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Single cell transcriptomic landscape of diabetic
foot ulcers
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Bhakti Dwivedi3, Teresa Sandoval-Schaefer4, Ruxandra F. Sîrbulescu 5, Antonios Kafanas6, Ikram Mezghani1,
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Swati S. Bhasin 2, Aristidis Veves 1,10✉ & Manoj Bhasin2,10✉

Diabetic foot ulceration (DFU) is a devastating complication of diabetes whose pathogenesis

remains incompletely understood. Here, we profile 174,962 single cells from the foot, fore-

arm, and peripheral blood mononuclear cells using single-cell RNA sequencing. Our analysis

shows enrichment of a unique population of fibroblasts overexpressingMMP1, MMP3, MMP11,

HIF1A, CHI3L1, and TNFAIP6 and increased M1 macrophage polarization in the DFU patients

with healing wounds. Further, analysis of spatially separated samples from the same patient

and spatial transcriptomics reveal preferential localization of these healing associated

fibroblasts toward the wound bed as compared to the wound edge or unwounded skin.

Spatial transcriptomics also validates our findings of higher abundance of M1 macrophages in

healers and M2 macrophages in non-healers. Our analysis provides deep insights into the

wound healing microenvironment, identifying cell types that could be critical in promoting

DFU healing, and may inform novel therapeutic approaches for DFU treatment.
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D iabetic foot ulceration (DFU) is a major problem in dia-
betic patients as more than 15% of them are expected to
develop DFUs within their lifetime. DFUs significantly

impair quality of life, lead to prolonged hospitalization, and result
in more than 70,000 lower extremity amputations per year in the
USA alone1. Notably, more than half of the patients undergoing
amputation due to DFU are expected to die within 5 years, a
mortality rate which is higher than most cancers2. With the
expected increase of Diabetes Mellitus (DM), DFUs will represent
an even bigger burden for health systems worldwide and may
prove to be one of the costliest diabetes complications3.

Impaired wound healing leading to the development of chronic
wounds in diabetic patients manifests exclusively in the foot in
the presence of neuropathy and/or vascular disease4,5. Various
cell types, including endothelial cells, fibroblasts, keratinocytes,
and immune cells play an important role in the wound healing
process, but little is understood about their involvement in
impaired wound healing in DFU. Dissecting cell differences
within the foot ulcers between DFU patients whose ulcers heal
and those who fail to heal and go on to develop a chronic ulcer,
the differences between DM patients and non-DM healthy con-
trols, and the differences between foot with DFU and intact
forearm skin in both DM and healthy subjects, along with dif-
ferences in blood immune cells, can considerably increase our
understanding of DFU pathogenesis/healing.

Single-cell RNA-sequencing (scRNASeq) analysis provides
deep insight into cell function and disease pathophysiology by
allowing the profiling of the transcriptome landscape of indivi-
dual cells in heterogeneous tissues. Currently, scRNASeq is widely
used in the complex ecosystems of various cancers to map their
microenvironment and discover molecular mechanisms and
therapeutic targets6, and concerted efforts of the human cell atlas
initiative aim to fully profile all tissues of the human body7. Initial
studies in our groups have reported that DM and DFU patients
have increased inflammatory cells and different fibroblast clusters
with a distinctive injury response-associated gene expression
profile, which is believed to be the result of DM related chronic
inflammation8. Spatial transcriptomics (ST) is a more recent
method that enables the visualization and quantitation of the
transcriptome in individual tissue sections, retaining spatial
molecular information unlike scRNASeq9.

In the present study, we primarily focused on differences
between DFU patients whose ulcers heal (DFU-Healers) and
those who don’t heal (DFU-Non-healers) within 12 weeks. We
hypothesize that diabetic patients with impaired wound healing
have aberrant gene and protein expression profiles that lead to
dysregulation of epithelial remodeling and inflammation path-
ways. To this end, we investigated the molecular changes via
scRNASeq analysis of DFUs and forearm skin biopsies, and
peripheral blood mononuclear cells (PBMCs) from patients with
healing and non-healing DFUs. As control group we also per-
formed scRNASeq analysis of the foot and forearm biopsies and
PBMCs from DM patients with no DFU, and healthy non-DM
patients. We also studied different sites of a chronic wound
(wound site, wound periphery, and healthy skin) to validate our
findings. We finally employed immunostaining and ST on DFU
sections, as well as performed in vitro experiments to confirm our
most striking findings associated with DFU wound healing.

Results
DFU healing is significantly associated with a subset of fibro-
blasts. To identify local and systemic factors associated with DFU
healing, we examined the cellular landscape of DFUs by
scRNASeq analysis of skin specimens from DFU, foot, forearm,
and PBMC samples. We analyzed 54 samples from 17 diabetic

patients (11 with and 6 without DFU) and 10 healthy non-DM
subjects. The study cohort, objectives, and analysis strategy are
outlined in Fig. 1a. In total, we sequenced 174,962 cells (94,325
from foot, 37,182 from the forearm, and 43,455 from PBMC
samples) and created a gene expression matrix for each cell,
which we used to perform dimensionality reduction by UMAP
and graph-based clustering, thereby identifying 37 orthogonal
clusters of cells. The expression of established cell-specific marker
genes assisted in the annotation of these 37 cell clusters into 21
distinct cell types (Fig. 1b, c). We identified most of canonical cell
types observed in the human skin10,11 and PBMCs12, namely:
smooth muscle cells, SMCs (TAGLN+, ACTA2+); fibroblasts,
Fibro (DCN+, CFD+); vascular endothelial cells, VasEndo
(ACKR1+); T-lymphocytes, T-lympho (CD3D+); CD14+ mono-
cytes, CD14-Mono (CD14+, S100A9+); differentiated keratino-
cytes, DiffKera (KRT1+, KRT10+); basal keratinocytes, BasalKera
(KRT5+, KRT14+); natural killer cells, NK (CCL5+, GZMB+);
NK and T cells, NKT (CD3D+, CCL5+); CD16+ monocytes,
CD16-Mono (FCGR3A+/CD16+); M1 macrophages, M1-Macro
(IL1B+); M2 macrophages, M2-Macro (CD163+); melanocytes
and Schwann cells, Melano/Schwann (MLANA+, CDH19+);
sweat and sebaceous gland cells, Sweat/Seba (DCD+); lymphatic
endothelial cells, LymphEndo (CCL21+), erythrocytes, Erythro
(HBB+); dendritic/Langerhans cells, DCs (GZMB+, IRF8+); B-
lymphocytes, B-lympho (CD79A+, MS4A1+); plasma cells,
Plasma (MZB1+), and mast cells, Mast (TPSAB1+) (Fig. 1c).
Comparative analysis of cell type abundance revealed substantial
variations in the enrichment across clinical groups (Fig. 1d).
Statistical analysis on cellular abundance showed significant
variation for HE-Fibro, NKT, plasma and erythrocytes among the
clinical groups (Supplementary Fig. 1). The enrichment of mast
cells in non-diabetic subjects is in agreement with our previous
work demonstrating excessive degranulated mast cells in diabetic
skin, which could affect their ability to survive enzymatic diges-
tion and sequencing13. Erythrocytes were increased in DFU-Non-
healers, most probably due to insufficient RBC lysis during
sample processing. Plasma cells were also enriched in DFU-Non-
healers, reflecting a possible link of B-lymphocyte differentiation
with non-healing wounds. Interestingly, our analysis showed
significant heterogeneity in the transcriptome profile of fibro-
blasts and identified a unique population of fibroblasts that were
overrepresented in the samples from DFU-Healers (Fig. 1b, d).
We will refer to these as Healing Enriched-Fibroblasts, HE-Fibro,
in the rest of the article. Further, the gene signature for each cell
cluster was defined by comparing the expression profile of the
target cluster with the rest of cells based on non-parametric
Wilcoxon Rank Sum test (P-value <0.01 and Fold Change >2)
(Fig. 1e). In-depth analysis of the HE-Fibro cell cluster revealed
high expression of multiple extracellular matrix (ECM) remo-
deling (MMP1, MMP3) and immune/inflammation (CHI3L1,
TNFAIP6) associated genes (Fig. 1f). MMP1 (Matrix Metallo-
proteinase-1) interacts with CD49b14,15, an integrin alpha subunit
involved in cell adhesion and cell-surface-mediated signaling in
T, NK, and NKT cells16, fibroblasts, and platelets. CHI3L1
(Chitinase-3-Like Protein 1) is a secreted glycoprotein that has
been previously associated with pathogenic processes related to
inflammation and ECM remodeling17. TNFAIP6 (tumor necrosis
factor alpha induced protein 6) is known to be involved in ECM
stability and cell migration, and its expression is correlated with
proteoglycan synthesis and aggregation18. This protein has shown
anti-inflammatory effects in various models of inflammation,
which suggest that it is a component of a negative feedback loop
capable of downregulating the inflammatory response19. The
distinct and previously undescribed subtype or state of fibroblasts,
HE-Fibro, with overexpression of matrix remodeling, immune
and inflammatory genes, may contribute to successful wound
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repair in DFU-Healers. The top 10 overexpressed genes from the
annotated cell clusters are included in Supplementary Dataset 1.

Exploring cellular heterogeneity across different anatomical
sites. To assess tissue specific cellular heterogeneity along with
gene expression and molecular pathway alterations, we generated
the UMAP rendering split based on foot, forearm, or PBMC
samples (Fig. 2a). The analysis depicted significant variations in
the abundance of cell types based on anatomical sites (Fig. 2b).

Fibroblasts, smooth muscle cells, melanocytes, sweat gland cells,
vascular and lymphatic endothelial cells were enriched in the foot
samples. The analysis on keratinocytes revealed a predominance
of basal and differentiated keratinocytes in the foot and forearm
samples, respectively (Fig. 2a, b). Interestingly, 99.94 ± 1.58%
(mean ± stderr) of HE-Fibro cells, were identified in the foot
samples (Fig. 2a, b, Supplementary Table 1), indicating that these
are foot specific cells. The analysis demonstrated that a significant
fraction of immune cells was contributed by the PBMC samples.
CD14+ (98.47 ± 1.06%) and CD16+ (99.63 ± 1.11%) monocytes
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were observed predominantly in the PBMC samples. Dendritic,
NK and NKT cell populations were also predominantly present in
PBMC samples. The highest abundance of M2 macrophages
(71.28 ± 1.27%) and mast cells (82.51 ± 1.49%) was observed in
the foot samples, with lower proportions in the forearm samples,
and the lowest in the PBMCs. On the adaptive immune system
side, 31.27 ± 0.27% of T-lymphocytes came from the foot sam-
ples, 12.42 ± 0.35% from the forearm, and the remaining
56.31 ± 1.21% from the PBMCs (Fig. 2b, Supplementary Table 1).
In contrast, more than half of plasma cells were derived from foot
(66.01 ± 1.89%), and the remaining were almost equally propor-
tioned between forearm and PBMCs. Most of B-lymphocytes
(84.49 ± 1.63%) originated from PBMCs.

To more closely examine the gene expression landscape of cells
with differential abundances between foot and forearm i.e.,
fibroblasts and keratinocytes, we performed comparative analysis
on their transcriptome profiles (Fig. 2c–f). The foot fibroblasts
exhibited upregulation of multiple genes associated with ECM
remodeling and immune response. This may be attributed to the
enrichment of HE-Fibro population in the foot samples (Fig. 2c).
Genes that were overexpressed in foot fibroblasts include the gene
for Wnt signaling antagonist, secreted frizzled-related protein 4
(SFRP4) and genes directly related to ECM organization, asporin
(ASPN) and tenascin C (TNC). Wnt signaling is crucial for
effective wound healing20,21 and its modulation is closely linked
with TGFβ expression22, which is in line with the enhanced
expression of TGFB1 in these fibroblasts. Tenascin C is known to
upregulate TGFB1 as well as promote expression of type I
collagen in fibroblasts, which is essential for maintaining ECM
integrity22. The cellular development (TSPAN8, WIF1) and
immune cell trafficking (CCL19) related genes were significantly
overexpressed in the fibroblasts from the forearm (Fig. 2c).
Pathway analysis on the foot fibroblasts’ differentially expressed
genes (DEGs) revealed significant (P value <0.01) activation of
ILK, leukocyte extravasation signaling, RhoA signaling, and actin
cytoskeleton signaling (Fig. 2d). The comparative analysis
between foot and forearm keratinocytes showed significant
upregulation of basal (KRT6A, KRT16, KRT17) and differentiated
(KRT2, KRT10) keratinocyte associated genes in the foot and
forearm samples, respectively (Fig. 2e). This discrepancy can be
explained by the fact that forearm biopsies represent unwounded
tissues with fully stratified epidermis, as opposed to foot samples
that include DFUs with partially formed epithelium, and
therefore fewer differentiated keratinocytes. Moreover, the
differences between plantar glabrous skin and forearm hairy skin
could contribute to the disparity23. In addition to upregulation of
alarmins like KRT6A/16/17 in the foot samples24, we also
observed upregulation of inflammatory molecules including

S100A8 and S100A9, known to activate the immune system in
response to skin injury25. Further pathway analysis on foot
keratinocyte DEGs uncovered significant activation of immune
and inflammatory pathways including ILK and IL-8 signaling
(Fig. 2f).

Systemic dysregulations revealed by comparative analyses of
PBMCs across clinical groups. To better understand the impact
of DFU at a systemic level, we performed separate analysis on
PBMC samples alone from the four clinical groups, viz Healthy
(healthy subjects without DM), DFU-Healer (DM patients with
healing DFUs), DFU-Non-healer (DM patients with non-healing
DFUs), and Diabetic (DM patients without DFU) (Fig. 3a). The
cell annotation was done using well-established marker genes
(Supplementary Fig. 2). The DFU-Healers were observed to have
higher proportions of naive and early differentiated progenitor T-
lymphocytes, T-lympho, expressing CCR7, shown to have a role
in activation of various T-cell subsets26 (Fig. 3b). On the other
hand, DFU-Non-healers had a higher proportion of cytotoxic
NKT cells (IL7R, GZMB, KLRD1), indicating a shift in T-cell
subpopulations correlating with DFU healing (Supplementary
Fig. 3). We observed statistically significant higher CCR7+

T-lympho cells to NKT cells ratio (P value < 0.01) in the DFU-
Healers as compared to DFU-Non-healers and DM patients
without DFU, indicating the association of these T-cells with
successful wound healing (Fig. 3b). A significantly higher pro-
portion of CCR7+ CD8+ T cells (cluster CD8T2 in Fig. 3a) was
also observed in DFU-Healers as compared to DFU-Non-healers
(Fig. 3c). Further DEGs analysis on these T-lympho, CD8T2 and
NKT cells indicated overexpression of T-cell-specific genes like
IL7R, TCF7, and CCR7 in the DFU-Healers, whereas DFU-Non-
healers overexpressed NKT lineage genes like NKG7, GNLY,
CCL5, and KLRD1 (Fig. 3c). Pathway analysis on these T/
NKT cells DEGs demonstrated inhibition of key immune and
inflammation pathways including IL-6, IL-8, CD28 Signaling in T
helper cells, and iCOS-iCOSL pathways and activation of
RhoGDI and EIF2 signaling in the DFU-Healers, as compared to
DFU-Non-healers at the systemic level (Fig. 3d). Further systems
biology analysis revealed inhibition of several upstream regulators
of immune pathways including CD44, TGFB1, CCL5, and
NFKBIA in the T-cells from PBMCs of patients with healing
DFUs (Fig. 3e). This was in accordance with the observed reduced
gene expression of NFKBIA, CCL5, and TGFB1 in DFU-Healers
compared to high expression in DFU-Non-healers (Fig. 3f). In
aggregate, these results underscore the enrichment of naive
T-cells with a prevalence of immune inhibitory pathways and
processes for DFU-Healers, and a state of chronic inflammation
for DFU-Non-healers, at the systemic level.

Fig. 1 Single-cell RNA sequencing mediated identification and characterization of unique healing enriched fibroblasts in diabetic foot ulcers (DFUs).
a Schematic overview of the study design and number of samples per clinical group. b Uniform Manifold Approximation and Projection (UMAP)
embedding of the entire dataset consisting of 174,962 cells. The cells are colored by orthogonally generated clusters, and labeled by manual cell type
annotation (HE-Fibro: healing enriched fibroblasts, Fibro: fibroblasts, SMCs: smooth muscle cells, BasalKera: basal keratinocytes, DiffKera: differentiated
keratinocytes, Sweat/Seba: sweat and sebaceous gland cells; Melano/Schwann: melanocytes and Schwann cells; Mast: mast cells; VasEndo: vascular
endothelial cells; LymphEndo: lymphatic endothelial cells; CD14-Mono: CD14+ monocytes, CD16-Mono: CD16+ monocytes, M1-Macro: M1 macrophages,
M2-Macro: M2 macrophages, Erythro: erythrocytes, NK: natural killer cells, T-Lympho: T-lymphocytes, NKT: NK cells and T lymphocytes; B-Lympho:
B-lymphocytes, Plasma: plasma cells, DCs: dendritic cells). Dotted lines are drawn around cell groups of similar lineages. c Dot plot showing expression of
different cell type-specific marker genes, used to annotate the cell types. Size of dots indicates percentage of cells in each cell cluster expressing the marker
gene; color represents averaged scaled expression levels; cyan: low, red: high. d Stacked bar plots showing the proportion of different cell types across the
four clinical groups. Green: Healthy subjects, orange: DFU-Healers, red: DFU-Non-healers, purple: Diabetic patients. Cell types with significant differences
among the clinical groups are marked with an asterisk. The bar plots for individual cell types are presented in Supplementary Fig. 1. e Heatmap showing the
top highly expressed (red) genes in each of the cell clusters. f Feature plots depicting the expression of key genes (I) MMP1, (II) MMP3, (III) CHI3L1, (IV)
TNFAIP6, that were significantly overexpressed in the healing enriched fibroblasts associated with healing of DFUs. The schematic on (a) was created with
BioRender (BioRender.com).
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T, NK, and NKT cells exhibit distinct cell subpopulations in
DFU-Healers and DFU-Non-healers. The focused sub-clustering
analysis on the T, NK, and NKT cell populations identified 17 sub-
clusters (Supplementary Fig. 4a). CD4+ (sub-clusters 0, 4, 10) and
CD8+ (sub-cluster 14) naive T-cells (CCR7+, LEF1+), that can

self-renew and proliferate readily into other T-cells, were enriched
in DFU-Healers (Supplementary Figs. 4b, c and 5c, d). Cluster 6,
CD8+ effector T cells (CCL5+, GZMB+, IL32+, GZMK+), enri-
ched in DFU-Healers, also expressed higher levels of CD27, a key
molecule in generation and maintenance of T-cell immunity27.
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NKT (CD8+, CCL5+, GZMB+, IL32+, GZMH+) cells sub-
clusters 5 and 7 were enriched in Diabetic and DFU-Non-healer
groups, respectively (Supplementary Figs. 4a, b and 5c, d). The
DFU-Non-healer enriched sub-cluster 7 also had high expression
of T-cell exhaustion marker, TIGIT (Supplementary Fig. 5d).
Sample site-specific split t-SNE plots revealed separate clustering
of T, NKT and NK cells from skin and PBMCs (Supplementary
Fig. 5a). Sub-clusters 1, 2, 9, 11, and 13, expressing activation
markers CD69 and CD44 were largely made up of skin samples

derived from foot (Supplementary Fig. 5a–d). Clusters 1 and 9
were positive for T-cell exhaustion markers (TIGIT+, HAVCR2+,
LAG3+) (Supplementary Fig. 5c). In PBMCs, DFU-Healers
appeared to have more non-polarized central memory and naive
T-cells (Supplementary Fig. 4b, c; Supplementary Fig. 5). CD27
which characterizes central memory T-cells that lack immediate
cytotoxicity28, was also more in the DFU-Healers (Supplementary
Fig. 5c). In contrast, DFU-Non-healers were enriched with
cytotoxic NKT cells (cluster 7), expressing GZMH, GZMA, and
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GZMB (Supplementary Figs. 4b and 5c). These granzyme
molecules have been previously implicated in impaired wound
healing development by promoting chronic inflammation,
vascular dysfunction, and reduced cell adhesion29. We also
observed a unique CD4+ cluster (cluster 10, Supplementary
Fig. 4a) that was predominantly present in DFU-Non-healers
and enriched for GIMAP1 and GIMAP4, both shown to be
implicated in T helper cell differentiation towards the Th1
lineage30. In the Diabetic group, a GZMH+, GNLY+, and
CCL5+ expressing cluster (cluster 5) was prominent, pointing
toward the presence of specialized DM associated NKT cells.
CCL5/RANTES, a potent chemoattractant of immune cells, has
been reported to be strongly downregulated in DFUs compared
to acute wounds, and could represent a potential therapeutic
target31. In summary, while skin samples derived T/NKT cells
did not show significant differences between DFU-Healers and
DFU-Non-healers, potentially due to the low number of
recovered T-cells, a definitive enhancement of naive T-cells
was seen in PBMCs of DFU-Healers compared to more
cytotoxic NKT cells in DFU-Non-healers.

Analysis of foot ulcer cells reveals the significance of localized
inflammation in diabetic wound healing. To map the tran-
scriptome and cellular landscape of the site for DFUs, we per-
formed focused analysis on single-cell profile of 94,325 cells
from 26 foot samples. Split UMAP analysis indicated differential
abundance of cell types among the four clinical groups (Fig. 4a,
Supplementary Fig. 6). The DFU-Healers had a significantly
higher number of HE-Fibro cells (P value <0.05) as compared to
DFU-Non-healers, Diabetic patients and non-DM healthy
controls (Fig. 4b). Additionally, the DFU-Healer group also
showed a significantly higher proportion of M1 macrophages
(classically activated macrophages that promote inflammation)
than M2 macrophages (alternatively activated macrophages with
anti-inflammatory properties), as opposed to DFU-Non-healers
(Fig. 4c). Also, a group of SMCs, SMC2, with overexpression of
proliferation markers CENPF, PTTG1, MKI67, and TOP2A was
significantly enriched in DFU-Healers (Fig. 4d, Supplementary
Dataset 2), highlighting the presence of a highly proliferative
SMC cluster in healing DFUs. Other cell types also exhibited
variation across clinical groups but did not achieve statistical
significance due to intragroup variation among patients
(Fig. 4e). DEGs analysis on DFU-Healers vs. Non-healers and
M1 macrophages vs. M2 macrophages identified a signature
comprising of 195 genes that were differentially expressed in M1
macrophages from DFU-Healers (Fig. 4f). DFU-Healer enriched
macrophages overexpressed inflammatory genes including IL1B,
S100A8, and S100A9 to mount an acute inflammatory

response for promoting wound healing. On the other hand,
DFU-Non-healers macrophages overexpressed genes from the
complement system like C1QA/B/C, which are associated with
M2 macrophage-like anti-inflammatory responses32 (Fig. 4f).
Immunofluorescent staining of healing and non-healing DFUs
with pan-macrophage marker CD68, M1 markers IL1B and
S100A8 and M2 markers DAB2 and CD163 confirmed more M1
associated macrophages in DFU-Healers with both M1 markers
showing increased presence and more M2 macrophages in
DFU-Non-healers (Supplementary Fig. 7a–f).

Pathway analysis showed activation of the IL17 signaling
pathway, a known regulator of inflammatory response33, in DFU-
Healers (Fig. 4g). The upstream regulators activated in DFU-
Healers included HIF1A, TNF, STAT5a/b, TLR7, TLR9, and
IL17R/C (Fig. 4h), whereas SOX4, TGFB1, and NANOG, were
inhibited (Fig. 4i). Immunofluorescent staining with IL17 and
HIF1A antibodies showed a trend for more IL17+ cells (p= 0.06)
and higher HIF1A expression (p= 0.09) in DFU-Healers
(Supplementary Fig. 7g–i).

Similar analyses were also conducted on the forearm cells
(Supplementary Figs. 8a and 9). Differentiated keratinocytes
were enriched in DFU-Healers compared to DFU-Non-healers
(Supplementary Fig. 8b). We found that LGALS7 or Galectin-7,
which has been previously implicated in keratinocyte migration
during re-epithelialization of wounded epidermis34, was the top
differentially expressed gene in the forearm keratinocytes of
DFU-Healers (Supplementary Fig. 8c).

Healing associated fibroblasts drive DFU healing by promoting
matrix remodeling and inflammatory response. To further
delineate the role of fibroblasts in wound healing, we performed
focused analysis on fibroblasts that produced 14 sub-clusters,
representing different molecular states or subtypes of fibroblasts
(Fig. 5a, Supplementary Dataset 3 for top 10 marker genes). The
majority of sub-clusters showed distinct expression profiles
indicating heterogeneity in the fibroblast population (Fig. 5b).
Sub-clusters 0, 1, 2, and 5 comprised most of the cells from
unwounded skin. Sub-cluster 0 was characterized by the expres-
sion of reticular fibroblast markerMGP35 and multiple adipocyte-
associated genes (APOE, APOD, CFD), consistent with the
enhanced adipogenic potential of these cells36. Sub-clusters 2 and
5 contained cells expressing papillary fibroblast markers PTGDS,
APCDD1, and COL23A137,38, while sub-cluster 1 was enriched
for WISP2, PI16, SLPI, and SFRP2, which describe fibroblasts
residing both in the papillary and reticular dermis, and are
believed to contribute to ECM homeostasis39–41. The evaluation
of cellular makeup of clusters unveiled a higher proportion of
cells (58–90%) from DFU-Healers in specific sub-clusters; clusters

Fig. 3 Comparative transcriptome profiles analysis of PBMCs in different clinical groups, uncovering differences in systemic immune landscape
associated with wound healing response in DFUs. a UMAP dimensionality reduction embedding of PBMCs from DFU-Healers, DFU-Non-healers, Healthy
subjects, and non-DFU DM patients. The identified cell types were DCs: dendritic cells; VasEndo: vascular endothelial cells; T-lympho: T lymphocytes;
CD8T1: CD8+ T lymphocytes cluster 1; CD8T2: CD8+ T lymphocytes cluster 2; NK: natural killer cells; NKT: natural killer and T cells; B-lympho: B
lymphocytes; CD14Mono: CD14+ monocytes; CD16Mono: CD16+ monocytes. Dotted lines are drawn around cell groups of similar lineages. b Bar plots
showing percentage of T-lymphocytes (T-lympho) and CD8+ T lymphocytes cluster 2 (CD8T2) per percentage of NKT cells in the CD45+ subset of cells
across various clinical groups. DFU-healers depict significantly higher ratio of T-lympho and CDT2 cell cluster in comparison to DFU-Non-healers and
Diabetic. Data represent the mean and standard error of mean (SEM) values from n= 2 Non-Healers, n= 3 Healers, n= 2 Diabetic and n= 3 Healthy
subjects. p= 0.01 for Healers vs Non-Healers and p= 0.006 for Healers vs Diabetic in T-Lympho; p= 0.036 for Healers vs Non-Healers and p= 0.035 for
Healers vs Diabetic in CD8T2 using two-sided Welch’s t-test. c Heatmap showing significant DEGs in Healers compared to Non-healers in the T-lympho,
CD8T2 and NKT cell clusters. d Biological pathways that are significantly (P value < 0.01) activated (Z score >1.5) /inhibited (Z score <−1.5) in T-lympho,
CD8T2 cells of Healers in contrast to NKT cells of Non-healers. Activation and inhibition of key upstream regulators is shown in pseudo color, where blue
represents inhibition, and red represents activation. e Upstream regulatory molecules significantly inhibited (blue) in the T-lympho and CD8T2 cells of
Healers as compared to Non-healers at the systemic level. Legend shows shapes and lines annotation for the regulatory network. f Violin plots showing
expression levels of 3 key upstream regulator molecules NFKBIA, CCL5, and TGFB1, in the NKT, T-Lympho, and CD8T2 clusters.
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3, 4, 6, and 13. These four sub-clusters represent four hetero-
geneous states or subtypes of the HE-Fibro (Fig. 5a, marked area).
Further generation of gene signatures for these sub-clusters
revealed that cluster 3 was significantly enriched with cells
expressing genes related to ECM remodeling including MMP1
and MMP3 (Fig. 5b). Matrix metalloproteinases MMP1 and
MMP3 have been well-known early responders to tissue injury,
actively regulating the inflammatory phase of healing by

degradation of the ECM, stimulating leukocyte infiltration for
resolution of inflammation and transition to the proliferative
phase42. Cluster 4 exhibited overexpression of POSTN and ASPN
(Fig. 5b) that are associated with ECM signaling, adhesion and
migration. POSTN (Periostin) is a ligand for alpha-V/beta-3 and
alpha-V/beta-5 integrins and supports adhesion and migration of
epithelial cells43, and has been shown to play a regulatory role in
fibroblast proliferation and inflammation44,45. ASPN (Asporin) is
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an ECM protein that has been found to inhibit TLR2- and TLR4-
induced NF-κB activity and pro-inflammatory cytokine expres-
sion in macrophages46. TLR4 mediated inflammation drives the
synergistic effect of hypoxia and hyperglycemia on impairment of
diabetic wound healing47, hence overexpression of ASPN might
be an important determining factor for healing of DFUs. In a
recent study, a distinct ASPN and POSTN enriched cluster of
fibroblasts was described as mesenchymal and shown to have a
more reticular dermis localization40. These sub-clusters (3, 4, 6,
and 13) were also enriched with genes like IL6, CHI3L1,
PLA2G2A, and TIMP1, commonly associated with an inflam-
matory signature (Fig. 5b). Based on our analysis, we identified a
healing associated fibroblast signature consisting of ECM remo-
deling and inflammatory response-related genes: MMP1, MMP3,
IL6, CHI3L1, ASPN, POSTN, and PLA2G2A.

Further analysis of these fibroblasts revealed that IL6/TIMP1/
PLA2G2A and CHI3L1 transcripts were detected simultaneously
in ~38% of the cells suggestive of a common regulatory
mechanism in HE-Fibro. We also noticed that 99.8% of CHIL3L1
expressing cells exhibited significant expression of at least one of
the ECM remodeling genes including MMP1, MMP3, MMP11,
indicating a role of these genes in tissue repair. Based on these
preliminary results we posit that CHIL3L1 is one of the key
players in driving the healing phenotype of HE-Fibro by
expressing pro-inflammatory and ECM genes together to
improve wound repair. Several lines of evidence have previously
implicated CHI3L1 in dampening of chronic inflammation48,
promoting M1 macrophage activation49 and stimulating fibro-
blast proliferation50 and ECM remodeling51. DEGs analysis on
these DFU-Healers vs. other fibroblast clusters revealed some
ubiquitous markers (HIF1A, TNFAIP6) that are overexpressed in
HE-Fibro cells (Fig. 5).

Pathway analysis indicated the activation of multiple immune
and inflammatory pathways including IL6, HIF1A, and ILK
signaling in the fibroblasts from DFU-Healers (Fig. 5c). More-
over, upstream regulator genes like TNF, HIF1A, and IL6, were
activated (Fig. 5d) in the DFU-Healers. HIF1A (Hypoxia-
inducible factor 1-alpha) is a master-regulator that activates
multiple factors to enhance wound healing by promoting cellular
motility and proliferation, angiogenesis, re-epithelialization, and
cell survival52. HIF1A also upregulates IL6 expression by binding
to its promoter region53, thereby promoting inflammation and
cell proliferation.

IL6 is a pleiotropic cytokine that plays a vital role in wound
healing, as studies have shown delayed and impaired wound
closure in IL6 knockout mice54–56. It is noteworthy that in our
previous work with a large animal model of diabetic wound

healing57, IL6 levels post-injury were attenuated compared to
acute non-diabetic wounds, suggesting that increased IL6 is
advantageous for DFUs. Another notable gene in the molecular
interaction network is TNF (Fig. 5d), a potent pro-inflammatory
cytokine that has been previously implicated in the wound
healing process58, and is known to be elevated shortly after
wounding. TNF has also been shown to upregulate the expression
of MMP1 and MMP3 in human dermal fibroblasts via NFκB/p65
activation59. To corroborate the activation of central regulators
TNFA and IL6 at the protein level, we probed healing and non-
healing DFUs and measured the percentage of area stained to find
significantly higher IL6 expression (p= 0.001) and a trend for
higher TNFA expression (p= 0.08) (Supplementary Fig. 7j–l) in
DFU-Healers.

Deciphering communication among Healing associated fibro-
blasts. Further, to determine possible communication among
heterogeneous healing associated fibroblasts (HE-Fibro sub-
clusters 3, 4, 6, and 13; Fig. 5a), we performed ligand, receptor,
and target gene co-expression analysis using the NicheNetR
algorithm60. NicheNet predicts which ligands from one or more
cell population(s), termed “sender/niche”, will most likely affect
gene expression in interacting cell population(s), termed as
“receiver/target”. Also, this algorithm can predict which specific
target genes in the “receiver” cell populations are affected by the
predicted ligands in the “sender” cell population(s). As sub-
cluster 3 of the HE-Fibro was enriched in both inflammatory and
ECM remodeling genes (IL6, CHI3L1, MMP1), critical to the
healing process, it was selected as “sender” cell population to
generate ligand candidates, while the remaining HE-Fibro sub-
clusters (4, 6, and 13) were treated as receiver cells (Supple-
mentary Fig. 10). To filter out non-specific ligand and receptors,
we also included control fibroblast sub-clusters (0, 2, and 5),
enriched in healthy non-DM and diabetic without DFU patients,
as receiver cells. The analysis identified multiple ligands including
IL6, CCL2, and TIMP1 with high correlation between differential
expression of ligands in “sender” fibroblasts and their target genes
in the “healer” fibroblasts (sub-clusters 4, 6, and 13) but not in the
“control” fibroblasts (sub-clusters 0, 2, and 5) (Fig. 5e) This
indicates that fibroblasts from sub-cluster 3 are primarily inter-
acting with the other three sub-clusters of HE-Fibro subset
enriched in DFU-Healers rather than the “control” fibroblasts
subset enriched in healthy non-DM and diabetic with no-DFU
patients. FN1 was enriched in all the HE-Fibro sub-clusters (3, 4,
6, and 13), while IL6, MMP13, CCL2, PTGS2, and VEGFA were
enriched in only HE-Fibro sub-cluster 3 (Supplementary Fig. 11).

Fig. 4 Comparative analysis of transcriptome profiles of foot samples in the different clinical groups, elucidating differences in cell type composition,
gene expression, and biological pathways. a UMAP dimensionality reduction embedding of foot cells from DFU-Healers, DFU-Non-healers, Healthy
subjects, and non-DFU DM patients. The cellular clusters depicting significant enrichment in the healers are marked with blue asterisks. Dotted lines mark
cell groups of similar lineages. Comparative analysis depicted b HE-Fibro, cM1 macrophages, and d SMC2 cellular enrichment in the foot sample from DFU
healers. Data represent the mean and SEM values from n= 9 Healthy, n= 6 Diabetic, n= 7 Healer, and n= 4 Non-healer subjects. Two-sided Welch’s
t-test was used; p= 0.013 for Healthy vs Healers, p= 0.007 for Diabetes vs Healers and p= 0.006 for Healers vs Non-healers in (b); p= 0.026 for
Healthy vs Healers, p= 0.017 for Diabetes vs Healers and p= 0.042 for Healers vs Non-healers in (c); p= 0.005 for Healthy vs Healers, p= 0.002 for
Diabetes vs Healers and p= 0.02 for Healers vs Non-healers in (d). e Stacked bar plots showing the proportions of different cell types across the different
clinical groups (green: Healthy subjects, orange: DFU-Healers, red: DFU-Non-healers, purple: non-DFU DM patients). f Venn diagram analysis to compare
genes that are differentially expressed between M1 and M2 macrophages and between Healers vs. Non-healers. The comparison identified 195 genes that
are differentially expressed in M1 macrophages from DFU-Healers. Volcano plot showing the genes that are significantly differentially expressed (red dots)
in M1 macrophages of Healers (Benjamini–Hochberg corrected P-value <0.00001, FC > 1). g Selected biological pathways that are significantly (P value
<0.01) affected in the healing associated M1 macrophages. Each bar represents a pathway with significance of enrichment determined using the one-tail
Fisher’s exact t-test (−log10 P value is shown on primary X-axis). The directionality of each pathway is depicted using a pseudo color (red for activated,
blue for inhibited). Regulators that are significantly activated (h) and inhibited (i) in the M1 macrophages from Healers. The activation and inhibition of
pathways was measured based on Z-score calculation using the IPA platform.
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A heatmap displaying the connection between these key ligands
that are expressed by HE-Fibro sub-cluster 3 (rows) and marker
genes for the HE-Fibro sub-clusters (3, 4, 6, and 13) (columns) is
shown in Fig. 5f and Supplementary Fig. 12. For example, CCL2
overexpression in the “receiver” HE-Fibro sub-clusters can be
strongly predicted by the presence of IL6 in the “sender” HE-
Fibro sub-cluster, indicating possible molecular interaction

between them. The circos plot shows association between ligands
from “sender” cells, sub-cluster 3 (lower hemicircle), and DEGs in
“receiver” sub-clusters 4, 6, and 13 (upper hemicircle) (Fig. 5g,
Supplementary Fig. 13). The analysis identified IL6, MMP13,
CCL2, CXCL12, CTGF, TIMP1, and VEGFA as key regulatory
ligands in the HE-Fibro sub-cluster 3, altering the expression of
downstream target genes in the HE-Fibro sub-cluster 4, 6, and 13.
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These identified ligands and their downstream targets might be
responsible for the healing associated phenotype of HE-Fibro.
Based on enrichment and specific regulatory interaction among
HE-Fibro sub-clusters in DFU-Healers, we postulate that their
role consists of creating a beneficial physiological environment
for accelerated DFU healing.

RNA velocity analysis predicts differentiation of HE-Fibro to
other fibroblasts and SMCs. To gauge the transcriptional
dynamics of cell types of interest, we performed in silico trajec-
tory analysis by computing the RNA velocity of Fibro, HE-Fibro,
SMC, and M1- and M2-Macro cell populations in DFUs of
Healers and Non-healers. We observed that the DFU-Healers
cells were more fluid and interconnected, with distinct thick
bridges between SMC and HE-Fibro or Fibro, reflecting potential
transdifferentiation events. The analysis also predicted dual
transdifferentiation of HE-Fibro toward SMCs and fibroblasts, as
well as transdifferentiation of SMCs to macrophages.

Conversely, the DFU-Non-healers displayed more clearly
defined branches of cellular trajectory and weak differentiation
bridges among the cell types (Fig. 5h). Further, predicting the
individual cells latent times revealed universally lower latent times
for Healers cell types as compared to Non-healers cell
types (Supplementary Fig. 14), thereby substantiating our
hypothesis that Non-healers are stuck and fail to progress in
the wound healing cascade. The lower latent times predicted for
cell types from Healers indicate the likelihood that these cells are
in earlier stages of differentiation and more stem cell-like.

HE-Fibro display enrichment at the early recovery time point
in acute wounds. Our single-cell data identified significant
enrichment of HE-Fibro and M1-Macro in the DFUs that even-
tually healed (Fig. 4b, c). To explore this enrichment in sequential
wound samples during the healing process, we performed
enrichment analysis in a previously published microarray dataset
of acute wound healing61 by calculating a score based on the HE-
Fibro and M1-Macro gene signatures. The analysis revealed sig-
nificant enrichment of HE-Fibro (Adj. P-Value= <0.0001) and
M1-Macro (Adj. P-Value= <0.0001) at Days 4–8 post-injury
samples in comparison to healthy unwounded skin (Supple-
mentary Fig. 15), which correspond to the inflammation and
early proliferation stages of healing. We did not observe enrich-
ment of HE-Fibro and M1-Macro during the later phases of
wound healing. These results provide further evidence that DFU-
Healers exhibit a more acute-like response and have advanced
forward in the wound healing process. Thus, enrichment of HE-
Fibro and M1-Macro during the initial phases appears crucial for
successful wound healing.

Spatial transcriptomics and immunohistochemistry further
elucidate gene expression patterns in healing and non-healing
DFUs. We subsequently selected well-defined surgically excised
DFU sections from healers and non-healers for additional char-
acterization. They both displayed blood vessel proliferation and
chronic inflammatory cell infiltrates predominantly with peri-
vascular distribution (Fig. 6a, c). We stained for inflammatory
fibroblast markers, CHI3L1 and TIMP1, together with pan-
fibroblast marker fibroblast activation protein (FAP) and dis-
covered elevated numbers of triple-positive cells within the ulcer
area of healing DFUs, with the cells forming dense aggregates
(Fig. 6d). However, in the non-healing ulcers these cells were far
fewer and scarcely distributed (Fig. 6b). We also evaluated gene
expression using a spatial transcriptomics approach. The
GeoMx® platform enables spatial, high-plex quantitation of gene
expression in tissue through the use of in situ hybridization (ISH)
probes that target mRNA in tissue; attached to the probes are
photocleavable and indexed oligonucleotides that can be liberated
via UV light and counted with an Illumina® sequencer. Regions
of interest (ROIs) were chosen after staining for immune cell
marker CD45, vasculature marker αSMA, and epithelial marker
pan-Cytokeratin along with nuclear counterstain DAPI, to
represent areas within the ulcer, at the edge of ulcer and adjacent
non-injured tissue (Fig. 6a, c and Supplementary Fig. 16a, b).
Hierarchical clustering analysis of representative healing and
non-healing specimens revealed dissimilar gene expression pro-
files according to location within the sample: ROIs at similar
dermal depth grouped together. (Fig. 6e, f). The non-healing ulcer
ROI was particularly distinct from neighboring ROIs (Fig. 6e),
while the healing ulcer ROIs appeared more transcriptionally
similar (Fig. 6f). Focusing on the ulcer localized ROIs, DE analysis
from two Healers (9 ROIs in total) and two Non-healers (4 ROIs
in total) showed 148 genes upregulated in Healers and 57 in Non-
healers (Fig. 6g and Supplementary Fig. 16c–f for additional
DFUs). Among the most notable ones, HE-Fibro marker
PLA2G2A and M1 macrophage marker FOS were overexpressed
in Healers (Fig. 6h, i), while M2 macrophage markers TYMP and
ANXA1 were upregulated in Non-healers (Fig. 6j, k). Finally, gene
ontology (GO) enrichment analysis unveiled cellular response to
TNF as top biological function activated in healing ulcers and
myeloid leukocyte migration in non-healing ulcers (Fig. 6l).
Taken together, these findings verify our previous observations at
the protein level and specify the location and functional roles of
cell types reported in our scRNASeq dataset.

To further validate the finding based on spatial profiling that
HE-Fibro mainly form niches in the wound bed to promote
wound healing, we performed scRNASeq analysis on multiple
samples from the same patient. ScRNASeq analysis was
performed on skin specimens of the same patient from three
different sites: wound bed, wound edge, and non-wound excess

Fig. 5 Identification and characterization of distinct subpopulations of fibroblasts with specific gene signature associated with healing DFUs.
a t-distributed Stochastic Neighbor Embedding (t-SNE) analysis depicting 14 sub-clusters of fibroblasts. The sub-clusters enriched in DFU-Healers are
marked with lasso. b Heatmap showing the top highly expressed genes (red) in sub-clusters. c Selected biological pathways that are significantly (P value
<0.01) affected in the healing enriched fibroblasts. The directionality of each pathway is depicted using a pseudo color (red for activated, blue for inhibited).
d Regulators that are significantly activated in the healing enriched fibroblasts. e Heatmap showing the Pearson correlation between ligands from ‘sender’
sub-cluster 3 and target gene expression in ‘healer fibroblasts, i.e., the other HE-Fibro sub-clusters 4, 6, and 13 (left column), and ‘control’ fibroblasts sub-
clusters 0, 2, and 5 (right column). A darker orange color indicates a higher Pearson correlation between the ligand and gene expression within the receiver
cell population. f This heatmap of select ligands expressed by HE-Fibro sub-cluster 3 (rows) to regulate the genes which are differentially expressed by the
‘healer’ fibroblasts (columns). Well-established ligand-target gene interactions shown with a darker shade of purple. g Circos plot displaying the
association between ligands expressed in the sub-cluster 3 (bottom semi-circle) with their targeted differentially expressed genes in sub-clusters 4, 6, and
13. h RNA Velocity plots for DFU-Healer and DFU-Non-healer subsets; black streamline arrows represent predicted direction of cell state change and
trajectories. Larger blue arrows represent overall velocity for each area of the UMAP.
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skin from a pressure sore excision (Supplementary Figs. 17 and
18). The unsupervised analysis and cellular annotation revealed
that HE-Fibro were enriched in the wound bed, but not in the
wound edge and non-wounded samples (Supplementary Fig. 18a).
This unique wound bed enriched cell cluster exhibited signifi-
cantly higher expression of HE-Fibro-associated genes like IL6,
TNFAIP6, MMP1, and CHI3L1 (Supplementary Fig. 18c). The
absence of any other fibroblast cluster for the wound bed sample
suggests that HE-Fibro originate from “normal” fibroblasts. These
results further affirm an association of HE-Fibro with the wound
healing process in an additional type of chronic wound and point
toward heterogeneity of fibroblasts across different regions of
ulcers.

Induced overexpression of CHI3L1 in dermal fibroblasts
influences cell behavior. To explore the effects of inflammatory
marker genes expression in vitro, we selected one of the top
enriched genes CHI3L1 and generated dermal fibroblast cell lines
transduced with lentiviral vectors overexpressing CHI3L1
(CHI3L1-OE) or a control sequence (CTRL). Western blotting
demonstrated a complete lack of expression in untreated cells
and RT-qPCR analyses confirmed a significant upregulation of
CHI3L1 with construct 2 (Supplementary Fig. 19a, b), which we
selected for further experiments. In adhesion assays, more
CHI3L1-OE cells attached to fibronectin-coated surfaces

compared to CTRL (Supplementary Fig. 19c, d), while dimin-
ished migration was observed in scratch wound experiments
(Supplementary Fig. 19e, f). Altogether, these findings shed light
on the potential functional roles of the HE-Fibro, indicating that
they possess enhanced adherent and decreased migratory capa-
cities and suggest that they are firmly anchored on the ECM and
mediate healing through secretion of molecules.

Discussion
In this study, we performed large-scale unbiased scRNASeq to
accurately and systematically profile patients with healing and
non-healing DFUs, together with healthy non-DM subjects, and
DM patients without DFUs, as controls. For a subset of patients,
we also characterized forearm biopsies and PBMCs to evaluate
any potential systemic effects of DM in presence of DFUs. To the
best of our knowledge, we were the first groups to employ this
approach in DFU samples8, and we have now substantially
expanded the number of cells sequenced, and incorporated state-
of-the-art techniques like spatial transcriptomics, in order to gain
novel insights into the transcriptomic landscape of DFU healing.

We identified a hitherto unreported fibroblast cell type asso-
ciated with healing and expressing multiple immune and ECM
remodeling-related genes. We then corroborated the results at the
protein level and with the additional sequencing modality of
spatial transcriptomics, demonstrating their localization within

Fig. 6 Exploring the spatial transcriptome of DFU-Healers and DFU-Non-healers. a, c Representative H&E-stained sections from a (a) non-healing and
(c) healing DFU. Yellow box demarcates the ulcer area and numbered circles the ROIs selected for sequencing. b, d Immunofluorescence staining for HE-
Fibro markers TIMP1 (purple), CHI3L1 (green), and pan-fibroblast marker FAP (red) performed on a serial section from the same sample. DAPI was used
for nuclear counterstain. The location of the image capture is noted with an orange box on (a) and (c). e, f Hierarchical clustering analysis heatmaps depict
the transcriptomic profiles of the selected ROIs. The most highly expressed gene per ROI is highlighted. ROIs were annotated based on their location as
Ulcer (red), Non-Ulcer (green), Ulcer edge (orange), and Epidermis (light blue). Expression levels are shown according to the gradient middle right (blue
low to red high). g Volcano plot showing DE analysis results from ROIs within the ulcer in Healers (2 patients, 9 ROIs) vs Non-healers (2 patients, 4 ROIs).
Each dot represents a gene, with red ones being above the significance threshold. The top five genes are highlighted. h–k Selected notable genes
upregulated in Healers (h, i) and Non-healers (j, k). Data represent mean ± SD from n= 4 ulcer ROIs of 2 Non-healers and n= 9 ulcer ROIs of 2 Healers.
Two-tailed unpaired t-test with Benjamini–Hochberg procedure for adjusted p-values was used to calculate p-values. l GO analysis for biological processes
enriched in Healers (top, red) and Non-healers (bottom, yellow). Stainings were performed three times with two biologically independent patient samples
per group. Scale bars are 1 mm in (a, c) and 100 μm in (b, d).
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the ulcer area. It has become increasingly apparent that dermal
fibroblasts are a diverse and highly heterogeneous population
with different functional roles in wound healing62–66. Fibroblasts
at sites of inflammation, for instance within tertiary lymphoid
structures, have been shown to acquire immune cell features67,
while in murine wounds’ granulation tissue, a large proportion of
fibroblasts is of myeloid cell origin68. A number of studies have
also emphasized the interactions between fibroblasts and mono-
cytes or macrophages in the context of inflammation and wound
healing, implying a reciprocal relationship69–71. Our data suggest
that specific fibroblast subtypes are key players in healing of
DFUs and targeting them could be a therapeutic option.

Mapping the immune landscape of Healers and Non-healers
revealed the presence of more M1 macrophages in Healers and
M2 in Non-healers, as well as higher numbers of naive and
central memory T-cells in Healers, as opposed to more NK and
NKT cells in Non-healers. Accumulating evidence suggests that a
favorable outcome in wound healing is contingent on a highly
regulated balance of macrophage polarized states72. The presence
of more M2 macrophages does not necessarily equate better
healing, as wound repair studies have shown delayed healing in
diabetic73 or wild-type74 mice treated with M2 macrophages.
DFUs are most probably populated both by tissue-resident
macrophages that have differentiated from bone marrow-derived
monocytes with a minimal contribution of yolk sac originating
macrophages75 as well as peripherally recruited monocytes
responding to inflammatory cues and similarly differentiating to
macrophages at the injury site76. To disentangle the admixture of
macrophage subsets in DFUs and fully characterize their origins
and repopulation dynamics, definitive future studies are required
in human skin as has been accomplished in other organs77.

Impairment in the recruitment of macrophages and neu-
trophils in DFUs was recently demonstrated78. A dysregulation in
the differentiation of peripheral blood-derived T cells and
diminished T-cell receptor repertoire diversity has been pre-
viously reported for DFU patients79. The majority of
T-lymphocytes in our study originated from the blood samples,
while macrophages were mostly located at the foot. Interestingly,
in PBMCs of healers, inflammation pathways were mostly
inhibited. These findings underline fundamental differences
between systemic inflammation and the local wound inflamma-
tory milieu. Overall, our results provide further evidence to
support the claim that localized activated inflammatory response
is required to surmount the chronic inflammation in DFUs, and
progress to the next phases of wound healing80,81, while, con-
versely, inhibition of inflammatory processes at the systemic level
appears beneficial for healing. Trajectory analyses and compar-
ison with acute wounds’ gene expression demonstrated that DFU-
Healers had advanced forward in the wound healing process and
therefore the observed differences are not a distinct new pattern
of healing but rather the difference between a dysregulated
chronic inflammatory environment in DFU-Non-healers and
wounds that have progressed to the first (inflammatory) or early
second (proliferative) phases of healing in DFU-Healers.

Future longitudinal studies interrogating DFU samples col-
lected from the same patient over multiple time points in the
course of wound repair82 could help build a map of the diabetic
wound healing timeline. However, considering how technically
challenging it is to consistently achieve high enough quality in
debridement samples for next-generation sequencing83,84, single-
nucleus sequencing could be an alternative and complementary
approach to offer single-cell resolution without relying on highly
viable single-cell suspensions85,86.

In summary, we present a comprehensive characterization of
the DFU ecosystem and report novel cell types and interactions.
Our dataset will be a valuable resource for diabetes, dermatology,

and wound healing research, and can serve as the baseline for
designing in vitro and in vivo experiments for the assessment of
therapeutic interventions focusing on one or more cell types.
Future studies utilizing pre-enrichment via flow or magnetic cell
sorting could further characterize specific populations and lead to
the discovery of rare cells.

Methods
Subjects. Our study includes non-DM patients (n= 10) who underwent foot
surgery for various reasons, such as hallux valgus correction, as the healthy con-
trols, and DM patients without foot ulceration (n= 6) who had similar foot sur-
gery. Discarded skin specimens from the dorsum of the foot were collected for
analysis. We also enrolled DM patients with plantar foot ulceration (DFU)
(n= 11), who underwent surgical resection of the ulcer, providing sufficient wound
and peri-wound tissue for analysis. Subjects with any conditions, other than DM,
or medications that could affect wound healing were excluded from the study. Four
non-DM subjects, two DM patients with no DFU, and five DM patients with DFU
(Healers; n= 3, Non-healers; n= 2) provided two 3-mm forearm skin biopsies and
20 ml of blood, from which PBMCs were isolated, within 1 week of the foot
surgery. DFU patients were followed for 12 weeks post-surgery and were divided
into two subgroups: those who healed their ulcers and those who failed to heal
them (Healers; n= 7, Non-healers; n= 4). Supplementary Dataset 4 includes
clinical details of the subjects included in the study. There were no major differ-
ences among the main biological characteristics of the studied groups (Supple-
mentary Table 2). All patients were enrolled and followed at the Joslin-Beth Israel
Deaconess Foot Center, Boston, MA, and the study was approved by the Beth Israel
Deaconess Medical Center IRB (Reference number 2018P000581). For the
scRNASeq analysis of spatially separated samples, multiple samples were collected
from an ischial pressure sore of one patient at the Yale Plastic and Reconstructive
Surgery – Wound Center, New Haven, CT (collected under IRB approval
1609018360). Informed consent was obtained from all study participants at Beth
Israel Deaconess Medical Center and Yale. For comparative analysis of enrichment
of various healing associated cell types in sequential wound healing samples, we
downloaded microarray burn study data of 5 patients from the ArrayExpress
database, accession ID E-MTAB-1323.

PBMCs isolation. PBMCs were separated using Ficoll-Paque density gradient
fractionation, as previously described87, and cryopreserved in freshly prepared
freezing media (90% FBS and 10% DMSO).

Single-cell preparation from skin samples. Skin specimens were kept in sterile
PBS on ice until processing, normally within 3 h post-surgery. The skin was cleaned
by sequentially immersing in 10% Betadine, 70% ethanol, and PBS for 1 min at a
time. Then it was incubated in 5 mg/ml Dispase II (Thermo Fisher Scientific,
17105041) in HBSS (STEMCELL Technologies, 37150) overnight at 4 °C. The next
day, the epidermis was peeled off using forceps, and the tissue was finely minced
with a No. 10 disposable scalpel. The skin pieces were then placed in an enzyme
cocktail consisting of 3.3 mg/ml Collagenase-P (Roche, 11249002001), 3.3 mg/ml
Dispase II, and 1.5 mg/ml DNase I (STEMCELL Technologies, 07470) in 0.25%
Trypsin-EDTA (Thermo Fisher Scientific, 25200072) and incubated for 90 min at
37 °C with constant shaking, using glass pipettes for trituration every 20 min.
Enzymes were then inactivated with the addition of complete DMEM (+10%FBS,
+1% Pen/Strep). The single-cell suspension was passed through 70 and 40 μm cell
strainers and centrifuged for 10 min, 500 × g at 4 °C. For red blood cell (RBC) lysis,
ACK buffer (Lonza, 10-548E) was added. The process resulted in highly viable,
typically >90%, single-cell suspensions. For immediate single-cell capture, the cells
were resuspended in 0.04% Ultra-Pure BSA in PBS (Thermo Fisher Scientific) and
concentration was adjusted to 1000 cells/µl. If not processing for scRNASeq
immediately, the cells were cryopreserved in freshly prepared freezing media (90%
FBS and 10% DMSO).

Single-cell RNA sequencing. The single-cell preparations of the foot, forearm, and
PBMC samples were used fresh or after thawing of viably frozen samples with final
resuspension in PBS with 1% BSA. A droplet-based ultra-high throughput
scRNASeq system was utilized to capture single cells along with uniquely barcoded
primer beads together in tiny droplets, enabling large-scale parallel single-cell gene
expression studies. The gene expression (GEX) libraries were prepared using the
Chromium 3’V2/3 reagent kits (10x Genomics, 120237 and 1000075). Briefly, gel
bead-in-emulsions (GEMs) were generated and barcoded by loading single-cell
suspensions along with gel beads and reverse transcription (RT) master mix in 10x
Genomics Single cell chip (A chip kit, 120236; B chip kit, 1000153) and running on
the chromium controller (10x Genomics, 110211). Following RT, the cDNA was
amplified and used to generate GEX libraries. The cDNA and GEX libraries were
quantified using Qubit 3.0 fluorometer (Life Technologies, 15387293), and quality
was assessed using HS DNA chips (Agilent technologies, 5067-4627) with 2100
Bioanalyzer (Agilent Technologies, G2939BA). Sequencing was performed using
massively parallel sequencing on the Novaseq S4 platform (Illumina). We produced
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~40,000–50,000 reads per cell capturing the expression of ~1000–2000 transcripts
per cell.

Data processing and analysis. Raw scRNASeq data was demultiplexed, aligned to
the reference human genome (Hg38), and processed for single-cell gene counting
using the Cell Ranger Software from 10X Genomics Inc. The single-cell count data
was normalized using the SCTransform algorithm in Seurat v3.0 Bioconductor
package88 that uses regularized negative binomial models for normalizing sparse
single-cell data. The normalized expression profiles of the samples were merged,
and undergone quality control, pre-processing, unsupervised and supervised ana-
lysis using various R and Bioconductor packages. The quality filtering on
scRNASeq data was performed by multiple filtering parameters including >50% of
mitochondrial genes, cells expressing the lower number of genes (<200 genes), and
genes only uniquely expressed in <3 cells.

The unsupervised analysis using principal component analysis (PCA) was
performed on variable genes to identify principal components, which captured the
most variance across the samples. These principal components were used as an
input for Uniform Manifold Approximation and Projection (UMAP) analysis89 to
determine the overall relationship among the cells. Cells with similar transcriptome
profiles clustered together, and the clusters were subsequently annotated to
different cell types based on the expression of specific well-established cell marker
transcripts. Comparative analysis of the single-cell landscape of healing and non-
healing DFUs, along with healthy non-DM subjects and non-DFU DM patients as
controls, was performed using split UMAP plots, for determining heterogeneity
(based on clusters of cells) and abundance of cell types. The significance testing
change in abundance of cell types across clinical groups was performed either using
one-way ANOVA or Welch’s t-test (p-value < 0.05). Similar analysis was also
performed for the 3 different anatomical sites separately from where the samples
were collected, i.e., foot, forearm, and peripheral blood. To further characterize cell
type-specific differences among clinical groups, we performed comparative
analyses using multiple tests corrected non-parametric Wilcoxon Rank Sum test
(P Adjusted value= 0.01, Fold Change= 1.2) on individual cell types like
fibroblasts, keratinocytes, T-lymphocytes, natural killer cells, monocytes,
macrophages, mast cells, B-lymphocytes, plasma cells, and dendritic cells.

Pathways and systems biology analysis. To precisely characterize the cell types
and understand the molecular mechanism of wound healing, we performed
pathways enrichment and systems biology analysis. The analysis was performed on
transcripts that were significantly dysregulated in the specific cells by comparing
healed vs non-healed samples. Pathways and systems biology analysis was per-
formed using the Ingenuity Pathway Analysis software package (IPA 9.0) (Qiagen).
A detailed description of IPA is available at the Ingenuity Systems’ website (http://
www.ingenuity.com). Systems biology analysis was performed by analyzing the
upstream transcriptional regulators. The regulatory analysis helps in identifying
significantly activated or inhibited transcriptional regulators based on upregulation
or downregulation of its target genes. The significance of transcriptional regulators
activation/inhibition was determined using one-tailed Fisher’s exact test. The
regulators with a p-value <0.01 and absolute z-score 2 were considered statistically
significant.

Ligand and receptor-based cell interaction analysis. NicheNetR60 was used to
identify ligands produced by Healer-specific fibroblasts, which could uniquely
regulate other healer-specific fibroblasts. NicheNetR uses a prior model of ligand-
target interactions derived from a meta-analysis of multiple sources to identify
ligands that may explain expression differences in a given gene set. In this work-
flow, cells are classified as either senders or receivers. The expression of sender cells
is used to identify possible ligands, while the receiver cells are used to generate a
gene set. In this case, Cluster 3 with overexpression of MMP1, MMP3, CHI3L1,
CCL20, and TIMP1 from the Healer-specific fibroblasts was treated as a sender
cluster, while other Healer-specific clusters (Fig. 5; clusters 4, 6, 13) or non-specific
clusters (Fig. 5; 0, 2, 5) were treated as receivers. The gene sets used were the
markers differentially expressed between DFU-Healers and DFU-Non-healer
samples within the receiver subsets. The top markers are combined with Niche-
NetR’s ligand-target weights to compute the Pearson correlation coefficient
between ligands and expression changes in the receiver subset. A high Pearson
correlation coefficient between ligand and target gene set indicates that expression
of ligand might be responsible for expression differences. For a ligand to be con-
sidered for interaction analysis, it must be expressed in at least 5% of the sender cell
population, and its corresponding receptor must be expressed in 5% of the receiver
cell population.

Cellular trajectory and differentiation state analysis. To measure the tran-
scriptional dynamics and characterize differentiation process based on single-cell
data from DFU healers and non-healers, we performed RNA velocity analysis using
the Velocyto90 and scVelo algorithms91. We performed RNA velocity analysis on
HE-Fibro, Fibro, SMCs, M1-Macro, and M2-Macro cells in the DFU-Healer and
DFU-Non-healer subsets of the foot cells. We generated spliced and unspliced
counts using the Velocyto package and merged the data from all patients. This
merged dataset was subsetted to retain only HE-Fibro, Fibro, SMCs, M1-Macro,

and M2-Macro cells from foot samples as they showed significant association with
the wound healing process. Velocity streams and inference of root cells were
generated using scVelo version 0.2.391. This python package uses steady state and
dynamic models to predict cell trajectory and latent time. The RNA velocities were
projected onto a computed UMAP for each subset; the streamline velocity vectors
represent directions and flow of estimated trajectory and differentiation of the cells.
The dynamic model also predicts the latent time of the cells, which represents the
cell’s position in a biological process.

Enrichment of HE-Fibro and Macrophages gene signatures in the temporal
healing data from acute burn wound study. To assess the enrichment of HE-
Fibro and M1 Macrophages in the sequential wound healing samples, we per-
formed external validation using microarray data from a temporal acute burn
wound study. The raw data downloaded from the ArrayExpress database accession
number E-MTAB-1323 contain gene expression data of skin from 5 patients on 6
different time points, pre- and post-burn injury. The R packages beadarray92 and
limma93 were used to pre-process, normalize, and analyze gene expression data.
Gene set enrichment analysis (GSEA) was performed using the GSVA R package94

to compare enrichment of HE-Fibro and M1-Macro gene signatures. These sig-
natures are subsets of differentially expressed genes comparing DFU-Healer and
DFU-Non-healer subsets. The HE-Fibro gene signature used in GSEA analysis
consists of PLA2GA, MMP1, CHI3L1, TIMP1, SFRP4, FTH1, FN1, MT2A, LUM,
CHI3L2, MMP13, HIF1A, CCL20, TPM2, ASPN, MMP3, TNFAIP6, and IL6. The
M1-Macro gene signature consists of IL1B, S100A8, VCAN, BCL2A1, LYZ, S100A9,
TIMP1, C15orf48, SRGN, NFKBIA, BTG1, NAMPT, PLAUR, SAT1, ID2, TYMP,
SLC2A3, SERPINA1, CXCL8, and SOD2.

After calculating enrichment scores of the signatures at each time point for
individual subjects, average enrichment scores and standard deviation of each time
point were calculated. Further statistical significance of changes in the enrichment
score was determined by one-way mixed-effects ANOVA with Bonferroni
corrections.

Immunofluorescence staining and imaging. For confirmation of HE-Fibro pre-
sence, 5-μm-thick frozen sections from healing and non-healing DFUs were fixed
in 80% ice-cold acetone for 10 min, blocked with 5% donkey serum in 0.2% PBS-
Tween for 30 min at room temperature, and incubated overnight in a humidified
chamber at 4 °C with primary antibodies: mouse monoclonal anti-FAP (1:50, clone
F11-24, sc-65398, Santa Cruz Biotechnology), rabbit polyclonal anti-CHI3L1
(1:100, ab77528, Abcam) and goat polyclonal anti-TIMP1 (1:100, AF970, R&D
Systems). Alexa Fluor donkey anti-rabbit 488-, anti-mouse 594- and anti-goat 647-
conjugated secondary antibodies (1:1000 ab150061, 1:500 ab150112, and 1:1000
ab150131, respectively, all Abcam) were added the next day for 1 h at room
temperature. 2-(4-amidinophenyl)-1H-indole-6-carboxamidine (DAPI) was
included for nuclear counterstaining. TrueVIEW Autofluorescence Quenching Kit
(Vector Labs, SP-8400) treatment was employed to enhance staining. Tissue sec-
tions were mounted in ProLong Gold Antifade (Thermo Fisher Scientific, P36930)
and visualized with a Zeiss LSM 880 (Carl Zeiss) inverted confocal microscope and
images processed with ZEN 2011 (Carl Zeiss) and ImageJ/FIJI (NIH) software
packages.

For validation of macrophages and most significant pathways, paraffin-
embedded immunofluorescent staining of healing and non-healing DFUs was
performed. 5-μm-thick sections were deparaffinized, rehydrated and antigen
retrieval was achieved with citrate buffer pH 6.0 in a pressure cooker for 20 min.
The sections were then blocked with 5% donkey serum in 0.2% PBS-Tween for 1 h
at room temperature and incubated overnight in a humidified chamber at 4 °C with
primary antibodies: goat polyclonal anti-IL17 (1:100, AF-317-NA, R&D Systems),
goat polyclonal anti-TNFA (1:50, AF-410-NA, R&D Systems), rabbit monoclonal
anti-HIF1A (1:100, clone EP1215Y, ab51608, Abcam), rabbit polyclonal anti-IL6
(1:100, ab6672, Abcam), goat polyclonal anti-IL1B (1:50, AF-201-NA, R&D
Systems), goat polyclonal anti-S100A8 (1:100, AF3059, R&D Systems), mouse
monoclonal anti-DAB2 (1:50, clone E-11, sc-136964, Santa Cruz Biotechnology),
rabbit monoclonal anti-CD68 (1:100, clone EPR20545, ab213363, Abcam), mouse
monoclonal anti-VIM (1:100, clone V9, MAB3400, Sigma), mouse monoclonal
anti-CD163 (1:20, clone GHI/61, sc-20066, Santa Cruz Biotechnology).
Appropriate admixtures of Alexa Fluor donkey anti-rabbit 488- (1:1000, ab150061)
and 594- (1:500, ab150064), anti-mouse 488- (1:1000, ab150109) and 647- (1:1000,
ab150107), and anti-goat 594- (1:500, ab150132) and 647- (1:1000, ab150131)
conjugated secondary antibodies, all from Abcam, were added the next day for 1 h
at room temperature. DAPI was included for nuclear staining. Sections were
quenched for 5 min using the TrueView Autofluorescence Quenching kit to
decrease background (Vector Laboratories) and covered with anti-fade mounting
medium. Images were obtained at ×20 magnification with an Axio Imager A2
upright microscope using Zen Blue edition software (Zeiss).

CD68/Vimentin (VIM) were used as guide stains to capture images within the
ulcers with similar abundance of positively stained cells. Quantification was
performed on ImageJ/FIJI by counting the number of double-positive CD68 cells
with respective macrophage polarization markers (DAB2, S100A8, IL1B, and
CD163) and dividing by the area of the tissue for normalization; counting the
number of IL17 positive cells per area; computing the percentage of stained area for
TNFA, IL6, and HIF1A. Two measurements were averaged per sample.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27801-8

14 NATURE COMMUNICATIONS |          (2022) 13:181 | https://doi.org/10.1038/s41467-021-27801-8 | www.nature.com/naturecommunications

http://www.ingenuity.com
http://www.ingenuity.com
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1323/
www.nature.com/naturecommunications


Spatial transcriptomics. The spatial transcriptome profiling was performed using
NanoString’s GeoMx Digital Spatial profiling platform on unfixed frozen 5-μm
tissue sections. Samples were processed as follows: (1) 10% neutral buffered for-
malin (NBF) fixation overnight, (2) target retrieval (1X Tris EDTA, pH 9.0 for
20 min), (3) proteinase K digestion (1 µg/mL for 15 min), (4) post-fixation (10%
NBF, Tris-glycine stop buffer), (5) in situ hybridization overnight with the GeoMx
Cancer Transcriptome Atlas probe panel (1800-plex), (6) stringent washes (50:50
formamide/4X SSC), and (7) fluorescent antibody/marker (aSMA, 1:100, Clone:
1A4, Abcam; CD45, 1:100, Clone: 2B11+ PD7/26, Novus; PanCK, 1:50, Clone:
AE1/AE3, Novus) incubation, 1 h at room temperature. Sections were then loaded
onto the GeoMx® Digital Spatial Profiler (Nanostring, GMX-DSP). For profiling,
circular regions of interest (ROIs), ~500 μm in diameter, located within the ulcers
or in neighboring non-ulcerated tissue were selected to include high concentrations
of CD45+ immune cells in close proximity to vessels (αSMA+ structures). After
ROI selection, the GeoMx instrument illuminated each ROI separately with UV
light to cleave, aspirate, and deposit the oligonucleotides from the hybridized ISH
probes for downstream sequencing into a 96-well plate. Library preparation (PCR,
AMPure bead purification) was performed, followed by paired-end sequencing
with an Illumina NextSeq 550. Sequencing data (FASTQs) was then processed with
a custom GeoMx NGS pipeline (DCCs) to be analyzed in part with the GeoMx
Data Analysis Suite. Raw reads were processed for high quality with TrimGalore
and FLASH95. Reads were then aligned to analyte barcode with Bowtie296. PCR
duplicates were discarded using UMI-tools with the Hamming distance set at three.
Poorly performing probes were removed from analysis if they were outliers
(Grubbs test) or had low counts relative to other probes targeting the same gene.
Raw probe count data (up to 5 unique probes per gene) were condensed into gene
level count data and normalized with the quartile 3 gene count value per ROI
individually. Complete-linkage hierarchical clustering was performed on normal-
ized counts and represented by heatmap using the R function pheatmap. Unpaired
t-test with Benjamini–Hochberg procedure for adjusted p-values was used to cal-
culate differentially expressed genes with a threshold p < 0.05. Significantly
expressed genes were entered on Metascape (Version 3.5, http://metascape.org) for
enrichment analysis with Gene Ontology (GO) Biological Processes (Version 2020-
09-16). All genes in the human genome were used as the enrichment background.
P-values were calculated based on cumulative hypergeometric distribution and
Q-values were calculated using the Benjamini–Hochberg procedure for multiple
testing. A term was considered overrepresented when p < 0.01, had a minimum
count of 3 and an enrichment factor >1.5, which is the ratio between the observed
counts and the counts expected by chance. Volcano plot and GO bar graphs were
designed with Prism 8.4.2 (GraphPad).

Cell culture. Normal human dermal fibroblast cells (BJ CRL-2522) were obtained
from ATCC and maintained in Eagle’s minimum essential medium (EMEM)
(ATCC, 30-2003), supplemented with 1% (v/v) penicillin/streptomycin (P/S) and
10% (v/v) fetal bovine serum (FBS) (Sigma-Aldrich, F1435). For passaging, cells at
~80% confluence were detached through a 5- to 10-min incubation with 0.05%
Trypsin/EDTA and further resuspended in complete EMEM. Cells were then
centrifuged at 1200 rpm for 5 min. The cells were replated at a concentration of
6000 cells/cm2 and/or cryopreserved with 90% FBS and 10% DMSO freezing
media. Cells were maintained in 95% O2, 5% CO2 at 37 °C and routinely tested for
mycoplasma contamination (PromoKine, PK-CA91-1096).

Transduction of fibroblasts with Precision LentiORF viral vectors. Cells were
seeded in 6-well culture plate at 150,000 cells per well and pre-incubated with 5 µg/
ml polybrene for 10min at 37 °C. Afterward, cells were incubated overnight with
culture medium containing 5 µg/ml polybrene and the viral particles carrying the
CHI3L1 gene (OHS5899-202624268, Horizon Discoveries) or the positive control
viral particles (OHS5833) at a multiplicity of infection of 10. After removal of the
particles containing medium, cells were incubated in culture medium with 10 µg/ml
Blasticidin to positively select transduced cells. Transduction efficiency was eval-
uated with assessment of GFP expression, for both target and control constructs and
RFP expression, for the control construct, on a K2 Cellometer (Nexcelom
Bioscience) and with live-cell imaging on a Zeiss LSM 880 microscope.

Real-time qPCR. RNA was extracted from 100,000 cells using the miRNeasy Mini
Kit (Qiagen, 217004). RNA quantification was done by using the Qubit RNA BR
Assay kit (Cat. No. Q10210) and the Qubit 3 Fluorometer. cDNA was used at a
concentration of 15 ng/ml from 1 μg of RNA and reverse transcribed with the
miScript II RT kit (Cat No. 218161). RT-qPCR analysis was run for the samples
using a miScript SYBR Green PCR Kit (Cat. No. 218073) on a Stratagene Mx3005P
(Agilent Technologies). Housekeeping gene GAPDH primers were purchased from
Qiagen (Cat. No. QT00079247) and CHI3L1 primers, were obtained from MGH-
HMS primer bank with the following sequences: FW: 5′-GAA GAC TCT CTT
GTC TGT CGG A-3′ and RV: 5′-AAT GGC GGT ACT GAC TTG ATG-3′. Data
were normalized to the expression of GAPDH and were analyzed using the 2−ΔΔCT

method.

Western blotting. 500,000 cells were centrifuged at 130 × g for 5 min at 4 °C,
washed with ice-cold PBS, and centrifuged again at 2400 × g for 5 min at 4 °C.

The pellet was then resuspended in ice-cold RIPA buffer (Prod# 89901) supple-
mented with 10 µl/ml protease and phosphatase inhibitors (Prod# 78430 and
78420) and incubated for 15 min on ice with periodical pipetting and vortexing.
Samples were then centrifuged at 14,000 × g for 15 min at 4 °C and supernatants
were collected. Protein concentration was measured using the Pierce™ BCA Protein
Assay Kit (Cat. No. 23225). The protein samples were reduced by using a 6x
Laemmli buffer, and boiled at 95 °C for 5 min. 30 µg of protein per sample was
loaded into 12% SDS-PAGE gels and run at a constant 200 V for 40 min. The gel
was washed with Tris-buffered saline-Tween 20 (TBST), and incubated in blotting
buffer for 10 min. The transfer ran overnight in a cold room at a constant 90 mA.
Once transfer was complete, the blot was washed in TBST, and blocked with 5%
BSA for 1 h at room temperature. Blot was then incubated in 5% BSA with CHI3L1
(Abcam, ab77528 1:1000) or GAPDH (ab9485, 1:5000) antibodies for 1 h at room
temperature. Afterward, the blot was washed in TBST, and incubated with a sec-
ondary antibody (ab205718 1:10,000) for 1 h at room temperature. Finally, a
chemiluminescent substrate (Cat. #1705062) was added and the blot was visualized
using the ChemiDocTM Touch Imaging System (Bio-Rad). For stripping, the blot
was washed in TBST and incubated in stripping buffer (Prod# 46430) for 45 min at
room temperature. After stripping, the blot was washed with TBST, blocked with
5% BSA for 1 h at room temperature, and reprobed as previously described.

Adhesion assay. Transduced BJ cells were plated at 50,000 cells per well in 12-well
plates pre-coated with 10 µg/ml human fibronectin (Prod# 33016-015) and incu-
bated for 1 h at 37 °C. Afterward, cells were washed with PBS, fixed with 4%
paraformaldehyde for 15 min, and stained with 0.05% crystal violet for 30 min at
room temperature. Pictures of the adherent cells were taken on a Primo Vert
inverted microscope (Carl Zeiss) with an Axiocam 105 camera. Pictures of two
random fields were taken per well, for at least three wells per condition, and cells
were counted using ImageJ/FIJI software. Three independent experiments were
performed.

Scratch assay. Transduced BJ cells were plated at 50,000 cells per well in 24-well
plates. The cell monolayer was scratched in a straight line using a 200 µl pipette tip.
Debris were removed by washing once with media, then cells were incubated in
medium supplemented with 5% FBS throughout the experiment. Images were
taken immediately after the scratch, in 6 h, and in 12 h for four wells per condition.
Scratch areas were analyzed using ImageJ/FIJI. Three independent experiments
were performed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Spatial transcriptomics and scRNASeq data have been submitted to NCBI’s Gene
Expression Omnibus (GEO) and are accessible through GEO accession numbers
GSE166120 and GSE165816. Burn wound gene expression data were downloaded from
ArrayExpress accession number E-MTAB-1323. An interactive data resource and
analytical tool developed based on this DFU single-cell data are available online at
https://bhasinlab.bmi.emory.edu/Diacomp. Source data are provided with this paper.

Code availability
Code for data analyses is described in the “Methods” and is available from the
corresponding authors upon request.
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