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Abstract: Synaptic plasticity events, including long-term potentiation (LTP), are often regarded
as correlates of brain functions of memory and cognition. One of the central players in these
plasticity-related phenomena is the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor
(AMPAR). Increased levels of AMPARs on postsynaptic membranes thus constitute a biochemical
measure of LTP. Isolated synaptic terminals (synaptosomes) are an excellent ex vivo tool to monitor
synaptic physiology in healthy and diseased brains, particularly in human research. We herein
describe three protocols for chemically-induced LTP (cLTP) in synaptosomes from both rodent and
human brain tissues. Two of these chemical stimulation protocols are described for the first time in
synaptosomes. A pharmacological block of synaptosomal actin dynamics confirmed the efficiency
of the cLTP protocols. Furthermore, the study prototypically evaluated the deficiency of cLTP in
cortical synaptosomes obtained from human cases of early-onset Alzheimer’s disease (EOAD) and
frontotemporal lobar degeneration (FLTD), as well as an animal model that mimics FLTD.

Keywords: glycine; KCl; NMDAR; depolarization; rolipram; forskolin; tetraethyl ammonium; PS19
mice; latrunculin A; radio-labelled

1. Introduction

Synapses, the communication points between neurons, elicit tremendous plasticity
and undergo dynamic short- and long-term modifications. Activity-dependent alterations
in synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD),
are thought to represent the cellular basis of learning and memory [1–3]. Among the most
well-characterized molecular targets at the center of synaptic plasticity-related phenomena
are the α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) types of glutamatergic
receptors. AMPA receptors (AMPARs) are rapidly cycled between intracellular pools and
synaptic surfaces during LTP and LTD [4–7]. In fact, both electrical and chemical (chemical
LTP or cLTP) means of LTP induction have been shown to result in rapid trafficking of
AMPARs at the plasmalemmal surfaces of the synaptic terminals [8–10].

Synaptosomes are biochemically isolated subcellular preparations of presynaptic ter-
minals in close apposition to postsynaptic densities [11–13]. These preparations can be
conveniently obtained from post-mortem brain tissues, and are excellent ex vivo models to
recapitulate multiple aspects of basal and activity-induced synaptic phenomena. In fact,
because of the preservation of most enzymatic and metabolic activities, synaptosomes serve
as efficient “halfway house” tools between neurochemistry and electrophysiology [11–15].
It is worth noting that synaptosomes are being established as a prominent research tool to
understand the mechanisms of synaptic dysfunction in diseased human brains, wherein
the acquisition of acute slices and cultures are technically challenging [11,13,15]. Impor-
tantly, viable synaptosomes can be obtained from post-mortem human brain tissues with
significant post-mortem delays and storage times [16–19]. In recent years, synaptosomes
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from AD brains have been utilized to study different aspects of synaptic physiology, such
as neurotransmitter release and uptake [20,21], disease pathogenesis [22–25], protein trans-
lation [26,27], actin dynamics [28,29], protein and lipid signaling cascades [26,30–33] and
bioenergetic functions [34–36].

The present study aimed to further establish the utility of synaptosomal prepara-
tions from human and rodent brain tissues in studying cLTP events using three different
chemical stimulation protocols with AMPAR insertion at postsynaptic sites as a common
readout. The first chemical stimulation protocol involved depolarization mediated by high
extracellular K+ following the priming of N-methyl-D-aspartate receptors (NMDARs) with
glycine. This cLTP protocol has been employed in ex vivo synaptosomes coupled with
various methods for the assessment of surface-expressed AMPARs, including liquid scintil-
lation [37], surface biotinylation followed by immunoblotting [38] and immunolabelling
followed by fluorescence-based sorting [39–41]. The second stimulation protocol is based
upon the coincubation of rolipram and forskolin, a phosphodiesterase 4 (PDE4) inhibitor
and an adenylate cyclase activator respectively, to assess NMDAR-dependent LTP [42–47].
The third protocol utilizes a potassium channel blocker tetraethyl ammonium (TEA), which
induces membrane depolarization and a consequent burst of calcium spikes resulting in
an NMDAR-independent form of LTP [48–52]. Although the latter two protocols have
been employed in cell cultures and acute slices, for the first time, the present study applied
both methods to synaptosomes obtained from either rodent and human brain tissues for
the induction of cLTP. It should be noted, however, that there are reports of employing
rolipram and/or forskolin for the stimulation of presynaptic neurotransmitter release in
isolated synaptosomes [53–56].

The second aim of this study was to obtain a proof-of-principle of the cLTP protocols
in ex vivo synaptosomes, by evaluating the efficacy of the three protocols via a pharmaco-
logical blockade of synaptosomal actin dynamics. Actin is a cytoskeletal protein forming
the integral framework maintaining both structural and functional aspects of synaptic
physiology [57–59]. Actin dynamics, the interconversion between its monomeric globular
form (G-actin) and its polymerized filamentous form (F-actin), plays a fundamental role
in controlling the size, number and morphology of neuronal dendritic spines. It has been
well documented that both pre- and post-synaptic functions are critically dependent on
actin dynamics [60–64]. We therefore determined the effects of blocking actin dynamics
on cLTP-induced changes in surface-exposed AMPARs in synaptosomes using latrunculin
A [65–68].

Synapse loss and synaptic dysfunction closely correlate with cognitive deficits in
pathophysiological conditions across the whole developmental spectrum of the central ner-
vous system (CNS), ranging from early life insults [69–71] to neurodegenerative disorders
such as Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) [72–75].
Moreover, there is recent evidence indicating the dysfunction of synaptic cytoskeletal actin
dynamics in neurodegeneration [28,29,76–80]. The third aim of the study was therefore to
obtain the proof-of-concept of the utility of synaptosomes in the determination of cLTP
changes in neurodegenerative disorders using post-mortem brain tissues from human sub-
jects of early-onset AD (EOAD) and frontotemporal lobar degeneration (FTLD), and PS19
mice bearing human microtubule-associated protein tau P301S mutation, which mimics
human FTLD [81,82].

2. Materials and Methods
2.1. Human Tissues

Human brain tissues were obtained from the Neurological Tissue Bank of Hospital
Clínic-IDIBAPS BioBank in Barcelona, Spain. All tissue collection protocols were approved
by the Ethics Committee of Hospital Clínic, Barcelona (October 2018) and informed con-
sent was obtained from all families. The unfixed snap-frozen superior frontal gyrus was
obtained from EOAD, FTLD and neurologically normal (NOR) cases (n = 5/group). The
neurologically normal cases were defined by the absence of any history of neurological
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and psychiatric diseases and the absence of any neuropathological findings from a detailed
analysis of the brain by an independent neuropathologist. All diseased cases fulfilled the
neuropathological consensus criteria for AD or FTLD. EOAD was defined as AD with
age at onset before 65 years. There were no significant differences between groups in
terms of the age and post-mortem delay (Table 1). The experimenters were blind to the
grouping information.

Table 1. Details of the human cases used for the study.

Case No. Clinical
Diagnosis

Neuropathological
Diagnosis Gender Age (y) PMD (h) Cause of Death

810 NOR F 81 23.5 Cardiorespiratory
arrest

1431 NOR F 95 20

Respiratory failure,
stroke, cardiac

insufficiency and
diabetes mellitus

1468 NOR M 64 10 Exsanguination
1541 NOR F 56 14.4 Respiratory failure

1557 NOR M 86 7.4
Respiratory
insufficiency,

pulmonary metastasis
Mean ± SEM 76.4 ± 7.17 15.1 ± 3.00

433 EOAD AD M 67 7.5 Cardiorespiratory
arrest

685 EOAD AD F 68 6.5 Bronchoaspiration and
senile dementia

687 EOAD AD M 68 5.0
Cardiorespiratory

arrest and Alzheimer’s
disease

709 EOAD AD F 63 9.0
Cardiorespiratory

arrest and
bronchoaspiration

806 EOAD AD M 67 6.0 Acute respiratory
failure

Mean ± SEM 76.4 ± 7.17 # 6.80 ± 0.68 #

377 FTLD FTLD-TDP43 (Type C) M 73 5.0 Respiratory
insufficiency

697 FTLD FTLD-CBD M 67 10.2 Multi-organ failure
820 FTLD FTLD-TDP43 (Type B) F 74 5.3 Asystole

866 FTLD FTLD-TDP43 (Type A) F 88 6.5 Cardiorespiratory
arrest

906 FTLD FTLD-CBD F 63 7.4 Cardiorespiratory
arrest

Mean ± SEM 73.0 ± 4.25 # 6.88 ± 0.94 #

# No statistical differences with the NOR group (Kruskal-Wallis test with post-hoc intergroup comparisons with Dunn’s test).

2.2. Animals and Tissue Collection

Male P301S tau transgenic (PS19) mice (B6;C3-Tg(Prnp-MAPT*P301S)PS19Vle/J; stock
number: 008169) and C57BL/6J female mice were crossed to produce the offspring of PS19
mice and wildtype (WT) littermates that were confirmed by tail tip genotyping. The present
study used 8 months old male PS19 and WT mice, as well as 5 months old male Sprague-
Dawley rats. All animals were maintained on a 12-h light/dark cycle with ad libitum
access to food chow and water. All animals were anesthetized with sodium pentobarbitone
and transcardially perfused with ice-cold saline. The brain from each animal was rapidly
removed and transferred to saline on ice. Brain tissues (cortices) were then freshly dissected
on ice from each hemisphere and immediately snap-frozen and stored at −80 ◦C [83,84].
All experimental procedures were carried out in accordance with the regulations of the
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University of Otago Committee on Ethics in the Care and Use of Laboratory Animals and
New Zealand legislature (Ethics Protocol No. AUP-95-18 and AUP-80-17).

2.3. Drugs, Reagents and Antibodies

Phosphatase inhibitor cocktail IV (ab201115) and EDTA-free protease inhibitor cocktail
(4693159001) were from Abcam (Cambridge, MA, USA) and Roche Diagnostics (Mannheim,
Germany), respectively. [3H]-AMPA (DL-α-[5-methy-3H)) was obtained from Perkin Elmer
(Boston, MA, USA; NET833250UC; 58.1 Ci/mmol). Potassium thiocyanate (KSCN; 207799),
tetraethyl ammonium (TEA; T-2265) and latrunculin A (L5163) were procured from Sigma-
Aldrich (St. Louis, MO, USA). Forskolin (HB1348) was from HelloBio. Rolipram (ab120029)
and primary antibodies against PSD-95 (rabbit; ab18258) and GAPDH (mouse; ab8245)
were from Abcam (Cambridge, MA, USA). Fluorescent secondary antibodies (IRDye® 800
CW donkey anti-rabbit IgG and IRDye® 680 RD goat anti-mouse IgG) were from LI-COR
Biosciences (Lincoln, NE, USA). Other regents used in the study were of analytical grade
and purchased either from Thermo Fisher Scientific or Sigma-Aldrich.

2.4. Preparation of Synaptosomes

Synaptosomes from either human or rodent brain tissues were prepared as described
in our previous studies [26,30,85]. Briefly, tissues were homogenized using a Potter-
Elvehjem tissue grinder (Duran Wheaton Kimble, Mexico; 358034) in 10 volumes of ice-cold
homogenization buffer containing 5 mM HEPES (pH 7.4) and 0.32 M sucrose supplemented
with protease and phosphatase inhibitor cocktails. The homogenate was centrifuged
at 1500× g for 10 min at 4 ◦C to obtain a crude nuclear pellet (containing nuclei and
cellular debris), which was discarded. The supernatant obtained was further centrifuged at
12,000× g for 15 min at 4 ◦C to obtain a crude synaptosomal pellet containing mitochondria
and myelin. This crude synaptosomal pellet was resuspended in 5 mM Tris buffer at
pH 7.4 containing 0.32 M sucrose supplemented with protease and phosphatase inhibitor
cocktails. The resuspended synaptosomal pellet was then subjected to fractionation on
a discontinuous sucrose gradient (equal volumes of 0.85 M, 1.0 M and 1.2 M sucrose) at
85,000× g for 1.5 hr at 4 ◦C to separate out the contaminating mitochondria and myelin
fractions from the synaptosomes. The purified synaptosomes were collected from the
interface between the 1.0 and 1.2 M sucrose layers, and then subjected to two washes, first
with 5 mM Tris buffer (pH 8.1) and second with homogenization buffer, at 12,000× g for
15 min at 4 ◦C. The washed synaptosomes were resuspended in homogenization buffer
for further analyses. An aliquot of synaptosomes from each sample was used for the
quantification of the protein content using Bradford assay. Of note, discontinuous gradient-
based subcellular fractionation has been shown to generate intact and enriched synaptic
terminals from both human and rodent brain tissues by us and others [19,26,30,85–87].

2.5. Immunoblotting

Immunoblotting was performed to assess the purity of the synaptosomes by evalu-
ating the enrichment of PSD-95, a synaptic protein marker. For this, homogenates and
synaptosomal samples were mixed with gel loading buffer (containing 50 mM Tris-HCl
at pH 6.8, 10% SDS, 10% glycerol, 10% 2-mercaptoethanol and 2 mg/mL bromophenol
blue) and were heated at 95 ◦C for 5 min. Ten µg protein per sample was loaded on a
CriterionTM XT 4–12% gradient SDS-PAGE gel (BioRad; 3450124), and electroblotted onto
a nitrocellulose membrane as detailed in our publication [88]. Following blocking with
5% BSA in Tris-buffered saline at pH 7.4 containing 1% Tween 20 (TBST), the membrane
was immunostained with primary antibodies against PSD-95 and housekeeping protein
GAPDH. Fluorescently labelled secondary antibodies were used to generate immunore-
active signals. The signals were detected using the Odyssey Infrared System (LI-COR
Biosciences; Lincoln, NE, USA) at 700 and 800 nm, and the analysis of immunoreactive
signals was performed using ImageStudioLite (LI-COR Biosciences; Lincoln, NE, USA).
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2.6. cLTP Protocol 1: Glycine Priming—KCl Depolarization (gK)

Synaptosomal NMDAR priming and stimulation were carried out based upon the
methodologies from previous publications with modifications [37–41,89]. Briefly, synapto-
somes (200 µg protein) were resuspended in duplicates with one set in buffer A1 (containing
in mM; 120 NaCl, 3 KCl, 2 CaCl2, 2 MgCl2, 15 glucose, 15 HEPES; pH 7.4) and the other
set in buffer B1 (containing in mM; 125 NaCl, 2 CaCl2, 5 KCl, 30 glucose, 10 HEPES at
pH 7.4, 0.02 bicuculline and 0.001 strychnine), and pre-incubated at 37 ◦C for 10 min.
A1 synaptosomes constituted the synaptosomes with basal activity, while B1 synapto-
somes underwent cLTP. Glycine (500 µM) was added to B1 synaptosomes along with
fresh bicuculline (0.02 mM) and strychnine (0.001 mM) to prime NMDARs for 15 min at
37 ◦C. An equal volume of buffer A1 was added to A1 synaptosomes for 15 min at 37 ◦C.
Depolarization-induced stimulation of NMDARs was performed by a steep increase in
KCl to a final [K+]extracellular of 50 mM, via the addition of buffer C1 (containing in mM;
50 NaCl, 2 CaCl2, 100 KCl, 30 glucose, 0.5 glycine and 10 HEPES at pH 7.4, 0.02 bicuculine
and 0.001 strychnine). Depolarization was proceeded for a duration of 60 min at 37 ◦C.
A1 Synaptosomes (mock-stimulated) were supplemented with an equal volume of buffer
A1 and incubated for the same duration of 60 min at 37 ◦C. cLTP in synaptosomes was
measured as changes in the surface expression of AMPARs, evaluated by [3H]-AMPA
binding (Section 2.10).

2.7. cLTP Protocol 2: Rolipram—Forskolin (RF)

This protocol takes advantage of the fact that a sustained increase of cyclic adenosine
monophosphate (cAMP) level in the presence of forskolin (an adenylate cyclase activator)
and rolipram (PDE4 inhibitor) results in the induction of cLTP, as shown earlier in acute
slices [42–44,90], primary neurons [45–47,91,92] and organotypic slice cultures [93,94].
Here, we extended this cLTP protocol to ex vivo stimulation of synaptosomes with minor
modifications. Briefly, synaptosomes (200 µg protein) were resuspended in duplicates, one
set in buffer A2 (containing in mM; 120 NaCl, 3 KCl, 2 CaCl2, 2 MgCl2, 15 glucose and
15 HEPES at pH 7.4) and the other in buffer B2 (containing in mM; 125 NaCl, 5 CaCl2,
5 KCl, 30 glucose and 15 HEPES at pH 7.4, 0.02 bicuculline and 0.001 strychnine) and
pre-incubated at 37 ◦C for 10 min. B2 synaptosomes (that underwent cLTP) were treated
with 50 µM forskolin and 0.1 µM rolipram for 30 min at 37 ◦C. An equal volume of buffer
A2 was added to control mock-stimulated A2 synaptosomes for the same duration of
30 min at 37 ◦C. cLTP was calculated as increases in the surface expression of AMPARs,
measured by [3H]-AMPA binding on synaptosomal membranes (Section 2.10).

2.8. cLTP Protocol 3: Tetraethyl Ammonium (TEA)

The third chemical stimulation of synaptosomes was carried out in the presence of
TEA, a non-specific voltage-gated potassium channel blocker that has been used to induce
NMDAR-independent cLTP in acute slices [44,48–52], primary neurons [66,95,96] and
organotypic slice cultures [97,98]. Briefly, synaptosomes (200 µg protein) was resuspended
in duplicates with one set in buffer A3 and the other in buffer B3, and then pre-incubated at
37 ◦C for 10 min. cLTP was induced in B3 synaptosomes by addition of 50 mM TEA at 37 ◦C
for 15 min, while control mock-stimulated A3 synaptosomes were supplemented with an
equal volume of buffer A3 for the same duration of incubation. cLTP was quantitated as
changes in the levels of surface-exposed AMPARs, which was evaluated by [3H]-AMPA
binding (Section 2.10).

2.9. Pharmacological Block of Actin Polymerization

Pharmacological blockade of actin polymerization has often been employed to eval-
uate its role in mediating plastic changes at the synapses induced by neuronal activity.
Latrunculin A, a pharmacological agent that depolymerizes actin, has been commonly
used to abolish LTP [66,68,99–101]. Of note, low concentrations of latrunculin A prevent
actin polymerization without leading to substantial depolymerization of existing actin
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filaments, hence preserving the basal synaptic organization [66,101,102]. Latrunculin A at
a concentration of 200 nM was used in the present study to depolymerize actin filaments
without affecting the basal surface-exposed AMPAR levels. Pre-incubation with latrunculin
A was carried out both for synaptosomes undergoing cLTP (B1, B2 or B3) and control
unstimulated synaptosomes (A1, A2 or A3) at 37 ◦C for 30 min. Induction of cLTP (in B1,
B2 or B3 synaptosomes) or mock-cLTP stimulation (for A1, A2 or A3 synaptosomes) was
also performed in the presence of latrunculin A. Effects of latrunculin A on cLTP was again
assessed by evaluating the changes in synaptosomal [3H]-AMPA binding (Section 2.10).

2.10. [3H]-AMPA Labelling

Exogenous radiolabeled [3H]-AMPA has been conveniently employed to evaluate
changes in the surface-expressed AMPARs using both autoradiography and liquid scintil-
lation spectroscopy [37,103–105]. [3H]-AMPA labelling of synaptosomes in the presence
of KSCN was carried out as described previously [37,106–108]. KSCN was used because
this thiocyanate chaotropic anion increases the efficiency of AMPA binding [106]. First, ex
vivo cLTP (or mock-cLTP) in synaptosomes was culminated by addition of 1 mL of ice-cold
binding buffer (containing in mM; 100 Tris-acetate at pH 7.4, 0.1 EGTA and 100 KSCN).
Following centrifugation at 12,000× g for 15 min at 4 ◦C, the synaptosomal pellets were
resuspended and incubated in binding buffer on ice for 30 min. Synaptosomal AMPA-
labeling was carried in binding buffer containing 25 nM [3H]-AMPA on ice for 60 min.
Binding of radiolabeled AMPA was terminated by centrifugation at 18,000× g at 4 ◦C for
10 min, followed by a superficial wash of the pellet with ice-cold binding buffer. Synaptoso-
mal pellets were then solubilized in 0.2 N NaOH and the bound radioactivity was counted
by liquid scintillation spectrometry on a Perkin Elmer TriCarb 2910 TR liquid scintillator
(Downers Grove, IL, USA). Non-specific binding of AMPA was determined in the presence
of 100 mM glutamate [107,108]. To account for any variable retention of stimulated and
unstimulated paired sets of synaptosomes during the washing steps, protein content of the
AMPA-labelled synaptosomes were evaluated using Bradford assay.

2.11. Statistical Analyses

[3H]-AMPA binding is represented as femtomoles per mg protein. Data were pre-
sented as mean ± standard error of mean (SEM). Statistically significant differences in
[3H]-AMPA binding between cLTP-stimulated synaptosomes and their respective mock-
stimulated control samples were evaluated using two-tailed paired Student’s t-test with
a p < 0.05 considered to be significant. All analyses and representation of the data were
performed using GraphPad Prism 9 software (San Diego, CA, USA).

3. Results
3.1. Biochemical Preparations of Synaptosomes Are Enriched in PSD-95

We determined the protein levels of PSD-95 (a synaptic marker protein) in the rat
cortical homogenates and synaptosomes isolated using a discontinuous sucrose gradient
fractionation. In consistence with our previous studies [30,85], a robust 3-fold increase
of PSD-95 was observed in synaptosomal samples when compared to the starting ho-
mogenates (p = 0.025; Figure 1), confirming appreciable enrichment of vesicular synaptic
terminals in the our synaptosomal preparations.
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3.2. Stimulation of Synaptosomes Results in AMPAR Mobilization at the Surface

Changes in plasmalemmal AMPARs induced by the three protocols of cLTP in ex
vivo synaptosomes were evaluated using exogenous [3H]-AMPA binding. Synaptosomes
from rat brain cortices primed with glycine and depolarized with high extracellular K+

elicited a significant increase (23%; p = 0.004) in surface-exposed AMPARs compared to
the respective mock-stimulated (with no glycine and KCl treatments) controls (Figure 2A).
Appreciable increases in surface-expressed AMPARs were also observed upon stimulations
of synaptosomes with rolipram-forskolin (21%; p = 0.001 Figure 2B) when compared to
the respective unstimulated synaptosomes (without treatment with rolipram-forskolin).
Lastly, cLTP induction with TEA also resulted in increments in synaptosomal binding of
[3H]-AMPA (15%; p = 0.005; Figure 2C) when compared to the respective mock-stimulated
control synaptosomes (without treatment with TEA).

3.3. Latrunculin A Abolishes cLTP-Induced Stimulation in AMPAR Surface Expression

Actin dynamics is a primary event in mediating plasticity-induced responses at the
synapses. Hence, we proceeded to determine the effects of blocking actin polymerization on
the changes in surface-exposed AMPARs induced by cLTP via all three chemical protocols.
Synaptosomes were pre-treated with latrunculin A (200 nM) and their stimulation (or mock-
stimulation) was also performed in the presence of latrunculin A. Importantly, the sustained
presence of latrunculin A (and consequent failure to stimulate new actin depolarization)
prevented the increases in surface-exposed AMPARs following the cLTP induction by
all the three protocols; glycine-KCl (Figure 2D), rolipram-forskolin (Figure 2E) and TEA
(Figure 2F).

3.4. cLTP Can Be Induced in Human Cortical Synaptosomes

We next sought to extend the chemical stimulation protocols to synaptosomes from
superior frontal gyri of cognitively normal human cases. Again, significant increases in
surface AMPAR expression levels were induced by glycine-KCl (14%; Figure 3A), rolipram-
forskolin (13%; Figure 3B) and TEA (15%; Figure 3C). Among the three cLTP protocols, the
most consistent stimulation was achieved by glycine priming and KCl depolarization.
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Figure 2. Chemically induced long-term potentiation (cLTP) in rat cortical synaptosomes (A–C) is abolished by latrunculin
A (D–F). All three chemical stimulation protocols, glycine-KCl (St-gK; A), rolipram-forskolin (St-RF; B) and TEA (St-
TEA; C), resulted in elevated surface AMPAR expression in rat cortical synaptosomes relative to their corresponding
non-stimulation matched controls (Ctrl). However, latrunculin A (200 nM; a blocker of actin polymerization) completely
abolished cLTP-induced insertion of AMPARs on rat synaptosomal membranes following the stimulations by glycine-KCl
(D), rolipram-forskolin (E) and TEA (F). Results are expressed as mean (±SEM) bound [3H]-AMPA (n = 4–6 for each
experiment). ** represents a statistical significance at p < 0.01. The respective pairs of stimulated and unstimulated
synaptosomes are color coded in each panel.
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Figure 3. Long-term potentiation (LTP) is chemically induced in synaptosomes from superior frontal
gyri of cognitively normal cases. All three chemical stimulation protocols, glycine-KCl (St-gK; A),
rolipram-forskolin (St-RF; B) and TEA (St-TEA; C), resulted in increased levels of surface AMPARs
relative to their corresponding non-stimulation matched controls (Ctrl). Results are expressed as
mean (±SEM) bound [3H]-AMPA (n = 4–5 for each experiment). * represents a statistical significance
at p < 0.05. The respective stimulated and unstimulated synaptosome pairs are color coded in
each panel.

3.5. cLTP Is Impaired in Frontocortical Synaptosomes of EOAD and FTD Cases

Using the glycine priming and KCl depolarization protocol, the present study de-
termined the cLTP changes in synaptosomes from tissue samples of superior frontal gyri
obtained from EOAD and FTLD cases relative to cognitively normal (NOR) subjects. Upon
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the evaluation of [3H]-AMPA labelling following priming with glycine and subsequent
stimulation with KCl, a significant increase of surface AMPAR expression was observed
in the synaptosomes from the normal cases (17%, p = 0.009; Figure 4A). However, the
same protocol elicited a small but insignificant increase in surface AMPAR levels of the
synaptosomes obtained from the EOAD (6%, p = 0.41; Figure 4B) or FTLD (7%, p = 0.11;
Figure 4C) cases, indicating synaptic cLTP deficits in patients with neurodegenerative
disorders. Of note, the basal (unstimulated) levels of surface-exposed AMPARs were not
found to be significantly altered between the three groups.
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Figure 4. Chemically induced long-term potentiation (cLTP) is deficient in human cortical synap-
tosomes from patients with neurodegeneration. Surface AMPAR levels in cortical synaptosomes
obtained from the normal (NOR), early-onset Alzheimer’s disease (EOAD) and frontotemporal lobar
degeneration (FTLD) cases were assessed following glycine priming and KCl stimulation (St-gK). A
robust cLTP was induced by St-gK relative to non-stimulation control (Ctrl) in synaptosomes from
the normal cases (A), but not the EOAD (B) or FTLD (C) cases. Results are expressed as mean (±SEM)
bound [3H]-AMPA (n = 5 for each experiment). ** represents a statistical significance at p < 0.01. The
respective stimulated and unstimulated synaptosome pairs are color coded in each panel.

3.6. cLTP Is Impaired in Cortical Synaptosomes of PS19 Mice

Next, we proceeded to evaluate cLTP-induced changes in surface-exposed AMPAR
levels in cortical synaptosomes obtained from 8 months old male PS19 mice (expressing
the human tau P301S mutation) relative to the age- and sex-matched WT control mice
using the protocol of glycine priming and subsequent KCl depolarization. As expected, the
basal levels of surface-exposed AMPARs in unstimulated synaptosomes were not found
to be significantly altered in PS19 mice when compared to WT mice. However, while
glycine priming-KCl stimulation resulted in a 19% increase in [3H]-AMPA binding in WT
synaptosomes (p = 0.03; Figure 5A), cortical synaptosomes from PS19 mice failed to elicit a
similar increase in surface expression of AMPARs (p = 0.14; Figure 5B).
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Figure 5. Chemically induced long-term potentiation (cLTP) is abolished in cortical synaptosomes of
8 months old PS19 mice. Surface AMPAR levels in cortical synaptosomes obtained from wildtype
(WT) and PS19 mice were assessed following glycine priming and KCl stimulation (St-gK). A robust
cLTP was induced in synaptosomes from WT mice (A), but not in PS19 mice (B). Results are expressed
as mean (±SEM) bound [3H]-AMPA (n = 6 for each experiment). * represents a statistical significance
at p < 0.05. The respective stimulated and unstimulated synaptosome pairs are color coded in
each panel.

4. Discussion

Synaptosomes are fast being recognized as efficient tools to characterize multiple
aspects of mammalian synaptic physiology. These ex vivo biochemical preparations of
pinched-off and resealed synaptic terminals are disconnected from the cell bodies. However,
they retain much of the metabolic and enzymatic activities [11,14]. Synaptosomes are
particularly of relevance in the perspective of human pathological cases, as they can be
efficiently obtained from long-term stored post-mortem brain tissues with significant
post-mortem delays. Not surprisingly, human synaptosomes have been employed for
biochemical profiling of a wide range of synapse-specific phenomena [11,15].

The present study utilized synaptosomes obtained from both rodent and human
cryopreserved brains to evaluate the postsynaptic responses upon the induction of cLTP
by three different ways of chemical stimulation. Increases or decreases in surface expres-
sion of AMPARs at synaptic sites relate to the enhancements or repressions in synaptic
strength in LTP and LTD, respectively. In fact, the increment of surface-expressed AMPAR
levels is often regarded as a biochemical measure of LTP [5–7,9]. Taking advantage of
this, we chose the quantification of surface AMPARs as a common readout for all the
three different cLTP protocols (Figure 2). Noteworthy, surface expression of AMPARs in
acute slices, primary neurons and synaptosomes have relied on membrane-impermeant
radiolabeled AMPA with subsequent quantitation of surface expressed AMPARs by liquid
scintillation spectroscopy [37] or autoradiography [103]. There are other methods such
as surface biotinylation [45], fluorescent in situ hybridization [92] and immunolabelling
followed by fluorescence- and size- sorting [39] to assess plasmalemmal AMPARs. In
cell cultures, exogenous expression of fluorescently tagged AMPAR subunit GluR1 has
also been employed to directly evaluate changes in its surface expression [96]. However,
time and equipment constraints involved with these methods means that radiolabeling
with [3H]-AMPA followed by liquid scintillation is still widely used for the assessment
of surface AMPARs [105,109–112]. With this method, importantly, we observed similar
levels of increases in AMPAR surface expression as reported in previous studies using
different protocols of electrically or chemically induced LTP that employed liquid scintil-
lation spectroscopy [37], autoradiography [103], surface biotinylation [45], fluorescent in
situ hybridization using anti-AMPAR subunit antibodies [113] and live cell image of cells
expressing fluorescently tagged AMPAR subunits [66].
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There are many novel aspects of our study. While cLTP induction by rolipram-
forskolin and TEA have been routinely performed in acute and organotypic slices and
primary neurons, for the first time, this study extends the two chemical stimulations to ex
vivo synaptosomes obtained from both rodent (Figure 2A–C) and human (Figure 3) brain
tissues. It should be pointed out that while we did observe statistically significant increases
of synaptosomal surface expression of AMPARs using all three chemical stimulation
protocols, the effects of TEA stimulation were slightly varied relative to the other two
methods, particularly for human brain tissues. Nevertheless, as an NMDAR-independent
LTP induction protocol (relative to the NMDAR-dependent rolipram/forskolin and glycine-
KCl protocols), the TEA protocol might serve as a useful addition to the tools employed to
characterize postsynaptic responses in ex vivo synaptosomes.

Another major conclusion from our study is the further evidence for the critical role
of dynamic actin polymerization in mediating postsynaptic changes upon the induction
of cLTP (Figure 2D–F). As the major component of synaptic cytoskeleton, actin is a key
player in regulating the size and structure of the synapses. Moreover, dynamic alterations
in actin polymerization status are critical for plasticity-induced remodeling of morpho-
functional attributes of the synapses [58,59,63,64]. For example, actin polymerization and
depolymerization are associated with spine enlargement and shrinkage during LTP and
LTD, respectively [60,99,114,115]. During LTP, calcium influx through NMDARs induces
a chain of molecular events resulting in fast actin polymerization, that is, the conver-
sion of G-actin to F-actin. Activity-dependent plastic modulation of AMPAR expression
on synaptic surfaces relies on such fast changes in cytoskeletal actin polymerization sta-
tus [66,68,99,114,116]. Of note, ex vivo depolarization of synaptosomes has been shown to
results in rapid actin polymerization [117,118]. Not surprisingly, pharmacological block
of actin polymerization abolishes LTP-induced synaptic changes and AMPAR dynam-
ics [66,68,99,101,102]. Consistent with these data, our results showing the abolishment of
cLTP-induced surface expression of AMPARs by latrunculin A (Figure 2D–F) demonstrates
the robustness of the synaptosomal cLTP methodologies.

Finally, we obtained the proof-of-concept of the utility of synaptosomes in the deter-
mination of cLTP changes in neurodegenerative disorders using post-mortem brain tissues
from both the EOAD and FTLD cases and the PS19 mice bearing human tau P301S mutation.
It should be noted here that cytoskeletal dysfunction of actin has long been associated
with neurodegenerative disorders such as AD [76,77,119] and FLTD models [78–80]. Inter-
estingly, widespread alterations in actin polymerization status have also been observed
recently in synaptosomes obtained from AD brains [28,29]. In addition, LTP deficits are
a common feature of FLTD as observed by deficiency of electrically-induced LTP in ex
vivo brain slices from PS19 mice [81,120,121]. It is worth noting that only a few studies
have evaluated cLTP responses in ex vivo synaptosomes obtained from animal models of
AD [41,122]. Interestingly, Prieto et al. (2017) reported abnormal cLTP (using the glycine
priming and KCl depolarization protocol) in synaptosomes from AD brains [41]. The
present study, for the first time, demonstrated that ex vivo synaptosomes from the EOAD
and FTLD cases and PS19 mice elicit deficits in cLTP responses even when the sample size
was very small.

5. Conclusions

In conclusion, by validating two novel chemical stimulation protocols (rolipram-
forskolin and TEA) in synaptosomes from rodent and human synaptosomes, we build
upon the evidence for the utility of synaptosomes as an efficient tool in the apprehension
of synaptic physiology and the associated molecular and cellular mechanisms associated
with them, particularly in the study of clinical cases. Moreover, the elucidation of cLTP
defects in both human subjects with neurodegenerative conditions of EOAD and FLTD and
an animal model of FLTD suggests that this approach can be applied efficiently to study
synaptic plasticity in neuropathologies. It should be noted that the clinically diagnosed
FTLD cases were a mixture of FTLD-CBD (with tau inclusions) and FTLD-TDP43 (with



Cells 2021, 10, 1174 12 of 17

TDP-43 inclusions). The present study is a preliminary work as part of the proof-of-concept
for evaluating cLTP in synaptosomes from human and rodent brains. Additional studies
with a larger sample size and multiple brain regions (for human tissue work) and age points
(for animal work) are warranted to further evaluate the details of synaptic dysfunction in
neurodegenerative diseases and are currently ongoing in our laboratory.
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