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Objective. ,is study explores the effect and mechanism of propofol for thyroid tumor.Methods. Culture human normal thyroid
cells Nthy-ori 3-1 and thyroid cancer cell line TPC-1. TPC-1 cells were divided into the propofol group (treated with propofol),
miR-141-3p group (transfected with the miR-141-3p mimic), negative control group (transfected with miR-NC), miR-141-
3p + pcDNA-BRD4 group (transfected with the miR-141-3pmimic and pcDNA-BRD4), miR-141-3p + pcDNA group (transfected
with the miR-141-3p mimic and pcDNA), siBRD4 group (transfected with siBRD4), and si-control group (transfected with si-
control). ,e detection of miR-141-3p and BRD4 expression in cells was done by RT-qPCR, and the dual-luciferase reporter gene
method and western blotting were used to verify the targeting relationship betweenmiR-141-3p and BRD4.MTTmethod was used
to test cell proliferation, transwell method was used to test cell migration and invasion, and western blotting was used to test SHH,
GLI1, p-PI3K, and p-AKTprotein expression. Results. Compared with Nthy-ori 3-1 cells, the expression of miR-141-3p in TPC-1
cells was markedly decreased. Propofol treatment and excessive expression of miR-141-3p could influence the phenotype of TPC-
1 cells. BRD4 is one of the target genes of miR-141-3p, and its expression is negatively regulated bymiR-141-3p. Overexpression of
BRD4 can partially reverse the restraining effect of miR-141-3p on the TPC-1 cell phenotype. Both miR-141-3p and BRD4 can
regulate the activity of SHH and PI3K/AKT signaling pathways. Conclusion. Propofol can inhibit the activity of SHH and PI3K/
AKT pathways by targeting downregulating BRD4 through miR-141-3p, thereby inhibiting the phenotype of TPC-1 cells.

1. Instruction

,yroid cancer, including papillary carcinoma, follicular
cancer, undifferentiation carcinoma, and medullary carci-
noma, is the most common malignant tumor of the thyroid.
Papillary thyroid cancer (PTC), which is less malignant and
has a better prognosis, is the most common [1]. ,e mor-
bidity is related to locality, race, and sexual distinction. ,e
incidence of women is higher, and the incidence is on the
rise [2]. Data in 2018 showed that the number of women
suffering from thyroid cancer in China accounted for 7.7%
of the total cases [3].

MicroRNAs (miRNAs) are a class of evolutionarily
conserved, approximately 22-nucleotide long noncoding
small RNAs. ,eir complementary binding with target
mRNA can induce its degradation or prevent the translation
of target mRNA to participate in the posttranscription
regulation of target genes, which play an essential role in
body development, homeostasis, and diseases [4]. miR-141-
3p is a member of the miR-200 cluster, and its coding gene is
located on chromosome 14. At present, low abundance of
miR-14-3p is found in glioblastoma, pancreatic cancer,
esophageal cancer, and other tumor tissues, while highly
expressing miR-141-3p is found in mammary cancer and
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other tumors [5–7]. miR-141-3p regulates the growth of
cancer cells and plays different roles in different tumor cells
[8, 9].

Propofol is one of the most commonly used narcotics
during cancer resection. Relevant studies have shown that
propofol may suppress the invasion of human tumor cells
[10, 11]. Zhang et al. showed that propofol can suppress the
activity of cholangiocarcinoma cells and block the cell cycle
to induce apoptosis [12]. At present, there are few studies on
the effect of miR-141-3p in thyroid cancer. ,e effect of
propofol on miR-141-3p expression in thyroid cancer cells
has not been reported. Accordingly, our study intends to
discuss the mechanism of propofol in the progression of
thyroid cancer, so as to provide theoretical reference to the
therapy of thyroid carcinoma.

2. Materials and Methods

2.1. Cell Culture and Propofol Treatment. Nthy-ori 3-1 and
TPC-1 cells (from Shanghai Xuanya Biotechnology) were
cultured in a 37°C incubator (from ,ermo Fisher) con-
taining 5% volume fraction of CO2. ,e medium is DMEM
(from Life Technologies) involving 10% FBS (from Life
Technologies), 10mg/mL streptomycin, and 10kU/mL
penicillin (from Sangon Biotech). TPC-1 cells in the loga-
rithmic growth period were treated with propofol (from
Novartis China) and cultured overnight.

2.2. Cell Transfection. TPC-1 cells in the logarithmic growth
period were seeded and incubated in 6-well plates at the
density of 3×103 cells per well. When the cells’ growth
density reached about 50%, they were transfected according
to the Lipofectamine 2000 transfection reagent manual.
TPC-1 cells were transfected with miR-141-3p mimic, miR-
NC, pcDNA-BRD4+miR-141-3p mimic, pcDNA+miR-
141-3p mimic, siBRD4, and si-control (from RiboBio).

2.3. Cell Viability Assay. ,e cells were seeded in 96-well
plates at the density of 1× 105 cells per well for 72 hours, and
then 50 μg MTT was added to each well. After shaking and
mixing, the cells were cultured in a 37°C incubator including
5% volume fraction of CO2 for 4 hours. After incubation, the
supernatant was removed, and 100 μl DMSO (from Sigma-
Aldrich) was added into every well and oscillated for 10min
to completely dissolve. ,e absorbance of each hole was
determined at 490 nm by using the enzyme-labeled in-
strument (from Molecular Devices). Cell proliferation rate
(%)�A (propofol)/A (control)× 100%.

2.4. Cell Migration Assay. ,e cells were digested with
trypsin (from Gibco), the cell concentration was adjusted to
about 2×105/mL, and then they were inoculated in a
transwell well (from Corning). 100 μL of TPC-1 cell sus-
pension was added to the upper well, and 500 μL of the
medium (containing 10% FBS) was added in the lower well.
It was incubated for 24 hours, and the well was taken out and
rinsed with PBS solution twice, then fixed with 4%

paraformaldehyde for 15 minutes, and, finally, stained with
crystal violet solution. After the transwell plate was dried, it
was observed under an inverted microscope (from LAS-
PEC), 5 visual fields were random choice for photographing,
and the number of cells invading under the filter membrane
in each visual field was counted.

2.5.Cell InvasionAssay. ,e cells were digested with trypsin,
the cell concentration was adjusted to about 2×105/mL, and
then they were inoculated in a Matrigel-coated transwell
well. 100 μL of TPC-1 cell suspension was added to the upper
well, and 500 μL of the medium (containing 10% FBS) was
added in the lower well. It was incubated for 24 hours, and
the well was taken out and rinsed with PBS solution twice,
then fixed with 4% paraformaldehyde for 15 minutes, and,
finally, stained with crystal violet solution. After the
transwell plate was dried, it was observed under an inverted
microscope, 5 visual fields were random choice for photo-
graphing, and the number of cells invading under the filter
membrane in each visual field was counted.

2.6. Real-TimeQuantitative PCR (RT-qPCR). ,e cells in the
logarithmic growth phase were collected, total RNA was
extracted from these cells with TRIzol test kits (from,ermo
Fisher), and cDNA was synthesized according to the reverse
transcription kit (from Invitrogen). cDNA was used as the
template to perform RT-qPCR test to sense the abundance of
miR-141-3p and BRD4 in these cells. ,e relative abundance
was calculated by the 2−ΔΔCt method. ,e internal reference
is U6.,e sequence of primers used in this experiment (from
Sangon Biotech) is shown in Table 1.

2.7. Dual-Luciferase Reporter Gene Method. ,e bio-
informatics online database TargetScan was used to forecast
the targeted gene of miR-141-3p. ,e results showed that
there was a targeted binding site between the 3′-UTR
of BRD4 and miR-141-3p, indicating that BRD4 is
probably the targeting gene of miR-141-3p. ,e luciferase
recombinant vectors containing wild-type BRD4 3′-UTR
(BRD4-Wt) and mutant BRD4 3′-UTR (BRD4-Mut) were
amplified and constructed, respectively. ,e BRD4-Wt or
BRD4-Mut recombinant vectors were cotransfected with
miR-141-3p mimic and miR-con into TPC-1 cells, re-
spectively. After 48 hours, the luciferase activity was
measured using the dual-luciferase activity detection kit
(from Promega) to calculate the relative fluorescence ac-
tivity of cells.

2.8. Western Blotting. Each group of cells was taken and
added cell lysate (from Beyotime Biotechnology) and then
incubated on ice for 30 minutes. ,e protein in the cells was
collected, and the total protein was quantified with the BCA
protein detection kit (from Beyotime Biotechnology). 50 μg
protein sample was taken, and the protein was separated
with 12% sodium lauryl sulfate-polyacrylamide gel, trans-
ferred to the nitrocellulose membrane (from Sigma), and
blocked for 1 hour. Protein primary antibody (from Abcam)
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was added and incubated overnight at 4°C. Secondary an-
tibodies (from Abcam) were added at room temperature on
the next day, incubated for 1 hour, and placed in the gel
imaging system for exposure, and Quantity One software
was used to analyze the gray value of protein bands.

2.9. Statistical Analysis. Statistical software SPSS 17.0 and
GraphPad Prism 8.0.2 were used for statistical analysis of
experimental data. Statistical data were expressed as
mean± standard deviation (x± s), t-test.,e count data were
described by the utilization rate (%). P< 0.05 represents that
the difference had a statistical significance.

3. Results

3.1.Propofol SuppressesProliferation,Migration, and Invasion
of ?yroid Cancer Cells. In this experiment, MTT method
and transwell method were used to test the influences of
propofol on the phenotype of thyroid cancer cells. From
results compared with the control group (0 μg/L), the ac-
tivity of TPC-1 cells in the propofol group was significantly
decreased (Figure 1), and their migration and invasion were
also significantly inhibited (Figure 2).

3.2. miR-141-3p Suppresses Proliferation, Migration, and In-
vasion of ?yroid Cancer Cells. ,e abundance of miR-141-
3p in thyroid cancer cells was detected by RT-qPCR. We
found that the abundance of miR-141-3p in TPC-1 cells was
significantly decreased than that in Nthy-ori 3-1 cells
(P< 0.001, Figure 3(a)). In order to study the influence of
miR-141-3p on the activity of TPC-1 cells, we used miR-141-
3p mimic to induce the expression of miR-141-3p in TPC-1
cells. As shown in Figure 3(b) (P< 0.001), the abundance of
miR-141-3p in TPC-1 cells transfected with miR-141-3p
mimic was obviously superior than that in the negative
control, indicating that the cells’ excessive expression miR-
141-3p had been successfully established. MTTand transwell
results showed that overexpression of miR-141-3p obviously
inhibited the phenotype of TPC-1 cells (all P< 0.05,
Figures 3(c)–3(e)).

3.3. miR-141-3p Expression Is Promoted by Propofol. ,e
expression of miR-141-3p in TPC-1 cells treated with
propofol for 24 hours was detected by RT-qPCR, and we
found that the expression of miR-141-3p in TPC-1 cells was
obviously increased (P< 0.001, Figure 4).

3.4. BRD4 Is the Targeting Gene of miR-141-3p.
TargetScan prediction result displayed that there was a
specific binding site between miR-141-3p and BRD4 3′-UTR
(Figure 5(a)). After wild-type BRD4 luciferase expression
vector WT-BRD4 was cotransfected with miR-141-3p
mimics or miR-con into TPC-1 cells, respectively, the lu-
ciferase activities of TPC-1 cells in the miR-141-3p group
were obviously decreased than those in miR-con (P< 0.001).
However, after cotransfection of mutant BRD4 luciferase
expression vector MUT-BRD4 with miR-141-3p mimic or
miR-con on TPC-1 cells, the difference was not statistically
significant in luciferase activity between the miR-141-3p
group and miR-con (P> 0.05) (Figure 5(b)).

3.5. Propofol Suppresses the SHH and PI3K/AKT Pathways.
According to the analysis of western blotting results, the
protein abundance of SHH, GLI1, p-PI3K, and p-AKT was
inhibited after propofol treatment for 24 hours (P< 0.01,
Figure 6(a)).

3.6. SHH andPI3K/AKTPathwaysAreRegulatedbymiR-141-
3p Expression. As shown in Figure 6(b), the protein abun-
dance of SHH, GLI1, p-PI3K, and p-AKT in TPC-1 cells after
overexpression of miR-141-3p was lower than that in the
untransfected and transfected miR-NC groups (P< 0.01).

3.7. SHH and PI3K/AKT Pathways Are Regulated by BRD4
Expression. As shown in Figure 6(c), compared with the
cells in the untransfected and transfected si-control groups,
the protein abundance of SHH, GLI1, p-PI3K, and p-AKT in
TPC-1 cells decreased after BRD4 was silenced (P< 0.001).

3.8. BRD4 Overexpression Partially Reversed the Influences of
miR-141-3p on TPC-1 Cell Activity. As shown in Figure 7,
compared with the miR-141-3p + pcDNA group, the phe-
notype of TPC-1 cells in the miR-141-3p + pcDNA-BRD4
group was significantly promoted (P< 0.05).

4. Discussion

Propofol is one of the frequently used narcotics for cancer
resection. Since Mammoto et al. first proposed in 2002 that

Table 1: Primer sequences of RT-qPCR.

Gene Sequence

miR-141-3p F: 5′-GCGGCGGTAACACTGTCTGG-3′
R: 5′-AACGCTTCACGAATTTGCGT-3′

BRD4 F: 5′-GCACAATCAAGTCTAAACTGGAG-3′
R: 5′-TCATGGTCAGGAGGGTTGTAC-3′

U6 F: 5′-GCTTCGGCAGCACATATACTAAAAT-3′
R: 5′-CGCTTCACGAATTTGCGTGTCAT-3′
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Figure 1: Effect of propofol on proliferation of TPC-1 cells
(∗∗∗P< 0.001).
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Figure 2: Effect of propofol on migration and invasion of TPC-1 cells. Propofol can inhibit the migration (a) and invasion (b) of TPC-1 cells
(∗P< 0.05).
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Figure 3: Continued.
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clinical related concentrations of propofol could inhibit the
invasion of human cancer cells (cervical cancer HeLa cells,
fibrosarcoma HT1080 cells, osteosarcoma HOS cells, and
melanoma RPMI-7951 cells) [13], its effect on tumor cells
and its mechanism have become a rapidly developing topic
and gradually attracted extensive attention. Related studies
have shown that propofol can inhibit the invasion and
metastasis of esophageal squamous cell carcinoma cells by
downregulating the expression of SOX4 [14]. In addition,
propofol can also inhibit invasion and angiogenesis and

induce apoptosis of esophageal cancer EC-1 cells in vitro by
regulating the expression of S100A4 [15]. Chen et al. showed
that propofol could inhibit the migration of pancreatic
cancer cells by inhibiting NMDA receptors [16]. In addition,
propofol can also inhibit the proliferation, invasion, and
metastasis of pancreatic cancer cells and induce apoptosis of
tumor cells by upregulating the expression of miR-133a and
miR-21 [17, 18]. Li et al. found that propofol can inhibit the
phenotype of PTC cells by inhibiting the activation of the
NF-κB pathway and Wnt/β-catenin [19]. ,is is consistent
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Figure 3:,e abundance of miR-141-3p in TPC-1 cells and its influence on the biological behavior of cancer cells. (a) Compared with Nthy-
ori 3-1 cells, the expression of miR-141-3p in TPC-1 cells was significantly decreased (∗∗∗P< 0.001). (b) ,e abundance of miR-141-3p was
successfully increased in TPC-1 cells by using miR-141-3p mimics (∗∗∗P< 0.001). (c–e) Overexpression of miR-141-3p significantly
inhibited the phenotype of TPC-1 cells (∗P< 0.05 and ∗∗∗P< 0.001).
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Figure 4: Propofol promotes miR-141-3p expression in TPC-1 cells (∗∗∗P< 0.001).
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Figure 5: BRD4 is a targeting gene of miR-141-3p in TPC-1 cells. (a) A complement sequence of miR-141-3p is found in the 3′-UTR of
BRD4. (b) Dual-luciferase reporter gene analysis proved the interaction of miR-141-3p and BRD4 (∗∗∗P< 0.001).
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Figure 6: Continued.
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Figure 6: Influences of propofol (a), miR-141-3p (b), and BRD4 (c) on the expressions of key proteins related to SHH and PI3K/AKT
pathways (∗∗P< 0.01 and ∗∗∗P< 0.001).
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with the results of this experiment; we found that the
phenotype of TPC-1 cells treated with propofol was sig-
nificantly inhibited, suggesting that propofol had a certain
restraining effect on the malignant behavior of thyroid tu-
mor cells.

Relevant research studies have already shown that the
antitumor influence of propofol perhaps is closely in con-
nection with miRNA it regulates. For example, propofol can
inhibit the proliferation of mammary cancer MCF-7 cells by
downregulating the expression of miR-21 [20] and can also
inhibit the activity of melanoma cells by adjustingmiR-137 and
FGF9 [21]. miRNAs play important roles in development, cell
differentiation, hematopoietic function, cell apoptosis, growth,
and immune system. Many human diseases including cancer,
autoimmune diseases, and chronic diseases are related to the
abnormal regulation of miRNA. Dong et al. found that miR-
141 was downregulated in thyroid tumor tissue [22], which
equates with our study. We found that propofol could increase
the abundance of miR-141-3p in TPC-1 cells. To verify the role
of miR-141-3p in thyroid cancer, we overexpressed miR-141-
3p in thyroid cancer cells. ,e results showed that over-
expression of miR-141-3p inhibited the phenotype of TPC-1
cells. It is speculated that miR-141-3p may play an important
role in the antithyroid cancer mechanism of propofol.

BRD4 is one of the members of the bromodomain and
extraterminal domain (BET) family, which is an essential
epigenetic regulator of gene transcription and cancer devel-
opment. As one of them, BRD4 can regulate various charac-
teristics of cancer cells by adjustment of the expression and
activity of cancer promoters, including drug resistance, apo-
ptosis, cell transformation, proliferation, and invasion [23].
BRD4 is overexpressed in a variety of parenchymatous tumors,
including pancreatic cancer, mammary cancer, and colorectal
cancer, and its expression inhibition can hinder the invasion
and proliferation of these tumor cells [24, 25]. In this study, we
predicted and proved that BRD4 is a targeted gene of miR-141-
3p by bioinformatics, and overexpression of BRD4 can partially
reverse the inhibitory effect of miR-141-3p on the phenotype of
thyroid cancer cells. It is speculated that miR-141-3p may
inhibit the malignant behavior of thyroid cancer cells by
regulating the abundance of BRD4.

SHH and PI3K/AKT are both pathways that play im-
portant roles in cancer progression. SHH is involved in

tumor metastasis in basal cell carcinoma, ovarian cancer,
cervical cancer, breast cancer, gastric cancer, and pancreatic
cancer and is related to drug resistance and survival of
cancer [26–31]. Among the disordered signaling pathways,
PI3K/AKTpathway is the most frequently changed signaling
pathway. AKT is a Ser/,r protein kinase and an important
node in the PI3K signaling pathway. It has three different
subtypes, AKT1, AKT2, and AKT3, which are closely related
to the development of human cancer [32, 33]. Previous
research studies have shown that BRD4 can promote the
phenotype of thyroid cancer cells through the SHH pathway.
In addition, downregulation of BRD4 in GBC cells can
induce apoptosis through the PI3K/AKT pathway. In the
current study, we obtained the conclusion that propofol
treatment, overexpression of miR-141-3p, and silencing
BRD4 can downregulate the abundance of SHH and PI3K/
AKT pathway-related proteins SHH, GLI1, p-PI3K, and
p-AKT and inhibit SHH and PI3K/AKT signal pathways’
activation.

In summary, our study confirmed the inhibition of
propofol for the malignant behavior of thyroid tumor. Its
antitumor effect may be achieved by regulating miR-141-3p
to target BRD4 affecting the activity of SHH and PI3K/AKT
signaling pathways. However, there are many related factors
that regulate the behavior of thyroid cancer cells; this study
still has certain limitations. ,e specific mechanism of
propofol’s inhibitory effect on thyroid cancer cells needs to
be further studied.
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Figure 7: Cell proliferation (a), migration (b), and invasion (c) are all promoted by overexpression of BRD4 in TPC-1 cells (∗P< 0.05).
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