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The process of mammalian mitochondrial protein synthesis
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Abstract Oxidative phosphorylation (OXPHOS) is the
mechanism whereby ATP, the major energy source for the
cell, is produced by harnessing cellular respiration in the
mitochondrion. This is facilitated by five multi-subunit com-
plexes housed within the inner mitochondrial membrane.
These complexes, with the exception of complex II, are of
a dual genetic origin, requiring expression from nuclear and
mitochondrial genes. Mitochondrially encoded mRNA is
translated on the mitochondrial ribosome (mitoribosome)
and the recent release of the near atomic resolution structure
of the mammalian mitoribosome has highlighted its peculiar
features. However, whereas some aspects of mitochondrial
translation are understood, much is to be learnt about the
presentation of mitochondrial mRNA to the mitoribosome,
the biogenesis of the machinery, the exact role of the mem-
brane, the constitution of the translocon/insertion machinery
and the regulation of translation in the mitochondrion. This
review addresses our current knowledge of mammalian mi-
tochondrial gene expression, highlights key questions and
indicates how defects in this process can result in profound
mitochondrial disease.
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Introduction

Mitochondria are organelles that perform several different
functions crucial for the homeostasis of most eukaryotic
cells. The suggestion has been made that these double-
layered organelles derive from the endocytosis of an α-
proteobacterium by a pre-eukaryotic cell (Gray 1999;
Falkenberg et al. 2007) and that the bacterium was retained
as it conferred a selective advantage through the production
of ATP. This molecule provides chemical energy for cells
and is a product of oxidative phosphorylation (OXPHOS),
which takes place at the inner mitochondrial membrane
(IMM). Oxidative phosphorylation utilises five multi-
subunit complexes, of which four contain a unique combi-
nation of both nuclear and mitochondrial (mt) DNA-encoded
polypeptides. Human mitochondria house multiple copies of
a 16.6-kb circular genome, mtDNA, which encodes 13 pro-
teins translated from 11 mt-mRNA species (9 monocistronic
and 2 bicistronic units), plus two mt-rRNAs and 22 mt-
tRNAs (Anderson et al. 1981). The 13 polypeptides are all
components of the OXPHOS machinery and are synthesised
within the organelle by using the mitochondrial translation
mechanism, the main component being the mitoribosome
(O'Brien 1971). Although all RNA components of this par-
ticle are mtDNA-encoded, all the 80 or so protein constitu-
ents are derived from nuclear genes, as are all the accessory
and biogenesis factors involved in intramitochondrial protein
synthesis. The nuclear-encoded proteins are synthesised on
cytosolic ribosomes, targeted to the mitochondria and
imported into the matrix (for a review, see Neupert 2015).
The assembled mitoribosome translates the mt-mRNAs,
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synthesising proteins that are rapidly inserted into the IMM
and integrated into their relevant complexes to form the
OXPHOS system.

This review aims to summarise the current knowledge
of the mammalian mitochondrial translation system in-
cluding mitoribosomal biogenesis, pre- and post-
translational events involving modification, stabilisation
and the fate of mitochondrial transcripts. Finally, a brief
overview of known pathogenic mutations related to this
process will also be presented.

The mitoribosome

The mitochondrial protein synthesis machinery was first
identified by John R. McLean in 1958 in rat liver
(McLean et al. 1958) and then isolated from the same
organ by Thomas W. O’Brien in 1968 (O'Brien and Kalf
1967). Although mammalian mitoribosomes, like other
ribosomes, are composed of a large (mt-LSU) and a small
(mt-SSU) subunit, they differ markedly in their density,
sedimenting as 55S particles rather than the 80S or 70S
species of their eukaryotic cytosolic or bacterial counter-
parts, respectively (O'Brien 1971). The first cryo-electron-
microscopic (cryo-EM) structure of the bovine monosome
(the fundamental synthesising particle comprising mt-SSU
and mt–LSU) was released in 2003 and showed how sig-
nificantly the mammalian mitoribosome diverged from its
bacterial ancestor (Sharma et al. 2003). The recent release
of sub-nanometre resolution structures of porcine (Greber
et al. 2014a, 2014b, 2015) and human (Brown et al. 2014;
Amunts et al. 2015) mitoribosomes from cryo-EM stud-
ies, further highlights these structural and compositional
differences (Table 1); an excellent recent review has been
pub l i shed on the s t ruc tu re o f the mammal i an
mitoribosome (Greber and Ban 2016). Whereas bacterial
ribosomes are mainly composed of RNA (~70:30% per
weight), mammalian mitoribosomes have reversed this ra-
tio and are higher in protein content. This is the result of
both the removal of rRNA domains and the increase of
the overall protein mass. The increase is effected by the
addition of extensions onto many homologous proteins
and the acquisition of mitochondrial-specific (mt-
specific) proteins, some of which have previously been
identified in early proteomics studies (Koc et al. 2001a,
2001b). In a few cases, the new protein mass fills the void
generated by the rRNA deletion but, overall, the increase
of protein content is mainly found peripherally (Brown
et al. 2014) and has been suggested to act as a protective
shield for the mt-rRNA, preventing potential damage at-
tributable to the high ROS levels found within the organ-
elle (Lightowlers et al. 2014). The presence of the major-
ity of the mt-specific proteins on the external surface of

the subunits suggests that the functional core of the
mitoribosome, composed of the mt-mRNA recognition
site on the mt-SSU (Amunts et al. 2015; Greber et al.
2015) and peptidyl transferase centre in the mt-LSU
(Brown et al. 2014; Greber et al. 2014a, 2014b), has been
preserved. This exchange of RNA predominance to pro-
tein in the mitoribosome also leads to a different compo-
sition of the intersubunit bridges. In bacteria, the two ri-
bosomal subunits interact mainly via RNA:RNA bridges
(Liu and Fredrick 2016), whereas in the mammalian 55S
particle, a higher proportion of protein-protein and
RNA:protein connections is found (Amunts et al. 2015;
Greber et al. 2015).

The newly designated ribosomal nomenclature will be
used in this review and identifies mt-specific proteins with
Bm^, universal orthologous proteins with Bu^ and
bacterial-specific orthologues with Bb^. This initial letter
is followed by BL^ for the mt-LSU or BS^ for the mt-SSU,
which is then followed by an assigned number. In the case
of Bb^ and Bu^ ribosomal proteins, the letter Bm^ is also
added at the end of the name to distinguish the mitochon-
drial proteins from the cytosolic ones (Ban et al. 2014).

Mitoribosomal small subunit (28S)

To date, the mammalian mt-SSU is thought to be com-
posed of a 12S mt-rRNA and 30 proteins, of which 15
(porcine) or 14 (human) are mt-specific (Amunts et al.
2015; Greber et al. 2015). The increased protein content
of the mitoribosome results in a more elongated subunit
compared with the shape of the bacterial counterpart. One
of the most remodelled areas is the entrance of the mt-
mRNA channel. In the bacterial ribosome (Fig. 1a), uS4
and the C-terminus of uS3 are important for defining the
ring-shaped entrance of the channel; both are absent in
mt-SSU. The mammalian mitoribosomes (Fig. 1b) com-
pensate for this loss by the extension to uS5m, which now
defines the entrance of the channel. The mt-specific pro-
tein, mS39 (PTCD3), also lies in close proximity to this
channel. PTCD3 is a member of the pentatricopeptide-
repeat (PPR)-containing protein family, characterised by
their RNA-binding ability (Filipovska and Rackham
2013; Lightowlers and Chrzanowska-Lightowlers 2013).
This feature combined with the location of mS39 suggests
that it is involved in the recruitment of mt-mRNA to the
monosome. One domain of the 12S mt-rRNA that has
been deleted is the anti-Shine-Dalgarno sequence, which
would conventionally be located close to the exit of the
mRNA channel. The absence of this domain is consistent
with and perhaps reflects the absence of the correspond-
ing 5’-untranslated region (UTR) on mt-mRNAs
(Montoya et al. 1981). The space generated by the lack
of th i s rRNA domain is now occupied by the
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mitochondrial-specific protein mS37, which takes on the
interaction with the 12S mt-rRNA. In contrast to these

structural modifications, the central portion of the
mRNA channel, which is directly involved in the

Table 1 Characteristics of
bacterial and mammalian
mitochondrial (mt) ribosomes
(SSU small mt subunit, LSU large
mt subunit, nd not defined)

Properties Ribosomes

Bacterial (Escherichia coli) Porcine mt Human mt

Sedimentation
coefficient

70S 55S 55S

Mass 2.3 MDa 2.7 MDa nd

RNA : protein 2:1 1:2 1:2

SSU

RNA

Proteins

30S

16S rRNA

21

28S

12S rRNA

30 (15 mt-specific)

28S

12S rRNA

30 (14 mt-specific)

LSU

RNA

Proteins

50S

23S rRNA + 5S rRNA

34

39S

16S rRNA + tRNAPhe

~52 (22 mt-specific)

39S

16S rRNA + tRNAVal

~53 (~23 mt-specific)

References Wittmann 1982; Ramakrishnan
and White 1998

Greber et al.2014a,
2014b, 2015

Amunts et al. 2015;
Brown et al. 2014

Fig. 1 Comparison of structural features of bacterial and human
mitochondrial ribosomes. Structures of the Escherichia coli ribosome
(PDB 4YBB) and the human mitoribosome (PDB 3J9M) were obtained
with Pymol (Open Source, Version 1.8.2.0.). The respective monosomes
are depicted left (E. coli) and right (Homo sapiens) with the location of
the entrance to the mRNA tunnel (a, b) and the exit site of the polypeptide
tunnel (c, d) circled to indicate the region expanded in the main part of the
figure (green small subunit structures, blue large subunit structures).
Comparison of the entrance to the mRNA tunnel indicates that uS3
(dark pink) and uS5 (yellow) are present in the ribosomes from both

human (b) and bacterial a) mitochondria. The bacterial entrance site is,
in part, defined by uS4 (red), whereas in mitoribosomes, an additional
RNA-binding protein, mS39 (orange), lies close to the entrance and is
involved in mRNA recruitment. The bacterial polypeptide exit site (c) is
defined by uL22 (orange), uL23 (pink), uL24 (yellow) and uL29 (dark
pink). All of these are present in human mitoribosomes (d), with a further
ring of proteins surrounding the exit site composed of mL39 (cyan),
mL44 (brown) and mL45 (red). Amongst these, mL45 might be involved
in anchoring the structure to the inner mitochondrial membrane
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translation process, is mostly conserved (Greber et al.
2014a, 2014b).

Mitoribosomal large subunit (39S)

As with the mt-SSU, several differences can be seen between
mt-LSU and its bacterial counterpart. The mammalian mt-
LSU is composed of 16S mt-rRNA and the recent ribosomal
nomenclature lists 52 proteins (53 in humans), of which 22 are
mt-specific proteins (Brown et al. 2014; Greber et al. 2014a,
2014b). With respect to the RNA content, the bacterial LSU
contains the 23S and the 5S rRNA, located in the central
protuberance (Ban et al. 2000). Intriguingly, the cryo-EM
structure of the mammalian mitoribosome reported in 2014
has revealed an RNA density that resembles a domain of bac-
terial 5S rRNA (Greber et al. 2014a, 2014b) but the authors
have been unable to identify its nature. More recent cryo-EM
studies of porcine and human mt-LSU particles have con-
firmed the presence of an additional RNA species and identi-
fied this as mt-tRNAPhe (Greber et al. 2014a, 2014b) and mt-
tRNAVal (Brown et al. 2014), respectively. Intriguingly, these
two mt-tRNA genes are found in close apposition to the 12S
and 16S mt-rRNA genes and are transcribed as a single poly-
cistronic RNA unit in mammalian mitochondria. Whereas the
mt-LSU from all mammalian species analysed contain only
one or other of these mt-tRNA species (and not the other 20
species), no evidence has been obtained for tissue-specific
variation. Further, under conditions of mt-tRNAVal depletion
caused by a destabilising pathogenic mutation, the human
mitoribosome has recently been shown to be able to switch
to the incorporation of mt-tRNAPhe and is still functional (J.
Rorbach et al., in preparation). One of the areas of the
mitoribosome that has changed the most throughout evolution
is the polypeptide exit site (PES; Fig. 1c, d). The exit region of
the tunnel is defined by a universally conserved ring of pro-
teins (uL22m, uL23m, uL24m) but, in mammals, a second
layer of additional mt-specific proteins (mL39, mL44,
mL45) are found extending the conserved ring (Fig. 1d).
The recruitment of these additional proteins around the exit
site might be linked to the synthesis of highly hydrophobic mt-
encoded proteins (see Localisation of mitochondrial
translation).

Mitoribosomal A-, P- and E-sites

As described earlier, the functional core of the mitoribosome
has been conserved throughout evolution. Similarly to most
ribosomes, mitoribosomal A-, P- and E-sites can be identified
(Wettstein and Noll 1965). The A-site residues contributed by
the mt-SSU are important for decoding, and the mt-LSU has
maintained the ability to mediate the main contact between
mt-tRNA and 16S mt-rRNA, although the A-site finger struc-
ture is missing as a consequence of a loss during evolution of

the specific rRNA domain (Greber et al. 2014a, 2014b, 2015).
This loss might be related to the different characteristics of
mammalian mt-tRNA, which do not all adopt the typical clo-
verleaf structure (Suzuki et al. 2011). The P-site is also rela-
tively preserved but the interactions made with the mt-tRNA
are stronger than those observed for the bacterial ribosome
(Schuwirth et al. 2005), as the mt-LSU has a P-site finger that
interacts with the T-loop of mt-tRNAwhile it is bound to the
site. Since this T-loop of mammalian mt-tRNAs is smaller
than those in bacterial tRNA, the finger-like structure is prob-
ably necessary to maintain the required orientation of the
RNA species during peptide bond formation. Finally, the pres-
ence of an E-site is controversial, as most of the contact points
that exist between the bacterial ribosome and tRNA seem to
be lost as a consequence of the shortened mt-rRNA. However,
the existence of this site has been confirmed in recent cryo-
EM studies that have highlighted the presence of a modified
binding pocket (Greber et al. 2014a, 2014b).

Additional roles of mt-specific proteins

Some of the mt-specific mitoribosomal proteins have been
suggested to have additional roles. Examples include mS29
(DAP3; Kissil et al. 1999), mL37 (Levshenkova et al. 2004),
mL41 (Yoo et al. 2005) and mL65 (previously named mS30;
Sun et al. 1998), all of which have been linked to the control of
apoptosis, whereas bL12m has been implicated in POLRMT
function and stability (Surovtseva et al. 2011; Nouws et al.
2016). In addition to a potential role in apoptosis, mS29 has an
intrinsic GTP-binding site and is phosphorylated, which may
affect monosome formation since its location is at the interface
(Amunts et al. 2015; Greber et al. 2015). The cryo-EM studies
performed on human and porcine samples have also con-
firmed the presence of a ribosome-dependent peptidyl-tRNA
hydrolase, ICT1, as a structural component of the mt-LSU
(Richter et al. 2010). Although levels of free ICT1 in the
mitochondrion are reported to be extremely low (Richter
et al. 2010; Chrzanowska-Lightowlers and Lightowlers
2015), ICT1 might function to help release stalled
mitoribosomes (Akabane et al. 2014; Feaga et al. 2016).
One particularly striking additional role for a mitoribosomal
protein concerns uL18m (Zhang et al. 2015). Under condi-
tions of heat shock, a cytosolic isoform of this protein is gen-
erated through translational initiation at an internal CUG co-
don of its cognate transcript. This isoform is integrated into
cytosolic 80S ribosomes, which selectively translate mRNAs
encoding heat shock proteins. This is a unique example of the
way that a mitoribosomal protein can influence stress adapta-
tion in the eukaryotic cell. A role for the same protein,
uL18M, has been suggested for 5S RNA import into mito-
chondria (Smirnov et al. 2011) but no potential function of
5S RNA in mitochondria has yet been determined.
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Pre-translation events

Mitoribosomal biogenesis and processing and the maturation
of the mt-transcripts are all prerequisites for intraorganellar
protein synthesis . The assembly pathway of the
mitoribosomal subunits, however, and the mechanism of re-
cruitment of mt-mRNAs to the mitoribosome remain largely
uncharacterised.

Mt-mRNA processing and stabilisation

All the mt-mRNA transcripts, with the exception of MTND6,
are matured by a poly(A) polymerase (mtPAP; Tomecki et al.
2004; Slomovic et al. 2005). This process introduces a poly-
or oligo(A) extension that serves to complete the UAA stop
codon in 7 transcripts (Ojala et al. 1981). Unlike the bacterial
or cytosolic counterpart, the role that this modification exerts
on mt-mRNA stability does not follow a conventional pattern.
In the absence of polyadenylation, a consistent effect is seen
on the steady state levels of most transcript species, albeit that
this may be an increase or decrease. This pattern is observed
irrespective of the mechanism by which the poly(A) tail had
been removed, although the manner in which this regulation is
effected is still unclear (Tomecki et al. 2004; Nagaike et al.
2005; Wilson et al. 2014; Bratic et al. 2016).

The half-lives of mt-mRNAs can be regulated by cis-acting
elements, as described above, and by trans-acting factors. The
best characterised mt-mRNA-specific proteins involved in
transcript stability are the LRPPRC/SLIRP complex
(Sasarman et al. 2010) and FASTKD4, which prevents their
degradation (Wolf and Mootha 2014). The only protein-
coding transcript derived from the light strand,MTND6, inter-
acts with the mitochondrial isoform of FASTK (Jourdain et al.
2015) and GRSF1, which modulates its stability (Antonicka
et al. 2013; Jourdain et al. 2013).

Maturation of mt-tRNAs

Modifications of bacterial tRNAs are introduced to mediate
stability and functionality. This is equally true of mammalian
mt-tRNA species (Nagaike et al. 2005; Suzuki et al. 2011).
The many different modifications have been comprehensively
described by Suzuki (2014) and Salinas-Giege et al. (2015).
Once the mt-tRNAs have been modified and the CCA added
to the 3’ terminus (Nagaike et al. 2001), the transcripts can be
charged with their cognate amino acid by the relevant mito-
chondrial aminoacyl-tRNA synthetase (Diodato et al. 2014)
and can participate in the synthesis of mt-encoded proteins.

Mitoribosomal assembly

Several studies support the hypothesis that the assembly of the
mitor ibosome takes place in two mitochondr ia l

subcompartments, defined as nucleoids and RNA granules.
Nucleoids are centres of mtDNA maintenance, replication
and transcription, whereas post-transcriptional RNA process-
ing and maturation occur in the RNA granules. Both the com-
partments contain mitoribosome assembly factors and pro-
teins involved in RNA stability, plus a number of
mitoribosomal proteins (Bogenhagen et al. 2014; Antonicka
and Shoubridge 2015). As a consequence, early mitoribosome
biogenesis has been suggested to be initiated in the nucleoids
and to be completed in the RNA granules. Irrespective, RNA
processing and at least the early stages of mitoribosome as-
sembly clearly occur in close proximity to mtDNA, consistent
with co-transcriptional processing and even mitoribosomal
assembly.

The biogenesis of ribosomes involves several key players
that act on rRNA and ribosomal proteins to assemble com-
plete subunits. Relatively few factors have been identified that
are necessary for mammalian mitoribosomal assembly com-
pared with the generation of 80S ribosomal particles (Hage
and Tollervey 2004) and, although the steps in the process are
mostly undefined, an increasing number of crucial factors are
emerging. After transcription, the 12S mt-rRNA is processed
from the major polycistronic RNA unit and, at some stage in
the assembly pathway, is bound at its 3’ terminal helix by an
RNA-binding GTPase, ERAL1, which stabilises the mt-
rRNA prior to the final maturation of the mt-SSU
(Dennerlein et al. 2010; Uchiumi et al. 2010). Both the 12S
and 16S mt-rRNA species are known to be modified. The
extent of mt-rRNA modification was originally assessed in
hamster RNA, where nine modifications were detected
(Dubin and Taylor 1978). These included pseudouridylation,
base methylation and 2’-O-ribose methylation at conserved
sites. A uracil methylation site was also identified on the
12S mt-rRNA but has not yet been confirmed to be present
on the human orthologue. Of the five base methylations con-
firmed in 12S mt-rRNA (Metodiev et al. 2009), the data are
consistent with the modifications being performed by TFB1M
(adenine; Seidel-Rogol et al. 2002; Metodiev et al. 2009) and
NSUN4 (cytosine; Metodiev et al. 2014). The 16S mt-rRNA
is also a substrate for modifications including three 2’-O-ri-
bose methylations performed by methyltransferases (MRM1,
MRM2, MRM3; Rorbach et al. 2014; Lee and Bogenhagen
2014) and, potentially, one pseudouridylation (Ofengand and
Bakin 1997). The latter was not detected in the hamster-
derived 16S and the enzyme that could be responsible is still
unknown.

The formation of many ribonucleoprotein particles includ-
ing ribosomes requires GTPases and ATP-dependent RNA
helicases, although, to date, fewer than expected have been
identified in mammalian mitochondria (for a review, see De
Silva et al. 2015). The energy derived from GTP hydrolysis is
used to regulate the association or dissociation of proteins or
to promote conformational changes. These proteinsmight also
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act as placeholders for proteins that will join the immature
ribosome at a later stage in the assembly process. Finally,
because GTPases are usually active in their GTP-bound state,
these proteins might act as sensors of the GTP/GDP ratio and
respond under starvation conditions, when the GTP/GDP ratio
is lower, by reducing mitoribosome assembly to match the
reduced nutrient availability. At present, two mitochondrial
GTPases (Mtg1, Mtg2) are associated with the IMM and have
been reported to interact with the immature mt-LSU (Kotani
et al. 2013), whereas, thus far, only one (C4orf14, or NOA1)
has been shown to be involved in mt-SSU assembly (He et al.
2012).

ATP-dependent RNA helicases bind and remodel RNA
possibly promoting the unwinding of RNA to initiate ribonu-
cleoprotein (RNP) assembly or the displacement of RNA from
RNP particles (Linder and Jankowsky 2011). At present, few
such helicases have been identified in human mitochondria
and, of these, SUPV3L1 is important in mt-RNA metabolism
and for the stable maintenance of mtDNA (Borowski et al.
2013), whereas DDX28 (Tu and Barrientos 2015) and
DHX30 are both involved in mitoribosome assembly
(Antonicka and Shoubridge 2015).

A number of other factors have been identified as being
involved in the assembly of mammalian mitoribosomes.
Knockout of the gene encoding mTERF3 in mice and flies
causes an increase in mtDNA transcription. Intriguingly, bio-
genesis ofmt-LSU is also affected. RNA immunoprecipitation
assays have revealed an association with 16S rRNA, consis-
tent with mTERF3 playing a role in the assembly of the mt-
LSU (Wredenberg et al. 2013). Other non-mitoribosomal pro-
teins have been shown by RNA immunoprecipitation to bind
16S rRNA, such as a member of the Fas-activated Serine
Threonine Kinase family FASTKD2 and the aforementioned
helicase DDX28, both of which have been shown to be re-
quired for mt-LSU assembly (Antonicka and Shoubridge
2015; Popow et al. 2015; Tu and Barrientos 2015).
Interestingly, the mAAA-protease, a membrane-spanning ho-
mo- or hetero-oligomer of two proteins AFG3L2 and
paraplegin, also appears to affect mt-LSU assembly. Prior to
insertion into the mt-LSU, cleavage of the subunit bL32m has
been shown to be important in certain species but this does not
happen in the conventional fashion. Rather than co-
translocational cleavage by the matrix metalloendopeptidase,
maturation occurs following complete import and is effected
by the mAAA-protease (Nolden et al. 2005). The autosomal
recessive spastic paraplegia type 7 can be caused by patho-
genic mutations in paraplegin, the loss of which has been
shown, in yeast and certain mouse tissues, to reduce the cleav-
age of bL32 leading to a mitoribosomal assembly defect.
Similarly, defects of AFG3L2 can cause a rare form of
spinocerebellar ataxia (SCA28) and tissue-specific mouse
knockouts result in decreased steady state levels of bL3m
(Almajan et al. 2012). C7orf30 (MALSU1) promotes the

incorporation of uL14m into the mt-LSU, an event that is
necessary for subunit stability (Rorbach et al. 2012; Fung
et al. 2013). Depletion of the IMM protein MPV17L2, which
is known to interact with the mt-LSU, leads to a reduction of
both subunits, highlighting a possible role for this protein in
their assembly (Dalla Rosa et al. 2014). Finally, a small pro-
portion of GRSF1 has been suggested to be involved in the
assembly of the mt-SSU, as its depletion leads to the accumu-
lation of incomplete mt-SSU; however, this has not been ex-
perimentally determined (Antonicka et al. 2013; Jourdain
et al. 2013).

Molecular mechanisms of mitochondrial translation

Transcription of human mtDNA is driven from within the
noncoding region by promoters on both strands to form poly-
cistronic transcription units (Gustafsson et al. 2016).
Processing of these units is driven in part by the natural posi-
tioning and folding of mt-tRNA structures, which are excised
by the tRNase Z ELAC2 mitochondrial isoform (Rossmanith
2011) and the three subunit protein-only mitochondrial RNase
P (Holzmann et al. 2008). Maturation of all light-strand pro-
tein-encoding RNAs is facilitated by the addition of a poly(A)
tail of approximately 50 nucleotides by the mitochondrial poly
(A) polymerase (Tomecki et al. 2004, Temperley et al. 2010a,
2010b). The resultant nine monocistronic and two dicistronic
mt-mRNA species are translated by the mitoribosome in a
process that can be divided into initiation, elongation, termi-
nation and recycling (Fig. 2; for reviews, see Christian and
Spremulli 2012; Ott et al. 2016). These mt-mRNA species
have a modified codon usage. Mitochondria from different
organisms vary in which codon is reassigned but an almost
universal change is for the UGA stop codon to be recognised
as tryptophan. Other changes include the recognition of AUA
as methionine and AGA or AGG becoming unassigned co-
dons that are not recognised by any mt-tRNA or protein factor
(Chrzanowska-Lightowlers et al. 2011; Suzuki et al. 2011).

The first step in the initiation of protein synthesis is the
recruitment of the mt-mRNA to the mt-SSU, which is bound
by the initiation factor mtIF3 to inhibit premature re-
association with the mt-LSU. The PPR protein, mS39, found
at the entrance of the mt-mRNA channel has been reported to
aid recruitment of the mt-mRNA (Amunts et al. 2015; Greber
et al. 2015). The codons recognised as initiating triplets by the
mitoribosome are AUG, AUA and AUU to which f-Met-
tRNAMet (a subset of met-tRNAMet is formylated by mito-
chondrial methionyl-tRNA formyltransferase; Tucker et al.
2011) is recruited by mtIF2:GTP. Charged mt-tRNAMet and
mtIF2 can bind the mt-SSU in the absence of the mt-mRNA;
however, the association is considerably weaker. If a positive
codon:anticodon interaction occurs, then a stable complex is
created and the interaction with the mt-LSU follows. This
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formation of the monosome triggers hydrolysis of the mtIF2-
bound GTP to GDP concomitantly with the release of initia-
tion factors 2/3 from the mt-SSU. If f-Met-tRNAMet is not
available or if the start codon is not present in the P-site, the
inspection fails and the mRNA is released.

In mt-mRNAs, the start codon is found at or very near the
5’ terminus in monocistronic transcripts, with efficiency of
translation initiation being predicted to be reduced the more
distal the start codon (Christian and Spremulli 2010). The two
bicistronic RNA units,RNA7 (MTND4/MTND4L) and RNA14
(MTATP8/MTATP6), present an enigma with respect to trans-
lation initiation. Since these transcripts contain overlapping
open reading frames (ORF), the downstream ORF has, by
default, a 5’-UTR that consists of the upstream coding se-
quence. How the mitoribosome locates this internal initiating
codon is still unclear.

Once the monosome is formed, elongation of the na-
scent chain can start. In this step, a ternary complex forms
composed of the mitochondrial elongation factor mtEF-
Tu, GTP and a charged mt-tRNA, which can enter the
A-site. If the correct codon:anticodon interaction takes
place, the mitoribosome stimulates the hydrolysis of
GTP leading to the release of GDP:mtEF-Tu. The
GTP:mtEF-Tu complex is restored by the direct interac-
tion of mtEF-Tu with the nucleotide exchange factor
mtEF-Ts (Cai et al. 2000). After the release of mtEF-Tu,
the formation of the peptide bond is catalysed at the
peptidyl transferase centre (PTC) in the mt-LSU. Once
the bond is formed, the P-site of the mitoribosome is
occupied by a deacylated mt-tRNA, and the dipeptidyl-
tRNA is found in the A-site. The interaction of the elon-
gation factor mtEF-G1 with the mitoribosome alters its
structural conformation, which leads to the release of the
mt-tRNA from the P-site and the movement of the
dipeptidyl-tRNA by three nucleotides into the P-site.
Recently, the presence of the E-site in mammalian
mitoribosome has been confirmed (Amunts et al. 2015;
Greber et al. 2015). Although different from the charac-
teristic bacterial E-site, the deacylated mt-tRNA moves to
this site before exiting the mt-monosome. The elongation
process is then reiterated until a stop codon is positioned
in the A-site.

Protein synthesis is complete once a stop codon enters
the A-site but the nascent peptide then needs to be re-
leased from the mitoribosome. The termination codon is
recognised by a protein rather than by a tRNA species
and, in human mitochondria, mitochondrial release factor
1a (mtRF1a) is believed to be sufficient to terminate all
13 ORFs (Soleimanpour-Lichaei et al. 2007). This factor
is a class I RF, which, unlike class II, demonstrates
sequence-specific recognition of the A-site codon (UAA,
UAG). This first step in termination is mediated by the
interaction of two protein domains with the RNA, the

tripeptide motif and the tip of the α-5 helix. Once these
two regions have recognised the A-site triplet as a stop
signal, the RF structure alters to position a second con-
served domain, the GGQ motif (Frolova et al. 1999) into
the PTC. This facilitates the hydrolysis of the ester bond
between mt-tRNA and the final amino acid. Hence,
mtRF1a in the presence of GTP promotes the release of
the polypeptide from the mt-LSU (Schmeing et al. 2005).
In human mitochondria, UAA and UAG are used as stop
codons to terminate nine monocistronic and two
bicistronic ORFs, respectively. The sequencing of human
mtDNA in 1981 logically suggested that, since the triplets
following the coding sequence for the remaining two
ORFs, MTCO1 and MTND6, were AGA and AGG, re-
spectively, these must have been recoded as alternative
stop codons, as no corresponding tRNA was present in
the mitochondrial genome (Anderson et al. 1981). Fine
mapping of the termination codons of transcripts posi-
tioned at the A-site of the human mitoribosome in intact
cells, however, showed that these two species terminated
with the classical UAG codon (Temperley et al. 2010a,
2010b). An explanation for this observation is that a −1
frameshift occurs, potentially driven by structured RNA
immediately downstream of the termination codons within
the transcripts. Although this mechanism is plausible for
humans, the frameshift alone may not create a stop codon
in other vertebrates. More recently, another member of the
mitochondrial translation release factor family, ICT1, has
been suggested to be involved in the termination of the
synthesis of COXI and ND6. As discussed above, ICT1 is
a structural component of mt-LSU but is not located in the
proximity of the A-site. Despite this, a limited free pool of
ICT1 might have peptidyl hydrolase activity, analogous to
the bacterial ArfB (YaeJ; Akabane et al. 2014). Recent
studies of isolated ICT1 have confirmed its ability to hy-
drolyse peptidyl-tRNA on stalled ribosomes but, intrigu-
ingly, not when the RNA template extends more than
14 nucleotides past the A-site (Feaga et al. 2016). This
has led to the conclusion that ICT1 is unlikely to act as a
natural translation terminator in vivo, as MTCO1 and
MTND6 mt-mRNA have 3’ extensions longer than 14
nucleotides. As four members of the mammalian mito-
chondrial translation release factor family have been
found (Chrzanowska-Lightowlers et al. 2011), other re-
lease factors might be involved in terminating the transla-
tion of these two mt-mRNAs, perhaps in other mammali-
an species (Young et al. 2010).

After the release of the polypeptide, two ribosomal
recycling factors, mtRRF1 and mtEF-G2, promote the disso-
ciation of the ribosomal subunits and the release of mt-mRNA
and deacylated mt-tRNA (Rorbach et al. 2008; Tsuboi et al.
2009). These two factors are finally released and the transla-
tion cycle can reinitiate.
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Regulation of mitochondrial translation

As the components of the OXPHOS complexes are syn-
thesised both in the cytosol and in the mitochondrial ma-
trix, their synthesis must be coordinated in order to lead to
an efficient assembly of the complexes. Translational ac-
tivators abound in yeast mitochondria. These proteins reg-
ulate the synthesis of various proteins and associate selec-
tively with the (mainly 5’) UTRs of all yeast mt-mRNA
species (for a review, see Herrmann et al. 2013). Their
exact mode of function remains unknown but these acti-
vators establish a feedback loop whereby the absence of
available partners to produce a complete OXPHOS com-
plex can inhibit further translation of the associated tran-
script. The absence of UTRs in the majority of human
mitochondrial transcripts would appear to preclude the
functioning of such proteins. However, one translational
activator has been identified in human mitochondria,
namely TACO1 (Weraarpachai et al. 2009). The absence
of this activator in patients with pathogenic mutations of
TACO1 results in the selective loss of MTCO1 translation,
which encodes COXI of complex IV. The mechanism of ac-
tion of TACO1 is not known but cannot be mediated via a 5’-
UTR as no such sequence exists on MTCO1. It has been
postulated to promote the recognition of the start codon of
MTCO1 or to stabilise the polypeptide during its synthesis.
TACO1 might also interact with the translation termination
factor to ensure that the nascent polypeptide is not released
prior to its completion (Weraarpachai et al. 2009).

As translational activators are unlikely to work in a sim-
ilar fashion to those in yeast, how can the level of mitochon-
drial translation be modulated in response to the import of
cytosolic components of the OXPHOS complexes? An im-
portant insight into this process has been advanced by the
identification of MITRAC (the mitochondrial translation
regulation assembly intermediate of cytochrome c oxidase
(Mick et al. 2012). This dynamic complex appears to con-
nect the assembly of cytochrome c oxidase (COX) with the
synthesis of the mitochondrially encoded COXI. The mo-
lecular mechanisms underlying this link are unclear.
However, pathogenic mutations have been reported in two
MITRAC components C12orf62 and MITRAC12, which
function early in COX assembly, and their loss results in
the inhibition of COXI synthesis (Szklarczyk et al. 2012;
Weraarpachai et al. 2012). No similar complex has been
reported to coordinate complex I assembly with the synthe-
sis of mitochondrial components, although a link for the
assembly of complex III has been suggested (Tucker et al.
2013).

The cellular environment has also been suggested to have
an effect on mitochondrial translation. In the cytosol,
microRNAs interact with the proteins AGO2 and GW182,
creating a complex that is able to reduce the cytosolic

translation of mRNAs (Czech and Hannon 2011).
MicroRNAs and AGO2 have also been postulated to form a
complex within mitochondria, where, conversely, they have
been reported to enhance the translation of certain transcripts
during muscle differentiation (Zhang et al. 2014). The exis-
tence of microRNAs in mitochondria, however, is still contro-
versial, particularly as no evidence has been found for the
enrichment of microRNAs reported in the first detailed anal-
ysis of the transcriptome from purified human mitochondria
(Mercer et al. 2011).

Mitochondrial protein synthesis can be regulated by post-
translational modifications of mitoribosomal components.
These can be phosphorylated (Miller et al. 2009) or acetylated
as a result of the levels of ATP, acetyl-CoA and NADHwithin
mitochondria. A role in the association of the mt-LSU and mt-
SSU might be played by the mt-specific protein mS29 (see
above). This protein is able to bind GTP and is found bound to
GDP in the mammalian 55S structures (Amunts et al. 2015;
Greber et al. 2015). The binding affinity is higher for the mt-
SSU than for the monosome (O’Brien et al. 1990; Denslow
et al. 1991), suggesting a possible regulatory effect of GTP-
hydrolysis on mS29 (Amunts et al. 2015). In addition, mS29
contains phosphorylation sites on its intersubunit face (Miller
et al. 2008) possibly further influencing the formation of the
monosome (Miller et al. 2009). In addition to this example,

�Fig. 2 Representation of protein synthesis in human mitochondria
showing the four phases of initiation, elongation, termination and
recycling that comprise mitochondrial translation. Following ribosome
recycling (top), the mitochondrial small subunit (mt-SSU in blue)
remains bound to initiation factor mtIF3 (dark green). Initiation
commences as mtIF2 (light green) bound to a GTP molecule (red) joins
this complex. Once successful recruitment of mRNA has been achieved
and fMet-tRNAMet in the P-site anchors to the start codon, GTP is hydro-
lysed to GDP (orange), the initiation factors are released and the mito-
chondrial small subunit (mt-LSU in darker blue) can associate, forming
the monosome. During elongation (centre), the nascent polypeptide chain
is bound to a P-site tRNA, while the A-site is sampled by charged mt-
tRNAs delivered by mitochondrial elongation factor-Tu (mtEF-Tu in
yellow), until the correct codon-anticodon pair forms. GTP hydrolysis
and mtEF-Tu release follows together with exchange of the GDP (light
orange) for a new GTP molecule mediated by mtEF-Ts (orange). The
charged A-site mt-tRNA changes its conformation juxtaposing its amino
acid to that of the extending nascent chain within the peptidyl-transferase
centre. This facilitates peptide bond formation transferring the polypep-
tide chain onto the A-sitemt-tRNA. The elongation factor mtEF-G1 (dark
orange) promotes the ribosomemovement that repositions the mt-mRNA
within the 55S and the mt-tRNAs from the A- and P-sites to the P- and E-
sites. The E-site mt-tRNA leaves the monosome in anticipation of a new
round of elongation. This cycle continues until the polypeptide is com-
plete and a stop codon is presented in the A-site. Termination (bottom)
described the recognition of the stop codon by a release factor protein
(mtRF1a in pink), which then adopts a modified conformation that pro-
motes hydrolysis of the ester bond anchoring the nascent chain to the final
mt-tRNA. Once the polypeptide chain is released, the two recycling fac-
tors, mtRRF1 (dark red) and mtRRF2 (red), promote the dissociation of
the ribosomal subunits and premature re-association is prevented by the
formation of an mtIF3/mt-SSU complex
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several other mitoribosomal proteins are reported to be mod-
ified and are found in the proximity of the subunit interface or
in domains crucial for translation, such as the mRNA channel,
the PTC or the PES (Miller et al. 2009). The assembly of the
monosome is also promoted by the complex mTERF4-
NSUN4, which interacts with the mt-SSU and supports the
recruitment of the mt-LSU (Cámara et al. 2011; Metodiev
et al. 2014).

Localisation of the mitoribosome and mitochondrial
translation

Mitochondrial ribosomes have evolved to translate highly hy-
drophobic components of the OXPHOS chain that need to be
inserted into the membrane to prevent aggregation and precip-
itation in the matrix. As a consequence, the mitoribosome is
probably anchored to the membrane in close proximity to the
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PES to align with the insertion machinery. This interaction has
been shown in yeast in recent cryo-EM tomography studies
(Pfeffer et al. 2015). Biochemical studies with the bovine
mitoribosome have demonstrated that approximately 40% of
mitoribosomes interact with the IMM (Li and Spremulli 2000)
but the way that this interaction is mediated is still unclear.
This same study has suggested that the association is mediated
by electrostatic interactions between mitoribosomal proteins
and the IMM and by interaction between the mitoribosome
and IMM proteins.

Few proteins have been reported to interact with both
the IMM and the mitoribosome. One of these is OXA1L,
a polytopic membrane insertase and member of the
YidC/Oxa/Alb3 family, which mediates the insertion of
proteins within the IMM (Hennon et al. 2015). Its homo-
logue in yeast has been suggested to interact with the
mitoribosome (Jia et al. 2003) and the C-terminus of the
human protein has been cross-linked to components of the
mt-LSU, namely uL13m, bL20m, bL28m, mL48, mL49
and mL51 (Haque et al. 2010), although these are not
located in close proximity to the PES. MPV17L2 is an
integral membrane protein that has been co-localised with
the mt-LSU on sucrose gradients, suggesting its involve-
ment in anchoring the subunit to the IMM (Dalla Rosa
et al. 2014). LetM1, another IMM protein, contains a
large matrix domain and its homologue in yeast
(Mdm38) has been reported to interact with the
mitoribosome (Lupo et al. 2011). In vitro studies per-
formed on LetM1 have shown its interaction with the
mitoribosomal protein bL36m (Piao et al. 2009) and led
the authors to propose that LetM1 acts as a membrane
locator for the mitoribosome. This is an interesting pro-
posal, although the recent cryo-EM data suggest its loca-
tion is not ideal for localising the mitoribosome to the
membrane or for assuring the close proximity of the
PES to the membrane.

Indeed, the release of the mammalian mt-LSU structure
(Greber et al. 2014a, 2010b) implicates the mt-LSU compo-
nent, mL45, in membrane association. This protein is local-
ised in close proximity to the PES, a position that is ideal to

allow the rapid insertion of the newly synthesised hydropho-
bic proteins into the membrane. The hypothesis of the in-
volvement of mL45 in the interaction with the membrane is
strengthened by its structural homology with the IMM-
interacting protein Tim44 (Handa et al. 2007) and by the con-
firmation of the ability of its yeast homologue Mba1 to medi-
ate the interaction between mitoribosomes and the IMM (Ott
et al. 2006; Pfeffer et al. 2015). The putative role of mL45 in
anchoring the mitoribosome to the membrane is intriguing
but, if it does indeed play this role, it is highly likely to share
it with other anchoring sites that lie within the mitoribosome
and that may interact directly with the membrane or via an
integral membrane protein(s) that function as a receptor(s) for
the mitoribosome.

How is the newly synthesised polypeptide correctly
inserted into the IMM? Two systems have been evolutionarily
conserved to mediate the integration of nascent peptides into
membranes: the Sec complex and the YidC/Oxa/Alb3
insertases. To date, the major candidate that has been impli-
cated in this process in mammals is OXA1L (see above), a
member of the YidC/Oxa/Alb3 insertase family, which may
play a pivotal role in this process, at least for a subset of the
mitochondrially encoded proteins. OXA1L is the homologue
of yeast Oxa1, which is the key component of the yeast cyto-
chrome oxidase assembly (OXA) translocase and is involved
not only in the integration of mitochondrially encoded pro-
teins, but also in the biogenesis of some nuclear-encoded mi-
tochondrial products (Stiller et al. 2016). Intriguingly, knock-
down studies of humans cells have shown that OXA1L is
necessary to obtain only a functional complex I and V and
does not appear to be involved in cytochrome c oxidase or
complex III assembly in man (Stiburek et al. 2007). MITRAC
and the UQCC (ubiquinol-cytochrome c reductase complex
chaperone) members (see above) possibly function without
the aid of OXA1L to assemble complexes III and IV. One
other member of the YidC/Oxa/Alb3 family that has been
reported to be present in human mitochondria is the homo-
logue of the yeast Cox18p. This promotes the insertion of the
C-terminal of Cox2p in yeast but its function in mammals has
not been fully characterised.

Table 2 Human genes in which
mutations have been associated
with mitochondrial disease

Process Gene product

Mitoribosome assembly TFB1M, AFG3L2, SPG7, MTG2, DDX28, DHX30, uS7m, bS16m,
mS22, bL3m, bL12m, mL44

mt-tRNA aminoacylation AARS2, CARS2, DARS2, EARS2, FARS2, HARS2, IARS2, LARS2,
MARS2, NARS2, PARS2, RARS2, SARS2, TARS2, VARS2,
YARS2, GARS, KARS, QARS

mt-tRNA processing and
modification

ELAC2, MRPP2, GTPBP3, MTO1, MTFMT, PNPT1, TRNT1, PUS1,
TRIT1, TRMU, TRMT5, NSUN3

mt-mRNA maturation/maintenance LRPPRC, MTPAP

Translation EFTs, EFTu, EFG1, RMND1, MITRAC12, C12orf65, TACO1, GFM2
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Post-translation events

As previously mentioned, at the end of translation, the
mitoribosomal subunits are separated and are recycled.
However, what happens to the mt-mRNA?

After translation, the mt-mRNAs are possibly protected by
interaction with RNA chaperones (e.g. LRPPRC/SLIRP,
FASTKD2, FASTKD4) and reused to programme a new
round of translation, although these species might be degraded
in order to eliminate aberrant or damaged transcripts. The
identity of the RNA-degrading apparatus in mitochondria is
still under investigation. Whereas the helicase involved in
RNA metabolism has been identified as SUPV3L1, the key
component(s) with ribonucleolytic activity may not be
completely resolved. SUPV3L1 (Minczuk et al. 2002) has
been found to interact with the human polynucleotide phos-
phorylase (PNPase; Borowski et al. 2010), which, on deple-
tion, causes the accumulation of mt-RNA decay intermediates
and the increased stability of mitochondrial transcripts.
PNPase clearly is an important factor in mitochondrial RNA
degradation (Chujo et al. 2012) but most of this protein is
localised in the mitochondrial intermembrane space and a role
in RNA import has been suggested (Wang et al. 2010). The
degradation of RNA species in mitochondria is likely to be
aided by REXO2, a protein found both in the cytosol and in
mitochondria. This protein is an exonuclease able to digest
very short oligo RNA and might help PNPase or other en-
zymes to degrade and recycle unwanted RNA (Bruni et al.
2013). More recently, an endoribonuclease, LACTB2, has
been identified in mammalian mitochondria. This protein
has been thoroughly characterised in vitro, including high
resolution structural data, but its physiological function re-
mains unclear (Levy et al. 2016).

Mitochondrial translation and pathologies

Mitochondrial diseases are a class of heterogeneous disorders
that can be characterised by mutations of either mtDNA or
nuclear DNA and that cause severe defects of OXPHOS func-
tion. Symptoms can vary from mild to profound, from highly
tissue selective to multi-systemic, making clinical diagnosis
challenging. Many pathogenic mtDNA deletions or point mu-
tations in genes encoding mt-tRNA and mt-mRNA have been
well documented since the first reports in 1988 (Holt et al.
1988; Wallace et al. 1988). Additionally, because of the ad-
vances in whole exome sequencing, a dramatic recent increase
has been seen in the identification of novel mutations in
nuclear-encoded mitochondrial proteins. As mitochondrial
translation has a key role in OXPHOS, mutations in most of
the components involved in the process can lead to patholo-
gies, as shown in Table 2; a comprehensive list appears in

several recent reviews (Lightowlers et al. 2015; Mayr et al.
2015; Shen et al. 2016).

Regarding the protein synthesis machinery, whereas sever-
al mutations of the mt-rRNAs have been associated with dis-
ease (see http://www.mitomap.org/MITOMAP), only a few
mutations of mitoribosomal proteins have been identified to
date. In particular, a mutation in bS16m has been linked to
hypotonia and fatal neonatal lactic acidosis (Miller et al. 2004
), whereas two different mutations in mS22 result in cardio-
myopathy and tubulopathy (Saada et al. 2007; Smits et al.
2011). Concerning components of the mt-LSU, a mutation
in uL3m has been shown to cause cardiomyopathy
(Galmiche et al. 2011), a defect also reported for a mutation
of the mitochondrial-specific protein mL44 (Carroll et al.
2013). Growth retardation and neurological deterioration have
been diagnosed as a consequence of a mutation in the
mitoribosomal protein bL12m (Serre et al. 2013). Recently,
mutations in uS7m have been discovered and linked to deaf-
ness with renal and hepatic failure (Menezes et al. 2015).
Further to the role of mitochondrial ribosome protein (MRP)
mutations in disease, Auwerx and colleagues have reported
that genetic variation in genes encoding MRPs are linked to
longevity in certain mice strains. Moreover, by depleting
Mrps5 in Caenorhabditis elegans, they have obtained evi-
dence suggesting that a mito-nuclear protein imbalance
caused by a relative decrease in mitochondrial translation
can lead to activation of a mitochondrial unfolded protein
response underlying this increased longevity (Houtkooper
et al. 2013).

Concluding remarks

Progress in understanding the mechanisms underlying mam-
malianmitochondrial gene expression in recent years has been
impressive. This has been attributable, in large part, to the
production of high resolution structures of the mammalian
mitoribosome and the identification of pathogenic mutations
in key players via whole exome sequencing. Establishing a
reconstituted in vitro translation system remains an enormous
challenge (accepting the impressive initial efforts by Suzuki
and colleagues; Takemoto et al. 2009). Major limitations in-
clude the isolation of sufficient quantities of mammalian mi-
tochondria that are devoid of template mt-mRNA and mt-
tRNAs to use as a substrate and also the central role played
by associations with the IMM and translocon, which has yet to
be characterised. Structural biology and genetics will un-
doubtedly further our detailed understanding, particularly re-
garding the assembly process of the mitoribosome, but the
next step will also require the establishment of a faithful
in vitro reconstituted mitochondrial translation system. We
look forward to this possibility with great excitement.
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