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Abstract: In this paper, we consider a stochastic epidemic model with two pathogens. In order
to analyze the coexistence of two pathogens, we compute numerically the expectation time until
extinction (the mean persistence time), which satisfies a stationary partial differential equation with
degenerate variable coefficients, related to backward Kolmogorov equation. I use the finite element
method in order to solve this equation, and we implement it in FREEFEM++. The main conclusion of
this paper is that the deterministic and stochastic epidemic models differ considerably in predicting
coexistence of the two diseases and in the extinction outcome of one of them. Now, the main challenge
would be to find an explanation for this result.
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1. Introduction

There have been numerous models for the spread of infectious diseases in popula-
tions. In the deterministic models, you may consult some excellent books on this subject,
from the classic Chapter 10 in [1–3], and other excellent and complete references such as
Chapters 9 and 10 in [4] and the monographs in [5,6]. All these deterministic models serve
as a framework for formulating analogous stochastic models; these models are character-
ized by randomness and the variables are the solutions of stochastic differential equation
(SDE). In this way, in my opinion there have been two ways to pass from the ODE to the
SDE, one of them is simply adding new stochastic terms, for example, in [7–10]. The second
one is explained in [11,12], and it is used in this paper. This technique begins by assuming
different probabilities of the changes and calculating means and covariance matrix to get
then a stochastic system. It has recently been shown in [13,14] that this difference in the
stochastic part cause great differences in the asymptotic behavior of the solutions.

In this paper, we will consider a stochastic epidemic model with two pathogens. There
are several studies on the evolution and the dynamics of deterministic epidemic models
with multiple pathogens (see for example [15] and references therein). Later, the authors
of [16,17] proposed a stochastic model, and their main conclusions are that both models
differ considerably in predicting coexistence of the two pathogens, and the coexistence
in the stochastic model has a very low probability. In this paper, we analyze the mean
persistence time for this stochastic model solving numerically the backward Kolmogorov
equation. In order to solve this equation numerically, we will use the Finite Element
Method (FEM). This authors have studied this kind of problem in several papers [13,18,19]
with very hopeful results to spread more complex problems.

The Stochastic Differential Equation (SDE) system for the dynamics of n variables has
the form

dX(t) = µ(t, X(t))dt + B(t, X(t)) dW(t), (1)
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where X = (X1, · · · , Xn)T and W = (W1, · · · , Wm)T are m independent Wiener processes.
The vectorial function µ(t, X(t)) is called the drift, and B(t, X(t)) is the diffusion matrix, a
matrix n×m.

Obviously, a key question in epidemic models is to understand the constraints that
lead to extinction or persistence of the disease. In order to study this question, let us define
the random variable T that indicates the persistence time, i.e., the time it takes for the size
of either variables to reach zero.

T ≡ inf{ t ≥ 0 : Xj = 0, for some j = 1, · · · , n },

obviously T depends on the initial value X(0) although it is not explicitly indicated.
As discussed in ([11], p. 150), the mean persistence-time τ ≡ E(T) for (1) satisfies the

stationary backward Kolmogorov equation

L (τ) ≡
n

∑
j=1

µj
∂τ

xj
+

1
2

n

∑
j=1

n

∑
k=1

djk
∂2τ

∂xj∂xk
= − 1. (2)

where D = BBT and with boundary conditions
τ(· · · , xj−1, 0, xj+1, · · · ) = 0,

∂τ

∂xj
(· · · , xj−1, Mj, xj+1 · · · ) = 0,

(3)

assuming that xj ≤ Mj, j = 1, · · · , n.
The Equation (2) is an elliptic partial differential equations of second order [20] or

Chapter 8 in [21,22], really it is an advection–diffusion equation, and as the name suggests,
the mean persistence time will depend on the operator D. These comments would explain
the results in [13]. Moreover, in [7–10], the matrices D are diagonals which implies that the
variables are not correlated, maybe an unrealistic hypothesis.

The paper is organized as follows. In Section 2.1, first we will present a stochastic
epidemic model with two pathogens. Then, using the Symbolic Math Toolbox of MATLAB©,
we compute the equilibrium states for the deterministic part of the model and its numerical
simulations by the classical Euler–Maruyama method. In Section 2.4, we will describe this
techniques, based on the resolution of an associated backward Kolmogorov type equation
for the mean persistence time, τ. In order to do the FREEFEM++ implementation, we will
first write a well-suited variational formulation and then we will present the numerical
results. In Section 3, we compare the dynamics of the two models in tree examples, and
finally in Section 4, we draw the main conclusions and some future researches.

Our numerical methods were implemented in MATLAB© and FREEFEM++, which
are freely available and particularly efficient, see in [23]. The experiments were carried
out in an Intel(R) Core(TM)i7-8665U CPU @ 1.90 GHz, 16.0 GB of RAM. The codes for the
numerical tests are available on request.

2. Materials and Methods
2.1. Derivation of Stochastic Epidemic Model with Two Pathogen Strains

In this section, we will present an epidemic model with two pathogen strains and
random demographics. The changes and their probabilities to the first order in 4t are
given in Table 1 with x = (S, I1, I2)

T . In this model, it is assumed that the infection with on
strain immunizes for another disease.
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Table 1. Possible change in X = (S, I1, I2)
T and their probabilities.

Changes Probabilities

4X(1) = [1, 0, 0]T p1 = b S4t
4X(2) = [0, 1, 0]T p2 = b I1 4t
4X(3) = [0, 0, 1]T p3 = b I2 4t
4X(4) = [−1, 0, 0]T p4 = d(N) S4t
4X(5) = [0,−1, 0]T p5 = (α1 + d(N)) I1 4t
4X(6) = [0, 0,−1]T p6 = (α2 + d(N)) I2 4t
4X(7) = [1,−1, 0]T p7 = b1 I1 4t
4X(8) = [1, 0,−1]T p8 = b2 I2 4t
4X(9) = [−1, 1, 0]T p9 = β1 SI1/N 4t
4X(10) = [−1, 0, 1]T p10 = β2 SI2/N 4t
4X(11) = [0, 0, 0]T p11 = 1−∑10

i=1 pi

Here, b > 0 is the per capita birth rate and d(N) = 1 + 0.05N is the per capita
death rate, depending of the density N(t) = S(t) + I1(t) + I2(t). Parameter β j > 0 is the
transmission rate and αj > 0 is the disease-related per capita death rate for individuals
infected with strain Ij. Moreover, the per capital birth rate is divided into two parts: bj
and b− bj, if the strain j is passed from mother to offspring (vertical transmission), the per
capital birth rate to the infected is b− bj, in other case, if there is no vertical transmission,
the newborn enter the susceptible class and bj = b.

Fixing X(t) at time t, we calculate the expected change for the change X = (S, I1, I2)
T

E(4X) =
11

∑
j=1

pj 4X(j) =

 µ1(S, I1, I2)
µ2(S, I1, I2)
µ3(S, I1, I2)

4t, (4)

where 

µ1(S, I1, I2) = S
(

b− d(N)− β1 I1 + β2 I2

N

)
+ b1 I1 + b2 I2,

µ2(S, I1, I2) = I1

(
b− b1 − d(N)− α1 +

β1S
N

)
,

µ3(S, I1, I2) = I2

(
b− b2 − d(N)− α2 +

β2S
N

)
.

(5)

and the covariance matrix

E(4X(4X)T) =
11

∑
j=1

pj (4X(j))(4X(j))T = D(S, I1, I2)4t, (6)

where D = (di,j) is the diffusion matrix, a matrix 3× 3 with d2,3 = d3,2 = 0 and

d1,1 = S
(

b + d(N) +
β1 I1 + β2 I2

N

)
+ b1 I1 + b2 I2,

dj+1,j+1 = Ij

(
b + bj + d(N) + αj +

β jS
N

)
, j = 1, 2,

d1,j+1 = dj+1,1 = −bj Ij − β j
SIj

N
, j = 1, 2.

Finally, the stochastic differential system (SDS) is

dX(t) = µ(t, X(t)) dt + D1/2(t, X(t)) dW(t). (7)
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2.2. The Deterministic Model

The deterministic part is the following ordinary differential system (ODEs)q:

dS
dt

= µ1(S, I1, I2),

dI1

dt
= µ2(S, I1, I2),

dI2

dt
= µ3(S, I1, I2).

(8)

There are numerous theoretical studies on the evolution, persistence, or extinction
of multiple pathogen strains for the deterministic epidemic models, see, for example,
in [16,17] and their references. It has been proved that the dynamics of a deterministic
model depends on the basic reproduction numbers defined by

Rj =
β j + b− bj

b + αj
, j = 1, 2,

and it is known that if Rj < 1, then the disease extinction occurs. Using the Symbolic
Math Toolbox of MATLAB©, we can compute six equilibrium values of the deterministic
model which can be found in the Table 2, each column of this table is a zero of (8). We
have denoted by ∗ nonzero values, whose exact formulas we did not write for their long
expressions and lack of interest. Obviously, the asymptotic behavior of each equilibrium
depends on the eigenvalues of the Jacobian.

Table 2. Zeros of (8): each column corresponds to a zero.

Zeros 1 2 3 4 5 6

S ∗ ∗ ∗ 0 ∗ 0
I1 ∗ 0 0 ∗ ∗ ∗
I2 0 ∗ ∗ ∗ ∗ ∗

2.3. Simulation Using the Euler–Maruyama Method

The numerical simulation for the stochastic differential system (7) implements the
classic Euler–Maruyama numerical method, although it has strong order 1/2 and weak
order 1 (see for example [24] or ([25] and more recently [26]). This method is simple and
straightforward to implement [27].

We have written Euler–Maruyama algorithm, similar to an algorithm from in [18,19],
with three stopping test, one for each of the variables S, I1, and I2, and with4t the time step.
Essentially, given4t, the number of simulation and an initial position (S(0), I1(0), I2(0)),
the algorithm is straightforward until one of the variable is less than one, i.e., Sn < 1 or
(I1)n < 1 or (I2)n < 1. After all the trials, we computed the mean and standard deviation
of stopping times. MATLAB implementation is very similar to the program offered in the
appendix of [18]. It is important to remark that in this implementation, at each step we
have to compute the matrix D1/2 using the MATLAB’ command sqrtm.

2.4. The Mean Persistence Time for the Model

In this section, in order to predict the behavior of two pathogens in the stochastic
model (7), we present an alternative technique based on the estimation of the mean exis-
tence time τ, by numerical resolution of the Kolmogorov type equation using the FEM and
the FREEFEM++ implementation.
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Let us denote by s = S(0), y1 = I1(0) , y2 = I2(0) and Ω = [0, Ms]× [0, M1]× [0, M2],
where Ms, M1 and M2 are positive constants and its boundary by ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ∪
Γ4, where 

Γ1 = {(s, y1, y2) ∈ Ω | s = 0, or y1 = 0, or y2 = 0},

Γ2 = {(s, y1, y2) ∈ Ω | s = Ms},

Γ3 = {(s, y1, y2) ∈ Ω | y1 = M1},

Γ4 = {(s, y1, y2) ∈ Ω | y2 = M2}.

The mean persistence time τ = τ(s, y1, y2) for the stochastic model (7) satisfies the
following stationary partial differential equation of Kolmogorov type:

µ1(s, y1, y2)
∂τ

∂s
+

2

∑
j=1

µj+1(s, y1, y2)
∂τ

∂yj

+
1
2

d1,1
∂2τ

∂s2 +
1
2

2

∑
j=1

dj+1,j+1
∂2τ

∂y2
j
+

2

∑
j=1

d1,j+1
∂2τ

∂s∂yj
= −1 in Ω

(9)

with the following boundary conditions:

τ(0, y1, y2) = τ(s, 0, y2) = τ(s, y1, 0) = 0 on Γ1,

∂τ

∂s
(Ms, y1, y2) = 0 on Γ2,

∂τ

∂y1
(s, M1, y2) = 0 on Γ3,

∂τ

∂y2
(s, y1, M2) = 0 on Γ4.

(10)

As we said at the beginning of the paper, in order to preform the FREEFEM++ imple-
mentation, we have to write a variational formulation for the boundary value problem (9)
and (10). The next subsection will be devoted to do this.

2.5. Variational Formulation

In order to perform numerical experiments using FREEFEM++, which is a partial
differential equation solver and has its own language, we will write (9) and (10) in varia-
tional form. For this, we will make formal computations. More precisely, let us write (9)
as follows:

−µ1
∂τ

∂s
− µ2

∂τ

∂y1
− µ3

∂τ

∂y2
− 1

2
d1,1

∂2τ

∂s2 −
1
2

d2,2
∂2τ

∂y2
1

− 1
2

d3,3
∂τ

∂2y2
2
− d1,2

∂2τ

∂s∂y1
− d1,3

∂2τ

∂s∂y2
= 1 in Ω.

(11)
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Let us multiply multiple (11) by a regular “test” function φ(s, y1, y2) satisfying the
homogeneous Dirichlet boundary conditions on Γ1. Integrating over the domain Ω, the
following terms with will appear:

−1
2

∫
Ω

d1,1
∂2τ

∂s2 φ =
1
2

∫
Ω

d1,1
∂τ

∂s
∂φ

∂s
+

1
2

∫
Ω

∂d1,1

∂s
∂τ

∂s
φ− 1

2

∫
∂Ω

d1,1φ

(
∂τ

∂s
ns

)
,

−1
2

∫
Ω

d2,2
∂2τ

∂y2
1

φ =
1
2

∫
Ω

d2,2
∂τ

∂y1

∂φ

∂y1
+

1
2

∫
Ω

∂d2,2

∂y1

∂τ

∂y1
φ− 1

2

∫
∂Ω

d2,2φ

(
∂τ

∂y1
ny1

)
,

−1
2

∫
Ω

d3,3
∂2τ

∂y2
2

φ =
1
2

∫
Ω

d3,3
∂τ

∂y2

∂φ

∂y2
+

1
2

∫
Ω

∂d3,3

∂y2

∂τ

∂y2
φ− 1

2

∫
∂Ω

d3,3φ

(
∂τ

∂y2
ny2

)
,

−
∫

Ω
d1,2

∂2τ

∂s∂y1
φ =

∫
Ω

d1,2
∂τ

∂y1

∂φ

∂s
+
∫

Ω

∂d1,2

∂s
∂τ

∂y1
φ−

∫
∂Ω

d1,2φ

(
∂τ

∂y1
ns

)
,

−
∫

Ω
d1,3

∂2τ

∂s∂y2
φ =

∫
Ω

d1,3
∂τ

∂y2

∂φ

∂s
+
∫

Ω

∂d1,3

∂s
∂τ

∂y2
φ−

∫
∂Ω

d1,3φ

(
∂τ

∂y2
ns

)
,

where the boundary terms are of the following form:

∫
∂Ω

d1,1φ

(
∂τ

∂s
ns

)
=

∫
∂Ω

d2,2φ

(
∂τ

∂y1
ny1

)
=
∫

∂Ω
d3,3φ

(
∂τ

∂y2
ny2

)
= 0,

∫
∂Ω

d1,2φ

(
∂τ

∂y1
ns

)
=

∫
Γ2

d1,2φ
∂τ

∂y1
,

∫
∂Ω

d1,3φ

(
∂τ

∂y2
ns

)
=

∫
Γ2

d1,3φ
∂τ

∂y2
,

with ns, ny1 and ny2 are the normal vectors exterior to the boundary Γ2, Γ3 and Γ4, respectively.

3. Numerical Results

We present three numerical examples for the deterministic and stochastic epidemic
models, it is remarkable that in Examples 2 and 3 the coexistence dynamics differ between
the deterministic and stochastic models.

Example 1. In this first example, the per capital death and birth rates are d(N) = 1 + N/100
and b = 2. In addition, β1 = 7, β2 = 5.25, α1 = α2 = 0.5 and b1 = b2 = 3, so that
R1 = 2; R2 = 1.5 and according Theorem 2 in [16] the solutions to deterministic model (8)
convergent to

lim
t→∞

I1(t) = 39.35, lim
t→∞

I2(t) = 0.

In Figure 1, we have plotted the solution of (8) using MATLAB’command ode45 for
S(0) = 1000, I1(0) = 50, and I2(0) = 50 in 0 ≤ t ≤ 7. The final solutions are S(7) ≈ 33.9912,
I1(7) ≈ 39.5387, and I2(7) ≈ 0.0712.
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Figure 1. Example 1: deterministic solution for S(0) = 1000, I1(0) = I2(0) = 50.

On the other hand, in Figure 2 we have represented the numerical solution of the
problem (9) and (10) with Ms = 1000, M1 = M2 = 100. More precisely, we have rep-
resented τ(1000, I1(0), I2(0) for 0 ≤ I1(0), I2(0) ≤ 100, also we have highlighted that
τ(1000, 50, 50) ≈ 2.717.

In Table 3, we show the results of 10,000 trials of the Euler–Maruyama method with
4t = 10−4, and the value is represented in Figure 2. For each initial population size, we
have written down the number of stops when S < 1 or I1 < 1 or I2 < 1, and we have
computed the mean stop time (mean) and its standard deviation (std). This result, which is
close to the figure’s estimate, and it does not seem too far from the deterministic model,to
get an idea in the deterministic problem S(3) ≈ 38.87, I1(3) ≈ 42.12, I2(3) ≈ 1.987.

Example 2. Vertical transmission of both strains. Let us suppose now that both strains are
transmitted vertically. This corresponds to take b1 = b2 = 0 and b = 6, β1 = 15, β2 = 1,
α1 = 2.5, α2 = 2. In this case, the basic reproduction numbers are

R1 = 2.4706 > 1, R2 = 0.8750 < 1.

The equilibrium point is E = (2.1684, 4.3367, 54.2092), and the eigenvalues of the
Jacobian are −10−5 ± 0.6682i and −3.0357. This means that the deterministic solution
cycles closer and closer to each equilibriums as we can see in Figure 5 from [17], however
its size fluctuates greatly.
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Figure 2. Example 1: S(0) = 1000 .

Table 3. Example 1: Euler–Maruyama Method.

Initial Point Number of Stops Mean Std

S < 1 0
(1000, 50, 50) I1 < 1 120 1.6929 0.8579

I2 < 1 9880 2.5880 1.0005

In Figure 3, we have represented the numerical solution of the problem (9) and (10)
with Ms = 1000, M1 = M2 = 100. More precisely, we have represented τ(1000, I1(0), I2(0))
for 0 ≤ I1(0), I2(0) ≤ 100, also we have highlighted that τ(1000, 49, 51) ≈ 0.3328.

On the other hand, in Table 4 we show the results of 10,000 trials of the Euler–
Maruyama method with 4t = 10−4 and the value is represented in Figure 3. For each
initial population size, we have written down the number of stops when S < 1 or I1 < 1 or
I2 < 1, and we have computed the mean stop time (mean) and its standard deviation (std).
This result, which is close to the figure’s estimate, apparently differs from the deterministic
solution, but not so much because, for example, with these initial values, the numerical
solution is

S(0.8186) ≈ 0.0381, I1(0.8186) ≈ 56.3229, I2(0.8186) ≈ 2.8159,

and therefore it is not strange that a slight deviation or disturbance of the trajectory ends
up at zero.
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Figure 3. Example 2, vertical transmission of both strains: S(0) = 1000.

Table 4. Example 2: Euler–Maruyama Method.

Initial Point Number of Stops Mean Std

S < 1 4109 0.5716 0.0955
(1000, 49, 51) I1 < 1 14

I2 < 1 5877 0.3276 0.1237

Example 3. A study of coexistence. In this example, the per capital death and birth rates are
d(N) = 1 + 5N/100 and b = 6. In addition, β1 = 30, β2 = 15, α1 = 4, α2 = 5/3, and
b1 = 12, b2 = 6, so that R1 = 2; R2 = 1.5, and according Theorem 2 in [16] the solutions to
deterministic model (8) converge to

lim
t→∞

I1(t) = 15.13, lim
t→∞

I2(t) = 22.35.

In Figure 4, we have plotted the solution of (8) using MATLAB for S(0) = 1000,
I1(0) = 52 and I2(0) = 51 in 0 ≤ t ≤ 20. The final solutions are S(20) ≈ 35.7715,
I1(20) ≈ 15.1724, and I2(30) ≈ 22.1665.
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Figure 4. Example 3: deterministic solution for S(0) = 1000, I1(0) = 52, I2(0) = 51.

In Figure 5, we have represented the numerical solution of the problem (9) and (10)
with Ms = 1000, M1 = M2 = 100. More precisely, we have represented τ(1000, I1(0), I2(0))
for 0 ≤ I1(0), I2(0) ≤ 100, also we have highlighted that τ(1000, 52, 51) ≈ 0.5838.

In Table 5, we show the results of 10,000 trials of the Euler–Maruyama method with
4t = 10−4 and the value representing in Figure 5. For each initial population size, we have
written down the number of stops when S < 1 or I1 < 1 or I2 < 1, and we have computed
the mean stop time (mean) and its standard deviation (std). This result, which is close to
the figure’s estimate, has no relation to the behavior of the deterministic system; in this
example, the asymptotic behaviors of the two models are quite different.

Table 5. Example 3: Euler–Maruyama Method.

Initial Point Number of Stops Mean Std

S < 1 0
(1000, 52, 51) I1 < 1 9543 0.9348 0.3894

I2 < 1 457 0.5024 0.3119
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Figure 5. Example 3: S(0) = 1000 .

4. Conclusions and Discution

In this paper, we have studied the coexistence of two pathogens model proposed
in [16,17]. They showed that the deterministic and stochastic models differ considerably in
prediction coexistence of the two pathogens because the probability of coexistence in the
stochastic model is very small. We propose an alternative strategy to analyze the behavior
of the stochastic model. More precisely, we have computed the mean persistence time for
the stochastic model that satisfies a partial differential Kolmogorov type equation with
degenerate coefficients. In order to do this, the finite element method has been used and
the numerical implementation was performed using FREEFEM++.

From our example we have showed the following.

1. Example 1: In this case, competitive exclusion occurs because in the determin-
istic model limt→∞ I2(t) = 0, while the stochastic model disappears somewhat
more quickly.

2. Example 2: In this example, with vertical transmission of both strains, the determinis-
tic solution cycles closer and closer while the stochastic solution is extinguished very
quickly. The difference in the asymptotic behavior of deterministic and stochastic is
very important.

3. Example 3: The difference with respect to the previous one is that now the first
infection disappears as we can see in the Figure 5 and Table 5.

The main conclusion of this paper is evident: the deterministic and stochastic epi-
demic models differ considerably in predicting coexistence of the two diseases and in the
extinction or not of one of them. Now, the main challenge would be to find an explanation
for this result, in ([4], p. 3) we can read: “If the initial population size is small then a
stochastic model is more appropriate, since the likelihood that the population becomes
extinct due to chance must be considered.” Deterministic models often provide useful
ways of gaining sufficient understanding about the dynamics of populations whenever
they are large enough. This may be true in some cases but I propose the following analysis:
in the elliptical differential Equation (2) (backward Kolmogorov equation) there exists two
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part, the advection with the vector µ and the diffusion with the matrix D, the first tends to
move the solution while the second wears it down, in another words: which dominates,
the advection or the diffusion? Let is define the ratio

R(t) =
|| µ(S(t), I1(t), I2(t)) ||2
|| D(S(t), I1(t), I2(t)) ||2

, (12)

comparing the evolution of these two terms of the equation.
In Figure 6, we have plotted the evolution of Rj using Euler–Maruyama in (7) with

4t = 10−4 and S(0) = 1000, I1(0) = 50 and I2(0) = 50. Clearly the red trajectory
(Example 1) decreases more slowly than the other two (Examples 2 and 3), this could
explain its delay in extinction time. Obviously this does not prove anything, it only
indicates a possible line of future research.

Figure 6. Evolution of the R(t) with Euler–Maruyama.

Finally, in my opinion we would need to make a previous estimate of the mean
persistence time to fully understand the dynamics of a complete stochastic model. In my
opinion, the stochastic model seems more realistic because, although it starts out swinging,
it disappears reasonably after some time. The environment is constantly evolving, and as
the philosopher Heraclitus wrote over 25 centuries ago: Everything changes and nothing
remains still ... and ... you cannot step twice into the same stream.
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