGB GPP/( 0 5)f tree  using the FLUXCOM GPP dataset. A more accurate analysis including above- and 
belowground biomass and NPP has been done previously using the biomass map for temperate and boreal forests, 
which includes estimates of below-ground root biomass6. We here also repeated this analysis for the temperate 
and boreal forests with the simulations from the LPJmL-prior and -best runs (Supplementary Information SI3).

We then tested if the residuals in τf from the optimized LPJmL model can be explained to identify potential 
model limitations. Therefore we applied the random forest machine learning approach66 to predict model-data 
residuals from a suite of bioclimatic variables67, land cover (i.e. the observation-based PFT maps), and the human 
footprint index for the year 2009, which describes the human pressure on the environment68. We then computed 
the grid cell-level importance of each predictor variable for the performance of the RF using a recently devel-
oped approach52. Here the importance D of a predictor variable is computed for each grid cell from the original 
RF-predictions of the LPJmL vs. data residuals (res0) and from the RF-predictions of the LPJmL vs. data residuals 
after perturbing a predictor variable (resp):

= −D res res( ) (6)p 0
2

Data availability
The used satellite datasets are available from the references listed in Supplementary Table 3. LPJmL4 model 
code and the used model-data integration package is available from https://github.com/PIK-LPJmL/LPJmL and 
https://github.com/PIK-LPJmL/LPJmLmdi, respectively.
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