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In this work, a proteolytic digest of cytochrome c (microperoxidase 11, MP-11) was used as a model to study

the structural aspects of heme protein interactions and porphyrin networks. The MP-11 structural

heterogeneity was studied as a function of the starting pH (e.g., pH 3.1–6.1) and concentration (e.g., 1–

50 mM) conditions and adduct coordination. Trapped ion mobility spectrometry coupled to mass

spectrometry (TIMS-MS) showed the MP-11 structural dependence of the charge state distribution and

molecular ion forms with the starting pH conditions. The singly charged (e.g., [M]+, [M � 2H + NH4]
+, [M

� H + Na]+ and [M � H + K]+) and doubly charged (e.g., [M + H]2+, [M � H + NH4]
2+, [M + Na]2+ and [M

+ K]2+) molecular ion forms were observed for all solvent conditions, although the structural

heterogeneity (e.g., number of mobility bands) significantly varied with the pH value and ion form. The

MP-11 dimer formation as a model for heme-protein protein interactions showed that dimer formation is

favored toward more neutral pH and favored when assisted by salt bridges (e.g., NH4
+, Na+ and K+ vs.

H+). Inspection of the dimer mobility profiles (2+ and 3+ charge states) showed a high degree of

structural heterogeneity as a function of the solution pH and ion form; the observation of common

mobility bands suggest that the different salt bridges can stabilize similar structural motifs. In addition,

the salt bridge influence on the MP-11 dimer formations was measured using collision induced

dissociation and showed a strong dependence with the type of salt bridge (i.e., a CE50 of 10.0, 11.5, 11.8

and 13.0 eV was observed for [2M + H]3+, [2M � H + NH4]
3+, [2M + Na]3+ and [2M + K]3+, respectively).

Measurements of the dimer equilibrium constant showed that the salt bridge interactions increase the

binding strength of the dimeric species.
Introduction

Microperoxidase-11 (MP-11) is an 11-amino acid peptide cova-
lently bound to a heme group, derived from enzymatic digestion
of cytochrome C, and has been commonly used as a model for
interacting heme moieties.1 It consists of peptides 11–21,
starting with the C-terminus valine and ending with the N-
terminus glutamic acid (Fig. 1). MP-11 contains the active
residues and retains the peroxidase activity of cytochrome c in
the presence of an exogenous ligand,2 making it a model
peptide for the in-depth study of heme protein interactions and
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porphyrin networks.3 Previous studies on MP-11 have looked at
electrochemical parameters,4 catalysis enantioselectivity5,6 and
the effect of solution conditions on activity.7 MP-11 has been
suggested for therapeutic applications, from the breakdown of
Fig. 1 Schematic showing the zwitterionic structure of micro-
peroxidase-11.
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cytotoxins8 to the prevention of cataracts.9 The use of MP-11
immobilized on electrode surfaces has been explored in bio-
sensing10–13 and in biofuel cells.14,15 Inspection of the sequence
and pKa values of the residues16 suggest three protonation sites:
the histidine side chain, the lysine side chain and the N-
terminus (Fig. 1). The charge state is seen to change as a func-
tion of pKa, inuenced by protonation on the histidine and
association of a water ligand.17 Changes in structure can inu-
ence ligand binding during protein relaxation18 and signal
various biological functions.19

Ion mobility spectrometry coupled to mass spectrometry
(IMS-MS) has emerged as a complementary tool to traditional
structural biology tools (e.g., NMR,20 spectroscopy,21 and X-ray
scattering)22 capable of following structural dynamics and
measuring multiple structural motifs in a single experi-
ment.23–25 While X-ray crystallography and NMR spectroscopy
excel at revealing structures and dynamics of molecules at the
atomic level, these approaches are limited by the fact that they
oen (i) describe a single state or snapshot of the biomolecule
and/or biomolecular complex, and (ii) require highly puried
samples.26,27 Recent innovations in speed, accuracy and sensi-
tivity have established mass spectrometry (MS) based methods
as a key technology within the eld of structural biology.28 Over
the last two decades, native MS of intact biomolecules and
biomolecular complexes has permitted structural interrogation
at biologically relevant conditions, not accessible by other
methods.29–33 Most common gas-phase structural probing is
based on tandemmass spectrometry (ergodic and non-ergodic),
gas-phase hydrogen–deuterium exchange, ion spectroscopy and
ion mobility spectrometry, or a combination of these
techniques.34

A variant of IMS-MS, trapped ion mobility spectrometry-
mass spectrometry (TIMS-MS),35,36 has the ability to trap
molecular ions in the gas phase for the study of the confor-
mational dynamics on the millisecond-second timescale with
high mobility resolving power (R > 400).37–40 Previous work has
shown the advantages of TIMS-MS when combined with
molecular dynamics41 for the study of heme proteins (e.g.,
myoglobin,42 cytochrome c43 and others44).45

In the current study, the structural diversity of MP-11 was
analyzed using TIMS-MS as a function of the starting solution
condition (e.g., pH and concentration). Results include the use
of electrospray (ESI) and nano-ESI (nESI) ionizations, mobility
selected trapping, and collision induced dissociation. This
study describes for the rst time the inuence of the salt bridge
on the structural heterogeneity and binging dynamics of MP-11.

Experimental
Materials and reagents

MP-11 ($85% pure) was obtained from Sigma-Aldrich (St.
Louis, MO). Ammonium acetate (NH4Ac) was purchased from
Fisher Scientic (Pittsburgh, PA). MP-11 solutions were
analyzed at different concentrations (i.e., 1 mM, 2 mM, 5 mM, 25
mM and 50 mM) in 10 mM NH4Ac, for which the pH were
adjusted to 3.1, 4.5 and 6.6 using acetic acid. Low concentration
tuning mix standard (G1969-85000) was used for mobility and
33862 | RSC Adv., 2020, 10, 33861–33867
mass calibration purposes and obtained from Agilent Tech-
nologies (Santa Clara, CA).
TIMS-MS instrumentation

The mode of operation and fundamentals have been covered in
detail previously.46–49 Briey, during TIMS analysis ions are held
stationary by a bath gas ow opposing an electric eld. Ions
separate based on their collisional cross-sections (CCS), which
is proportional to their reduced mobility. The separation can be
described using the same principles as traditional dri tube
IMS. The ion trapping during TIMS analysis is related to the
number of ion-neutral collisions, which is dened by the bath
gas velocity and axial electric.

An ion's reduced mobility, K0, can be described by the
following equation:

K0 ¼ vg/EX ¼ A(1/(Vout � Velut)) (1)

where, vg is the bath gas velocity, EX is the electric eld at which
the ion elutes, K0 is the reduced mobility, A is a calibration
constant determined from standards with known mobility, and
Vout and Velut are the base and elution voltages, respectively.50

During TIMS operation, conformational and structural
isomers are trapped simultaneously in different position of the
analyzer based on the electric eld gradient applied. These
isomers may exist in multiple conformations, inuenced by
solvent conditions and time aer desolvation. Aer ions are
thermalized, the electric eld is ramped in stepwise decre-
ments, and each isomer elutes at a specic voltage (Velut). Ions
eluting the TIMS cell are transferred to the q-ToF MS for mass
separation and detection.

The total analysis time in the TIMS cell can be described by:

Total IMS time ¼ Ttrap + (Velut/Vramp) � Tramp + ToF

¼ T0 + (Velut/Vramp) � Tramp (2)

where, Ttrap is the thermalization time, ToF is the time spent
aer the TIMS cell, and Vramp and Tramp are the voltage range
and the time taken to vary the electric eld respectively. T0 in
the simplied form of this equation refers to the time spent by
ions outside the separation region (i.e. ion trapping and time-of-
ight). T0 and Velut can be experimentally determined by varying
the ramp time for a constant ramp voltage.

Mobility measurements were carried out on a TIMS analyzer
coupled to a maXis Impact q-TOF UHR MS (Bruker Daltonics
Inc., Billerica, MA). Samples were analyzed both with an
orthogonal, commercially available ESI source based on the
Apollo II design (Bruker Daltonics, Inc., MA), and a custom-built
nanoESI (nESI) source based on laser-pulled glass capillaries.
TIMS-MS experiments were carried out using nitrogen (N2) as
buffer gas, at ambient temperature (T). The gas velocity was kept
constant between the funnel entrance (P1 ¼ 2.6 mbar) and exit
(P2 ¼ 1.0 mbar) regardless of the starting solution conditions.
An rf voltage of 250 Vpp at 800 kHz was applied to all electrodes.

CCS (U) values were calculated from the reduced mobility
(K0) values using the Mason–Schamp equation:51
This journal is © The Royal Society of Chemistry 2020
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where, z is the charge of the ion, kB is the Boltzmann constant, T
is the temperature, N* is the bath gas number density and mI

and mb are the masses of the molecular ion and the bath gas
respectively.
Fig. 2 Typical mass spectra of MP-11 at (a) pH 6.6 (black traces), (b) pH
4.5 (red traces) and (c) pH 3.1 (blue traces). Experimental and theo-
retical isotopic patterns for protonated species are shown in the insets.
Results and discussion

The TIMS-MS analysis of MP-11 showed a charge state distri-
bution dependence with the starting solution pH and concen-
tration. Typical mass spectra are displayed in Fig. 2 as
a function of the starting solution pH for a 25 mM MP-11
concentration. In the insets, experimental and theoretical
isotopic patterns are shown for the assignment of the different
molecular ion forms. In MP-11, the heme group is covalently
linked to the protein by two thioether bonds (Fig. 1). Compar-
ison of the experimental and theoretical isotopic patterns of
[M]+/[2M]2+ suggest that MP-11 was observed as a ferri-heme,
with three positive charges in the central Fe(III) atom and two
negative charges in the protoporphyrin IX groups.52 The MP-11
monomer was also observed in the singly charged (e.g., [M�H +
X]+) and doubly charged (e.g., [M + X]2+) molecular ion forms for
all solvent conditions, with X ¼ Na and K; these species corre-
spond to H substitution with cations via ionic bond formation.
A different scenario is observed for the case of ammonium
adducts, where ions were observed in the [M � 2H + NH4]

+ and
[M � H + NH4]

2+ form. In the case of the MP-11 dimer, the
doubly charge [2M � H + X]2+ and [2M + X]3+ triply charged
molecular ions were observed, with a dependence on the
starting solution pH and MP-11 concentration. Changes in the
charge state distribution and abundance of the dimer forma-
tion were observed as a function of the pH (Fig. 2). For example,
the [M + 2H]3+ molecular ion was only observed at pH 3.1 while
the relative abundance of the dimer distribution substantially
decreased as compared to the native conditions (pH 6.6, Fig. 2).

The structural heterogeneity of MP-11 monomer and dimer
molecular ions were studied as a function of the molecular ion
form for each starting solution. Typical mobility distributions
for the singly and doubly charged MP-11 monomers are shown
in Fig. 3. The [M + 2H]3+ proles are shown in the ESI (Fig. S1a).†

The singly and doubly charged MP-11 monomer ion forms
were observed at all solution conditions. The mobility proles
of the [M]+ and [M � 2H + NH4]

+ molecular ions did not exhibit
a major dependence with the starting pH solutions (Fig. 3a and
b); however, the number of mobility bands did varied for [M +
H]2+ and [M � H + NH4]

2+ with the starting solution pH value.
For example, a single IMS band at �445�A2 was observed at pH
6.6 (black trace, Fig. 3e), while two other IMS bands at lower
CCS appeared at pH 3.1 (blue trace, Fig. 3e) for [M + H]2+. In the
case of [M � H + NH4]

2+, two major bands were observed at pH
6.6 (black trace, Fig. 3e), four major bands were observed at pH
4.5 (red trace, Fig. 3e), and ve IMS bands were observed at pH
3.1 (blue trace, Fig. 3f). These IMS prole changes are likely due
to additional protonation sites becoming energetically available
This journal is © The Royal Society of Chemistry 2020
at lower pH values, thus enabling higher structural heteroge-
neity. Different scenarios can arise from protonation schemes
involving the basic sites (e.g., N-terminus and Lys).

Changes in the IMS proles toward more compact structures
with the starting solution pH are particularly signicant for the
case of the [M�H + Na]+ and [M�H + K]+ molecular ion forms.

(Fig. 3c and d), in the case of the doubly charge species,
several bands were observed with a small trend toward more
compact structures with the decrease of the solution pH value
(Fig. 3g and h). We interpret these changes associated with the
substitution of a H with the cation via an ionic bond formation
RSC Adv., 2020, 10, 33861–33867 | 33863



Fig. 3 Mobility profiles (nESI) of MP-11 singly-charged (a–d) and
doubly-charged (e–h) monomers at pH 6.6 (black traces), 4.5 (red
traces) and 3.1 (blue traces).
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which leads to a higher degree of structural heterogeneity when
compared to the [M]+/[M + H]2+ and the [M� 2H + NH4]

+/[M�H
+ NH4]

2+ molecular ions. These observations can be related to
the Hofmeister series; of the three ions, ammonium adducts
have the greatest stabilizing effect on the three-dimensional
structure, followed by the potassium and then sodium substi-
tutions. In addition, the changes towards a higher number of
conformations and higher CCS values can be explained by the
nature of the molecular ion forms. The ammonium adduct
molecular ion results in a weaker type of salt bridge interactions
that leads to a higher conformational exibility when compared
to sodium and potassium ionic bonds which result in stronger
salt bridge interactions with higher structural stability.
33864 | RSC Adv., 2020, 10, 33861–33867
With the increase from singly charged to doubly charged
species, multiple IMS bands were seen in each molecular ion
form (Fig. 3e–h). This is likely because each multiply charged
species incorporates at least one cation coordinated to a side-
chain, favoring other intramolecular interactions. A band at
�445 �A2 predominates across all doubly charged monomeric
species, with two smaller bands at�435 and�430�A2 appearing
at pH 3.1. While adding a cation to the singly charged species
seems to stabilize more compact conformations, many IMS
bands appear in the conformational space of the doubly
charged adducts, which are larger than those previously
observed for the [M + H]2+ (Fig. 3e–h). The largest IMS band
(CCS � 465�A2) is seen in the [M � H + NH4]

2+ and the [M + K]2+

species. The integrity of the compact peptide is likely impacted
by the closed proximity of charged sides.

Fig. 4 shows typical mobility proles obtained for the [2M �
H + X]2+ and [2M + X]3+ species as a function of starting pH
conditions, with X ¼ Na and K. As in the monomeric case,
molecular ions composed of ammonium adducts also were
observed.

The doubly and triply charged MP-11 dimer ion forms were
observed at all solution pH conditions. Interestingly, a signi-
cant increase in the number of conformation over a large CCS
range was obtained for the dimeric [2M]2+ and [2M + H]3+ ions
as compared to the monomeric [M]+ and [M + H]2+ species
(black traces, Fig. 3a/e and 4a/e). This suggests that additional
salt bridge interactions occur between the two monomeric MP-
11 species increasing the conformational dynamic and exi-
bility of the dimeric complex as compared to the monomeric
state, for which a single IMS band is obtained at pH 6.6
regardless of the charge states. In addition, no signicant
changes in the mobility proles were observed across the
starting pH solutions except for the molecular ions formed with
ammonium adducts (Fig. 4). It appears that the salt bridge
interactions comprising a sodium and a potassium stabilize the
structure across the starting pH conditions. However, salt
bridges including typical electrostatic and hydrogen bonding
interactions can be formed in the presence of ammonium,
which probably involved stronger hydrogen bonding interac-
tions at acidic starting solution (pH 3.1) reected by the pres-
ence of a more compact conformation while more extended
conformations (weaker hydrogen bonding interactions) are
favored when increasing the pH conditions (pH 6.6, Fig. 4b/f).
Moreover, several mobility bands were found in common
between the doubly and triply charged species. For example, the
IMS band at �680�A2 for the [2M]2+ ions were also observed for
all the triply charged species (Fig. 4). The observation of
common mobility bands suggest that the different salt bridges
can stabilize similar structural motifs regardless of the charge
state. Mobility bands larger than 680�A2 were exclusive to triply
charged molecular ion forms, with the largest band at 750 �A2

only seen in the [2M + K]3+ species.
In most cases, conformational changes were pH-dependent,

as seen by the difference between the IMS bands in the three pH
solutions analyzed. The ammonium acetate buffers showed
smaller and larger CCS bands at both alkaline and acidic
conditions, respectively. The change in conformers with pH
This journal is © The Royal Society of Chemistry 2020



Fig. 4 Mobility profiles (nESI) of MP-11 doubly-charged (a–d) and
triply-charged (e–h) dimers at pH 6.6 (black traces), 4.5 (red traces)
and 3.1 (blue traces).

Fig. 5 Plots representing the relative abundances of the (a) [M + X]2+

and [2M + X]3+ ions as a function of concentration and (b) [2M + X]3+

ions as a function of the collision energy (CE). The Kd and CE50 are
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demonstrates important transitions involved in the MP-11
structural heterogeneity. In addition, no appreciable differ-
ences in the mobility proles were observed as a function of the
time aer desolvation (Fig. S1b and S2†) and collision induced
unfolding (Fig. S1c and S3†). Note that similar mobility proles
were obtained regardless of the ionization process (nESI vs. ESI,
Fig. S4†).

Each additional charge leads to larger CCS values, suggest-
ing an increase in coulombic repulsion with the number of
charge sites. For example, inspection of [M + H]2+ species shows
that the Fe coordination signicantly inuences the three-
dimensional structure. That is, changes in heme cavity region
can signicantly inuence proper cytochrome c protein func-
tion;53,54 lowering solvent pH in MP-11 mimics cytochrome c
This journal is © The Royal Society of Chemistry 2020
acid-denaturing conditions.55 The stability of denatured
conformations illustrates the inuence of protonation on long-
lasting solvent accessibility which can inuence the molecular
folding even at the MP-11 peptide model level.

The stability of the MP-11 dimer as a model for heme-protein
interactions and porphyrin networks was explored as a function
of starting solution pH and concentration. Fig. 5a shows the
relative abundances of MP-11 monomer and dimer as a func-
tion of starting solution MP-11 concentration. In addition, the
binding strength was studied using collision induced dissoci-
ation curves for the dimeric triply charge species (Fig. 5b) to
evaluate the effect of the type of salt bridge.

Inspection of Fig. 5 allows us to determine the binding
constants as a function of the starting solution pH and salt
bridge for the MP-11 dimer. The MP-11 dimer formation as
a model for heme-protein interactions showed that dimer
given.

RSC Adv., 2020, 10, 33861–33867 | 33865
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formation is favored toward more neutral pH and also favored
when assisted by salt bridges (e.g., NH4

+, Na+ and K+ vs. H+). In
addition, these plots can also provide information about the
dimer dissociation constant (Kd), which was determined when
50% of the dimer distribution is reached as a function of the
concentration (up to 50 mM); in this case, this also corresponds
to the intercept between the monomers and dimers curves. For
example, the [2M + H]3+ species shows a Kd of 15.0 mM at pH 6.6,
which is in good agreement with previous reported results
(Fig. 5a).56 Moreover, in the case of the [2M � H + NH4]

3+, [2M +
Na]3+, and [2M + K]3+ species, a lower Kd of�8.6 (NH4

+) and�5.0
(Na+ and K+) mM is observed at pH 6.6 (Fig. 5a). This indicates
that salt bridge interactions increase the binding strength of the
dimeric species, which is even more pronounced for the sodi-
ated and potassiated species at pH 6.6. In addition, Kd values
were also observed for the [2M � H + NH4]

3+, [2M + Na]3+, and
[2M + K]3+ ion forms at pH 4.5 with Kd of 24.2, 32.5 and 31.1,
respectively (red traces, Fig. 5a). This suggests that the ammo-
niated species probably form additional hydrogen bonding
interactions that increase the binding strength of the dimeric
species as compared to the sodiated and potassiated species
when decreasing the solution pH. Note that the determination
of the Kd values depends on the dimer observation in the MS
proles; dimers were not favored at the lowest pH values over
the concentration range considered preventing us from
reporting the Kd values.

The salt bridge inuence on the MP-11 dimer formation was
measured using collision induced dissociation and showed
a strong dependence with the type of salt bridge. An energy
point, where 50% of the dimer ions were dissociated (CE50), of
10.0, 11.5, 11.8 and 13.0 eV was observed for the [2M + H]3+, [2M
� H + NH4]

3+, [2M + Na]3+ and [2M + K]3+ species, respectively
(Fig. 5b). This implies that these larger cations increase the
binding strength of the dimeric species, for which the potassi-
ated species provides the most stable dimeric structure among
the ones investigated. These observations are consistent with
those obtained from the dimer dissociation constant. In addi-
tion, CID experiments resulted in products of the [M + X]2+ and
[M]+ forms, for which the [M + X]2+ ions are favored and contain
the cation; that is, no internal fragments were observed (Fig. 5b
and S5†).

Conclusions

The structural diversity of a model peptide-heme system, MP-11
was studied using TIMS-MS as a function of the starting solu-
tion concentration and pH. The TIMS-MS allowed to follow
structural changes via mobility proles for the different
molecular ion forms as a function of the starting solution
conditions and time aer desolvation. The inuence of pH on
the monomeric and dimeric structural heterogeneity is
described for the rst time. The mobility proles for cation
adducts showed multiple additional bands to the protonated
and [M]+ species, showcasing the rich MP-11 conformational
space. The salt bridges gave rise to higher structural heteroge-
neity with CCS values both larger and smaller than the
protonated species, suggesting that sodium, ammonium and
33866 | RSC Adv., 2020, 10, 33861–33867
potassium cations are capable of both disrupting intra-
molecular interactions leading to unfolding, and folding the
monomeric species into more compact structures. The inu-
ence of the salt bridges on dimer stability showed that large
cations stabilize better dimeric species when compared to
protonated dimers over. Measurements of the dimer equilib-
rium constant showed that the salt bridge interactions increase
the binding strength of the dimeric species. The combination of
gas-phase TIMS-MS/MS mobility, mass and CID CE50
measurements of MP-11 provided for the rst time the
description of the structural heterogeneity that governs heme-
protein interactions and porphyrins networks. Further studies
using molecular dynamics could provide a more detailed
description of potential intramolecular and intermolecular
networks that stabilize the MP-11 conformational space.
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