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Frataxin deficiency is the pathogenic cause of Friedreich’s Ataxia, an autosomal
recessive disease characterized by the increase of oxidative stress and production of
free radicals in the cell. Although the onset of the pathology occurs in the second decade
of life, cognitive differences and defects in brain structure and functional activation
are observed in patients, suggesting developmental defects to take place during
fetal neurogenesis. Here, we describe impairments in proliferation, stemness potential
and differentiation in neural stem cells (NSCs) isolated from the embryonic cortex of
the Frataxin Knockin/Knockout mouse, a disease animal model whose slow-evolving
phenotype makes it suitable to study pre-symptomatic defects that may manifest
before the clinical onset. We demonstrate that enhancing the expression and activity
of the antioxidant response master regulator Nrf2 ameliorates the phenotypic defects
observed in NSCs, re-establishing a proper differentiation program.
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INTRODUCTION

Friedreich’s Ataxia (FRDA) is an early-onset autosomal recessive disease with an incidence of
1:50000, caused by severely reduced levels of frataxin, a mitochondrial protein involved in iron–
sulfur cluster synthesis, iron transfer, and antioxidant defense (Romeo et al., 1983; Dürr et al., 1996;
Santos et al., 2010; Vaubel and Isaya, 2013). Although no evident signs of the pathology show up
in the first 5–10 years of life, a subsequent development of movement coordination loss, cardiac
hypertrophy, diabetes and progressive neurodegeneration occurs (Dürr et al., 1996; Folker et al.,
2010; Weidemann et al., 2012), resulting in death at young age (Bürk, 2017). Cognitive differences
in FRDA patients have also been assessed (Wollmann et al., 2002; Mantovan et al., 2006; De Nobrega
et al., 2007; Corben et al., 2011, 2017; Nieto et al., 2013). Thus, even if the progressive degeneration
of sensory neurons in the dorsal root ganglia (DRG) and in the dentate nucleus of the cerebellum are
observed early upon pathology onset (Bürk, 2017), neuroimaging techniques revealed impairments
in white/gray matter structure (Zalesky et al., 2014; Harding et al., 2016; Rezende et al., 2016) and
in cerebral functional activation (Georgiou-Karistianis et al., 2012). Reports outlining these defects
have been published since a decade (Selvadurai et al., 2018) and several lines of evidence suggest
that frataxin deficiency could lead to their insurgence during fetal development (Cossée et al.,
2000; Santos et al., 2001; Koeppen et al., 2017). However, studies on the pathogenic mechanism
underlying FRDA during the neurogenesis are still lacking.

Recent reports show that a mouse model of the pathology, the Frataxin Knockin/Knockout
(KIKO) mouse, manifests neurobehavioral defects on the 9th month of life that closely
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recapitulate the clinical human phenotype, including cerebellar
ataxia, decreased peripheral sensitivity and motor strength
and endurance impairments (Miranda et al., 2002; McMackin
et al., 2017). Nevertheless, before the onset of the pathologic
symptoms, mitochondrial and synaptic abnormalities are already
present in the cerebellum (Lin et al., 2017a,b), suggesting
that early pre-symptomatic defects may underlie the clinical
onset and contribute to trigger the disease progression. In this
context, the KIKO mouse model is a useful tool to search
for earliest pathological changes, because it displays a slowly
evolving phenotype, while biochemical and functional brain
dysregulations arise earlier, thus closely recapitulating the clinical
human phenotype (Lin et al., 2017a,b; McMackin et al., 2017;
Cotticelli et al., 2019).

Oxidative stress and increased levels of free radicals play an
important role in FRDA pathogenesis (Lupoli et al., 2018), where
frataxin deficiency has been shown to reduce the expression of
Nrf2 (the Nuclear factor erythroid-derived 2)-like 2 transcription
factor NE2FL2 either in human FRDA fibroblasts (Paupe et al.,
2009; Petrillo et al., 2017) and in mouse models of the disease
(D’Oria et al., 2013; Shan et al., 2013; Anzovino et al., 2017;
Dinkova-Kostova et al., 2018).

Nrf2 regulates the expression of several antioxidant enzymes
and mounting evidences demonstrate an improvement of
neurological phenotypes after induction of this signaling pathway
(Dinkova-Kostova et al., 2018).

Redox signaling is critical in Nervous System development
(Olguín-Albuerne and Morán, 2018) and Nrf2 has a relevant
role in the neurogenic process, playing a key function in
the regulation of neural stem cells (NSCs) features. In
particular, its expression is directly correlated with NSCs
proliferation and self-renewal, and its age-dependent down
regulation determines the age-related NSCs loss of survival
and function, impairing neurogenesis in subventricular zone
of the lateral ventricles and in the dentate gyrus of the
hyppocampus (Corenblum et al., 2016; Ray et al., 2018).
Nrf2 activity and expression also play a role in the neuronal
maturation process, as its overexpression and/or induced
stabilization determine the increase of the mean length of
neuron-differentiated neuroblastoma neuritis (Zhao et al., 2009),
although the expression of the transcription factor is reported
to constantly decrease throughout the differentiation process
(Olguín-Albuerne and Morán, 2018). Importantly, the activation
of Nrf2 signaling pathway is neuro-protective for progenitor
cells exposed to amyloid beta (Aβ) deposits, a condition
resembling the Alzheimer disease (Kärkkäinen et al., 2014),
thus potentially representing an early therapeutic target in
neurodegeneration.

Moving from these previous findings, in this study we
analyzed the Nrf2 expression in NSCs isolated from the
embryonic cortex of KIKO FRDA mouse and evaluated if
an imbalance of Nrf2 signaling pathway may lead to early
phenotypic defects in neurogenesis.

In addition, as two drugs, Sulforaphane (SFN) and EPI-743,
are receiving increasing attention as promising candidates for
the treatment of neurodegenerative diseases, including FRDA
(Zesiewicz et al., 2018; Zhao et al., 2018), we analyzed the

induction of Nrf2 pathway in response to those drugs in order to
understand if an early activation of the transcription factor may
trigger a neuro-regenerative mechanism in FRDA.

METHODS

Ethics Statement
We conducted all mouse experimentations in accordance with
accepted standard of humane animal care and with the approval
by relevant local (Institutional Animal Care and Use Committee,
University of Rome Tor Vergata) and national (Ministry of
Welfare, license no. 324/2018-PR) committees. Experiments were
carried out according to institutional safety procedures.

NSCs Isolation, Culture, and
Immunofluorescence Analysis
Neural stem cells were isolated from Frataxin KIKO C57/BL6
mouse (Charles River Laboratories International Inc., MA,
United States) E13.5 (Bard et al., 1998) embryos as previously
reported (La Rosa et al., 2016; Svetoni et al., 2017). Clonogenic
assays were performed plating 5000 NSCs in 35-mm wells for
each experimental point. After 5 days of culture, neurosphere
number was counted and NPC clonogenicity expressed as the
percentage ratio between plated cells and neurospheres formed.
For differentiation assays, 20000 NPCs/well were plated on
pre-coated poly-ornithine (Sigma-Aldrich, Saint Louis, MO,
United States) and laminin-1 (Sigma-Aldrich) 4-well dishes. Cells
were grown in NSCs medium, containing 1% v/v fetal bovine
serum (FBS) (Gibco/Thermo-Fisher Scientific, United Kingdom)
and incubated in a humidified atmosphere with 6% CO2, at
37◦C, for 3 days. Immunofluorescence staining was performed
after cell fixation in 4% (v/v) formaldehyde (Sigma-Aldrich) and
permeabilization with 0.1% Triton X-100 in PBS, supplemented
with 1% BSA. Samples were incubated with the mouse anti-
TUBB3 (1:300, Sigma-Aldrich) primary antibody for 1 h at
r.t. and with the FITC-conjugated (1:250) secondary antibody
(Jackson ImmunoResearch, Cambridge, United Kingdom) for
1 h at r.t. Hoechst (Invitrogen, CA, United States) was added
for 15 min, and fluorescence preserved using the Prolong Gold
mounting solution (Invitrogen). 10 randomly fields were taken
for each sample using a DMI6000B inverted microscope (Leica,
Germany), equipped with a Pan-Neofluar 20X/0.75 objective
lens. Data are represented as percentage of positive cells/total cells
(evaluated by the number of total nuclei).

RNA Isolation, RT-PCR, and RT-qPCR
Total RNA was extracted from NSCs using Total RNA
purification kit (Norgen Biotek Corp., Canada), following
manufacturer’s instructions. 1 µg RNA was retro-transcribed
by M-MLV reverse transcriptase (Invitrogen) and used in
quantitative RT-PCR (qPCR) experiments using Sybr green PCR
master mix (Applied Biosystem, CA, United States) as described
by manufacturer’s instructions. All primers used are reported in
the table below. GAPDH gene expression was used to normalize
qPCR experiments.
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Gene Forward primer (Fw) Reverse primer (Rv)

Nrf2 5′-TGAGAGGCAGCCATGACT-3′ 5′-GTCCTTGTTTTCGGTATT-3′

NQO1 5′-CATCACAGGTGAGCTGAAG-3′ 5′-CAGCTTCTTGTGTTCGGCCA-3′

HO-1 5′-TGACACCTGAGGTCAAGCAC-3′ 5′-CTCTGACGAAGTGACGCCAT-3′

GAPDH 5′-CCTCGTCCCGTAGACAAAATG-3′ 5′-TGAAGGGGTCGTTGATGGC-3′

Immunoblotting
Neural stem cells were lysed in 50 mM Tris–HCl, pH 7.4,
containing 100 mM NaCl, 1 mM MgCl2, 0.1 mM CaCl2, 1%
NP-40, 0.5% sodium deoxycholate, 0.1% SDS and protease
inhibitor cocktail (plus phosphatase and protease inhibitors)
(Sigma-Aldrich). Proteins were separated by SDS–PAGE and
transferred to polyvinylidene fluoride (PVDF) membranes
(Amersham Biosciences Corp., United Kingdom). Antibodies
were diluted in 0.1% Tween buffer (+ 5% BSA) as follows:
rabbit anti-Nrf2 (1:500, Abcam, United Kingdom), mouse anti-
NQO1 (1:2000, Novus Biologicals, United States), rabbit anti-
HO-1 (1:2000, Abcam), mouse anti-Tubulin (1:1000, Sigma-
Aldrich), rabbit anti-Frataxin (1:1000, Santa Cruz Biotechnology
Inc., TX, United States). Signals were detected by enhanced
chemiluminescence (ECL) (BioRad, CA, United States).

Complex I Assay
Complex I (NADH:CoQ oxidoreductase, EC 1.6.5.3) activity was
measured by following the absorbance decrease of NADH at
340 nm (ε = 6.81 mM−1

·cm−1) in presence of the specific
inhibitor rotenone (10 µM) (Carletti et al., 2014) and normalized
for protein content.

ROS Quantification
Three micromolar Dichlorofluorescin–diacetate (DCF–DA)
(Sigma-Aldrich) was added to 96-well microplates (Greiner
CELLSTAR R©, Sigma-Aldrich) and incubated 1 h at 37◦C
in a humidified 5% CO2. Relative fluorescence units (RFU,
λexc. = 495 nm, λem. = 530 nm), calculated by subtracting
blank readings from all measurements, were taken using a
plate spectrofluorometer (Enspire, Perkin Elmer). Results were
normalized for cell number.

Statistical Analysis
All data are expressed as mean ± SD. Student’s t-test was
performed using Graphpad Prism software (RRID:SCR_002798).

RESULTS

KIKO NSCs Show Proliferation,
Clonogenicity, and Differentiation
Defects
To analyze if neurodevelopmental defects may occur in
FRDA, we isolated NSCs from 13.5 embryonic day of
life (E) cortex of KIKO mouse, a well established FRDA
animal model, which displays a slowly evolving phenotype
despite early biochemical and functional brain deregulations

(Lin et al., 2017a,b; Cotticelli et al., 2019), thus closely resembling
patient’s pathologic progression (McMackin et al., 2017).

In culture, NSCs grow forming neurospheres that consist of a
mix of stem and spontaneously differentiating cells (Conti et al.,
2003; Galli et al., 2003). Growth curves over 5 days of culture
showed a 48% reduction of KIKO NSCs proliferation, respect to
WT NSCs (Figure 1A), and this was confirmed by 26% decrease
of the average neurospheres’ diameter (Figure 1B). Furthermore,
only ∼5% of KIKO NSCs were able to reform spheres upon
disaggregation (Figure 1C), as assessed by analyses of the NSCs
clonogenicity. As the reduced proliferation and clonogenicity of
KIKO NSCs could be explained by an increase of spontaneous
differentiation events, we further analyzed the KIKO NSCs
differentiation index toward neuronal lineage (Figure 1D).
After 3 days of differentiation, a 1.7-fold increase of neuronal
differentiation was observed in KIKO NSCs, respect to WT NSCs,
although an overall reduction of neuronal complexity was also
evident (Figure 1D). These data highlight phenotypic defects in
frataxin-deficient NSCs already at early stage of neurogenesis.

Nrf2 Expression and Signaling Is
Impaired in KIKO NSCs
Given that the frataxin depletion causes ROS overload and iron-
sulfur (Fe-S) cluster proteins impairment in FRDA (Lin et al.,
2017b; Abeti et al., 2018; Lupoli et al., 2018), we measured the
activity of mitochondrial (Fe-S) Complex I (CI) and ROS levels
in KIKO NSCs, in order to validate our model. As shown in
Figure 2, CI activity was significantly decreased (46%) in KIKO
NSCs, whereas ROS increased 3-times respect to WT NSCs, thus
confirming the molecular key features of the disease.

As several studies show Nrf2 impairment in post-natal tissues
of FRDA patients and in frataxin-deficient cells (Paupe et al.,
2009; D’Oria et al., 2013; Shan et al., 2013; Petrillo et al., 2017),
we analyzed Nrf2 expression in KIKO and WT NSCs, in order
to evidence a potential involvement of the transcription factor
in the defects described above. As reported in Figure 2, Nrf2
was reduced in KIKO NSCs either as mRNA (20% decrease,
A) and as protein level (40% decrease, B). In the same way, a
significant decrease of two representative Nrf2 target genes was
detected in KIKO NSCs, compared to WT NSCs. In particular,
NADPH Quinone Oxidoreductase 1 (NQO1) was 60% reduced
as mRNA (Figure 2A) and 50% as protein amount (Figure 2B),
and Heme Oxigenase-1 (HO-1) showed a 50% decrease both as
mRNA (Figure 2A) and protein level (Figure 2B). As expected,
a 60% decrease of frataxin expression (mRNA and protein) was
also detected in KIKO NSCs (Figures 2A,B).

These findings confirm previous studies showing a frataxin-
mediated Nrf2 deficiency in cell and mouse models of FRDA

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 356

https://scicrunch.org/resolver/RRID:SCR_002798
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00356 July 31, 2019 Time: 16:55 # 4

La Rosa et al. Nrf2 in FRDA NSCs

FIGURE 1 | Frataxin depletion determines phenotypic defects in KIKO NSCs and neurons. (A,B) analysis of WT and KIKO NSCs proliferation assessed by growth
curves experiments over 5 days (A), and diameter evaluation on the fifth day (B). (C) Clonogenic assay of WT and KIKO NSCs. Clonogenicity was expressed as the
ratio between the observed neurospheres and plated NSCs. (D) Immunofluorescence analysis of the neuronal differentiation marker Tuj-1 in WT and KIKO NSCs
cultured for 3 days in differentiating conditions. Graph on the right represents (mean ± SD) measurement of number of Tuj-1 positive cells, ∗p < 0.05. Scale
bars = 100 µm.

(Paupe et al., 2009; D’Oria et al., 2013; Piermarini et al., 2016;
Anzovino et al., 2017; Petrillo et al., 2017) but, additionally,
they represent a progress in understanding the pathogenesis of
FRDA because, for the first time, an early impairment of Nrf2
signaling is described already during neurogenesis. Furthermore,
given the role of Nrf2 in the neurogenic process (Zhao et al.,
2009; Corenblum et al., 2016; Olguín-Albuerne and Morán,
2018; Ray et al., 2018), the defective Nrf2 pathway may also
underlie the loss of stemness potential and the increased cell
differentiation toward the neuronal lineage evidenced in KIKO
NSCs (Figure 1).

SFN and EPI-743 Treatments Restore
Nrf2 and Nrf2-Target Gene Expression
Nrf2 inducers have been demonstrated to promote the activation
of Nrf2/ARE signaling in frataxin silenced motor neurons
(Piermarini et al., 2016; Petrillo et al., 2017). Thus, in order to
evaluate the effect of Nrf2 activation on the KIKO NSCs defects,
we treated KIKO NSCs with the classical Nrf2 inducer SFN and
with EPI-743, a para-benzoquinone developed for the treatment
of mitochondrial diseases (Enns et al., 2012; Martinelli et al., 2012;
Zesiewicz et al., 2018).

qRT-PCR and western blot analyses were performed either
under conditions of KIKO NSCs proliferation (Figures 3A,B)
and following neuronal differentiation (Figures 3C,D).

As shown in Figure 3, both compounds significantly induce
the expression and stability of Nrf2 in proliferating KIKO
NSCs, compared to untreated KIKO NSCs, showing a consistent
increase of mRNA (Figure 3A) and protein amount (Figure 3B)
already after 2 h treatments (10-fold increase mRNA and 4-
fold increase protein level), remaining high throughout 24 h.
Also Nrf2 target genes were significantly induced after EPI and
SFN treatments, with NQO1 reaching a peak at 6 h drugs (3-
fold increase protein amount with EPI and 6-fold increase with
SFN), whereas HO-1 showed a growing increase over time (4-fold
protein increase with EPI and 6-fold with SFN) (Figures 3A,B).

A significant induction of Nrf2 and its down-stream genes was
also found after 3 days neuronal differentiation of KIKO NSCs
(Figures 3C,D), with 1.7- and 2.2-fold increases of protein level,
following respectively EPI and SFN 24 h treatments. Similarly,
Nrf2 target genes were induced with EPI and SFN both as
mRNA (3.6-fold increase, Figure 3C) and protein level (1.9-fold
increase, Figure 3D).

Overall, these findings highlight the effectiveness of the drug-
mediated Nrf2 induction in restablishing the antioxidant defense
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FIGURE 2 | Frataxin depletion determines impairments in NRF-2 expression and signaling. (A) ROS determination (graph on the left) and Complex I activity (graph
on the right), assessed in WT and KIKO NSCs. Cellular ROS were evaluated by measuring DCF fluorescence, normalized for cell number, while Complex I activity
was expressed as nmol/min/mg prot. qPCR (B) and Western Blot analyses (C) and relative densitometric evaluation (graph on the right) of the expression of the
transcription factor Nrf2, its targets (NQO1 and HO-1) and Frataxin, in WT and KIKO NSCs. GAPDH was used for qPCR normalization, while Tubulin was used as
Western Blot loading control, ∗p < 0.05 and ∗∗p < 0.01.

signaling in KIKO NSCs, thus leading to suggest the transcription
factor as a potential early target of therapy.

SFN and EPI-743 Revert Phenotypic
Defects in KIKO NSCs and Promote
Neuronal Complexity and Differentiation
Following the drug-mediated rescue of Nrf2 function, we
evaluated the effect of EPI-743 and SFN on KIKO NSCs

ROS production (Figure 2A). Both treatments consistently
reduced ROS overload, either in proliferating condition or
during the differentiation process, thus re-balancing the
cellular redox environment. Prompted by these results and
by previous studies showing that the Nrf2 activation restored
neurites’ network and axonal re-growth in FRDA silenced
neurons (Piermarini et al., 2016; Petrillo et al., 2017), we
asked if Nrf2 induction was able to rescue the phenotypic
defects observed in KIKO NSCs. As evidenced by growth
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FIGURE 3 | Antioxidant treatment increases NRF2 and downstream gene expression in proliferating and differentiated NSCs. (A) qPCR and (B) Western Blot
analysis with relative densitometric quantification (B graphs on the right) of NRF2, NQO1 and HO-1 expression in WT and KIKO NSCs cultured in proliferating
conditions and treated for 2, 6, and 24 h with 1 µM EPI-743 or 5 µM SFN. qPCR analyses (C) and Western Blot experiments (D) of NRF2, NQO1, and HO-1 mRNA
and protein expression levels in differentiated WT and KIKO NSCs treated or not with 1 µM EPI-743 or 5 µM SFN during the differentiation protocol. GAPDH was
used for qPCR normalization, Tubulin was used as Western Blot loading control. ∗p < 0.05 and ∗∗p < 0.01 vs. WT. #p < 0.05, ##p < 0.01, and ###p < 0.001 vs.
vehicle-treated KIKO.

curves (Figure 4A) and clonogenic assays (Figure 4B), both
SFN and EPI-743 treatments trigger a positive effect on
proliferation (1.7-fold increase) and stemness potential (1.4-
fold increase) in KIKO NSCs culture, compared to untreated
KIKO NSCs, although this rise was not enough to reach the
statistical significance.

Moving from the data reported in Figure 1C, showing a
consistent increase of spontaneous differentiation events in

KIKO NSCs accompanied by a reduction of neuronal complexity,
we further tested the efficacy of SFN and EPI-743 on KIKO NSCs
neuronal morphology and differentiation rate (Figure 4C).

When chronically administrated, EPI-743 and SFN re-
established a proper differentiation index in KIKO NSCs, leading
to a 28 and 30% decrease of differentiating events, respectively
(Figures 4D,E). A re-organization of neurites’ network was also
evidenced following treatments, with a significant increase of
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FIGURE 4 | Antioxidant treatment partially re-establishes KIKO NSCs differentiation program toward neuronal lineage. (A) ROS determination in WT and KIKO NSCs
treated with 1 µM EPI-743 or 5 µM SFN or vehicle in proliferating condition (left graph) or after differentiation (right graph). The fluorescence produced by the
oxidation of DCF was normalized for cell number. (B) Analysis of WT and KIKO NSCs proliferation, assessed by growth curve over 1, 3, and 5 days of culture in
proliferating condition and after treatment with 1 µM EPI-743 or 5 µM SFN. (C) Clonogenic assay of WT and KIKO NSCs cultured in proliferating condition and
treated with 1 µM EPI-743 or 5 µM SFN or vehicle. Clonogenicity was expressed as the ratio between counted neurospheres and plated cells. (D) Representative
images of immunofluorescence assay to evaluate NSCs differentiation toward neuronal lineage (Tuj-1 positive cells) in WT and KIKO NSCs treated with vehicle, 1 µM
EPI-743 or 5 µM SFN. The graph in panel (E) represents measurements of Tuj-1 positive cells number (mean ± SD). (F) Analysis of WT and KIKO neuronal
complexity, assessed by evaluating average neurites’ length (left), average neurites’ number (center), and average branching level (right) in samples treated or not
with 1 µM EPI-743 or 5 µM SFN along the differentiation protocol. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 vs. WT. #p < 0.05, ##p < 0.01, and ###p < 0.001 vs.
vehicle-treated KIKO. Scale bars = 100 µm.

neurites’ length (2.4-fold increase with EPI and 2.2-fold increase
with SFN) and neurites’ number (1.6-fold after EPI and 1.8-fold
after SFN) (Figure 4F).

These findings show that the drug-mediated Nrf2 activation
contributes to a partial recovery of the neuronal morphology
and differentiation process in KIKO NSCs. Thus, also based on
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the evidence of the pre-symptomatic Nrf2 impairment in KIKO
mouse model, we believe that this study paves the way for Nrf2 as
an early drug target for FRDA.

DISCUSSION

Although FRDA clinical symptoms manifest between the
first and the second decade of life, patients are exposed to
frataxin deficiency since development (Bürk, 2017), thus pre-
symptomatic defects may contribute to determine the onset and
the worsening of FRDA phenotype (Cossée et al., 2000; Santos
et al., 2001; Georgiou-Karistianis et al., 2012; Rezende et al., 2016;
Selvadurai et al., 2018). Based on this assumption, the evaluation
of early pathological changes may be essential to understand
the pathogenesis of the disease and to identify new targets for
innovative early therapies.

In most cases, indeed, brain samples used for analysis are
available from late-stage individuals, thus evidences of early
pathological changes can be lost during the disease progression.
In this regard, KIKO FRDA mice represent a very useful
model to analyze defects in the pre-symptomatic stage of the
pathology, because they display a slowly evolving phenotype
such as in patients’ disease progression, while biochemical
and functional brain defects arise earlier (Lin et al., 2017a,b;
McMackin et al., 2017; Cotticelli et al., 2019). Furthermore, unlike
the lethal prenatally models in which frataxin is completely
depleted and the neuron-specific knockouts showing a too
severe early onset phenotype (Cossée et al., 2000; Simon
et al., 2004), KIKO mice display frataxin levels close to
patients’ values (20–30% of control levels) (Sahdeo et al., 2014;
Lazaropoulos et al., 2015), and neurological signs (i.e., cerebellar
gait ataxia, decreased peripheral sensitivity, and motor strength
impairment) resembling those occurring in late-onset FRDA
patients (McMackin et al., 2017). These neuro-pathological
symptoms arise upon the 9th month of life in the KIKO
mouse (McMackin et al., 2017), while the deregulation of
cerebellar synaptic circuits (Lin et al., 2017b) and mitochondrial
impairments (Lin et al., 2017a) occur already at asymptomatic
ages of 1st and 3rd months, respectively. Therefore, as reported
for other neurodegenerative diseases (Shirendeb et al., 2012; Cai
and Tammineni, 2016), we hypothesize that early dysfunctions
may be responsible for the onset of FRDA and contribute to
address the pathological evolution of the disease.

In light of this, we analyzed NSCs isolated from the cortex of
13.5 days embryonal life (E) of KIKO mice, in order to highlight
weather defects were present already during neurogenesis. We
investigated the morphological and biochemical phenotype of
KIKO NSCs and their proliferative and stemness potential.

Our findings show proliferation and clonogenic defects,
premature neuronal differentiation and loss of neuronal
complexity in E13.5 KIKO NSCs (Figures 1A–D), thus
suggesting that frataxin deficiency could induce defects already
during neurodevelopment in FRDA and potentially lead to
impairments in the white/gray matter structure and connectivity
observed in patients (Georgiou-Karistianis et al., 2012; Zalesky
et al., 2014; Harding et al., 2016; Rezende et al., 2016).

A tight control of NSCs proliferation, stemness potential and
differentiation is critical for a proper brain development (Sun
and Hevner, 2014; Taverna et al., 2014), and defects perturbing
this balance can lead to the premature exhaustion of stem cells
pool, determining the reduction of cortical thickness (Sun and
Hevner, 2014; La Rosa et al., 2016). In line with this, two recent
studies show thickness and volumetric reduction of cortical
lobes in FRDA patients (Rezende et al., 2016; Selvadurai et al.,
2016), thus supporting our hypothesis according to which the
defects we observed in “in vitro” KIKO NSC could resemble the
impairments that determine alterations in patients.

Neural stem cells strictly depend on low oxidative
environment to maintain their stemness capability (Khacho
et al., 2019), and the switch between glycolytic and oxidative
metabolism determines an increase of oxidative species that
drives the differentiation process (Tormos et al., 2011; Khacho
et al., 2016; Zhou et al., 2016). As frataxin deficiency has
been reported to enhance production of cellular free radicals
in patients and in KIKO cells (Abeti et al., 2018) and Nrf2
deficiency has been described in post-natal FRDA tissues and in
frataxin-silenced motor neurons (D’Oria et al., 2013; Piermarini
et al., 2016; Petrillo et al., 2017), we evaluated if KIKO NSCs
exhibit Nrf2 impairment during neurogenesis. Importantly, the
expression of Nrf2 and two target genes (HO-1 and NQO1)
is down regulated in KIKO NSCs, respect to the WT NSCs
(Figures 1E,F), evidencing a defective antioxidant response in
FRDA already at early stages of the disease.

Nrf2 is a key factor in neurogenesis regulation, and redox
signaling is crucial in nervous system development (Zhao et al.,
2009; Kärkkäinen et al., 2014; Olguín-Albuerne and Morán,
2018). Thus, the decrease of Nrf2 levels we detected in KIKO
NSCs could be responsible for the reduction of their proliferation
and stemness potential, allowing an anticipated differentiation
program to take place (Figures 1A–C). Notably, it has been
previously reported that in the neurogenic niches of the adult
brain, the progressive reduction of Nrf2 expression in the
stem cell pool correlated with the age-dependent decline of
neural progenitors, whereas its overexpression improved NSCs
proliferation and regeneration (Zhao et al., 2009; Corenblum
et al., 2016). Therefore, the deregulation of Nrf2 expression,
evidenced in KIKO NSCs, may underlie the loss of stemness
potential and the increased cell differentiation toward the
neuronal lineage. Moreover, as in frataxin-silenced neurons the
Nrf2-mediated redox imbalance leads to structural impairments
and axonal degeneration (Petrillo et al., 2017), we believe
that the decrease of Nrf2 expression in KIKO NSCs may
also be responsible for defects in the neuronal maturation
and in the reduced neuronal complexity (Figure 1D). This
reduced Nrf2 expression could contribute to explain the recent
hypothesis by which the DRG of FRDA patients undergo an
early neuronal hypoplasia participating to the late pathologic
neuro-degenerative process (Koeppen et al., 2017).

Finally, as no effective therapies have been currently approved
for FRDA and the Nrf2 activation was neuroprotective in models
of Parkinson’s disease and in multiple sclerosis (Benarroch,
2017), we treated KIKO NSCs with two Nrf2 inducers
(SFN and EPI-743), known to be effective in frataxin-silenced
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motor neurons (Piermarini et al., 2016; Petrillo et al., 2017) and in
chronic neurodegenerative diseases (Martinelli et al., 2012; Sadun
et al., 2012; Chicani et al., 2013; Tarozzi et al., 2013; Sun et al.,
2017; Zhang et al., 2017; Hou et al., 2018; Morroni et al., 2018;
Panjwani et al., 2018; Zesiewicz et al., 2018; Zhao et al., 2018).

Both SFN and EPI-743 treatments partially restore
proliferation and clonogenicity of KIKO NSCs, although
physiological levels were not fully reached (Figures 4A,B).
Technical limitations in NSCs culture conditions could explain
this partial result. NSCs grow as cellular aggregates and, as
the growth of the sphere increases, this makes difficult for
compounds reaching cells residing inside the spheres. Thus, it
is possible that the drugs’ effect on proliferation and clonogenic
potential occurs in the first days of culture, but becomes less
effective as the culture grows. Nevertheless, when SFN and EPI-
743 were administrated on spread-cultured differentiating NSCs,
a significant rescue of the KIKO NSCs defective phenotype
was observed (Figures 4C–E), demonstrating that a balanced
Nrf2 signaling axis is required so that a proper differentiation
process takes place.

Overall, our study highlights two main findings: (1) the
Nrf2 signaling pathway is impaired in the pre-clinical KIKO
NSCs model; (2) the reduced expression of frataxin leads to
phenotypic defects that are partially restored upon drug-driven
Nrf2 induction. These findings, besides confirming pathological
hallmarks in KIKO NSCs, provide evidences of up-stream
neurogenesis defects occurring in FRDA.

It is also important to note that the premature exhaustion
of NSCs pool during fetal neurogenesis, due to reduced
proliferation and self-renewal together with the increase
of neuronal differentiation, may contribute to defects in
cortical thickness (La Rosa et al., 2016), thus potentially
determining cerebral and cerebellar abnormalities reported
in FRDA patients (Selvadurai et al., 2016, 2018). Future
studies are needed to “in vivo” validate our findings
on brain tissues obtained from post-natal KIKO mice,
in order to evaluate if neurogenesis deficits may impact

on clinical symptoms. This should be of paramount
importance for early intervention possibly targeted to
Nrf2 activation, taking advantage of highly feasible and
tolerable treatments.
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