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Background: Conserved domains within SARS coronavirus 2 nonstructural proteins represent key targets
for the design of novel inhibitors. Methods: The authors aimed to identify potential SARS coronavirus
2 NSP5 inhibitors using the ZINC database along with structure-based virtual screening and molecular
dynamics simulation. Results: Of 13,840 compounds, 353 with robust docking scores were initially chosen,
of which ten hit compounds were selected as candidates for detailed analyses. Three compounds were
selected as coronavirus NSP5 inhibitors after passing absorption, distribution, metabolism, excretion
and toxicity study; root and mean square deviation; and radius of gyration calculations. Conclusion:
ZINC000049899562, ZINC000169336666 and ZINC000095542577 are potential NSP5 protease inhibitors
that warrant further experimental studies.
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SARS coronavirus 2 (SARS-CoV-2) causes a highly infectious disease called COVID-19, which emerged in
December 2019 [1]. This virus started a global pandemic that has had an exceptionally negative impact on
economies and healthcare systems. Lessons learned from SARS and Middle East respiratory syndrome were not
enough, and weaknesses in healthcare facilities and preparedness for such crises must be improved significantly [2].

Conserved regions within viral nonstructural proteins represent key targets for the design of wide-spectrum
inhibitors [3]. An essential protease for the life cycle of coronaviruses is the NSP5 protease [4]. The NSP5 protease
of human coronavirus HKU1 and human coronavirus OC43 has been shown to aid replication of murine hepatitis
virus A59, a group 2 coronavirus [5], which suggests that the main protease (Mpro) is conserved, with similar
functionality among coronavirus species. In avian gamma coronavirus, NSP5 has RNA-binding properties [6]. These
findings provide novel information about the Mpro of coronaviruses. The NSP5 protease exists in both monomer
and homodimer states, with the latter possessing catalytic activity [7]. In a post-translational modification, the NSP5
Mpro 3C-like protease (3CLpro) cleaves 11 sites in virus-encoded polyprotein 1ab and 1a [8].

The NSP5 protease contains two chymotrypsin-like domains and a unique third domain that might play a role
in the dimerization of the enzyme [9,10]. The dimerization interface of NSP5 protease and its enzyme activity are the
main targets of inhibitors. Targeting serine residues (positions 139, 144 and 147) that are adjacent to the enzyme’s
active site provides an effective approach for inhibiting the dimerization and catalytic activity of NSP5, especially
serine at position 149 [11]. The crystal structure of human coronavirus NL63 with the Michael acceptor inhibitor
N3 offers useful information for designing a broad-spectrum NSP5 inhibitor [12]. In human coronavirus OC43 and
murine hepatitis virus, Y134 is a key amino acid determinant, and novel temperature-sensitive mutations (S133A
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and F219L) have previously been documented [5,10]. The catalytic dyad of NSP5 in coronaviruses involves the
residues His41 and Cys145.

The current treatment protocols include drugs that were designed to treat viral diseases other than COVID-
19 [13–15]. Antiviral agents specific to COVID-19 are indeed a global requirement. The lack of specific antiviral
drugs for combating SARS-CoV-2 has led researchers to conduct randomized clinical trials on COVID-19 patients
using previously approved drugs, such as HIV protease inhibitors [16]. In this study, the authors aimed to screen the
ZINC database for potential NSP5 protease inhibitors using structure-based virtual screening and then evaluate
them using molecular dynamics (MD) simulations.

Methods
Database used
The ZINC database is used to screen for chemical compounds with inhibitory potential against enzymes and other
targets in a specific fashion [17,18]. A comprehensive library of antiviral compounds containing 13,840 potential
antiviral phytochemicals and synthetic compounds was generated from the ZINC database using multiple ligand
file formats (e.g., .sdf ). Adjustment of hydrogens and lone pairs was allowed for all molecules, and charges were
performed using Merck molecular force field 94x when required. After protonation of the molecules and by using
a root mean square (RMS) gradient of 0.1 kcal/mol/Å, geometry minimization was performed on the molecules
to optimize the arrangements [19]. Following molecule optimization, the file was saved in .mdb format (molecular
operating environment [MOE] database) for subsequent virtual analysis.

Structure-based virtual screening
The complex structure of SARS-CoV-2 NSP5 protease with boceprevir provides a basis for the detection of lead
inhibitors via screening in silico. To perform virtual screening, an in-house database of potential binding compounds
was utilized for molecular docking simulations via the MOE software [20] suite 910. The SARS-CoV-2 3CLpro
model (Protein Data Bank [PDB] ID: 7brp, chains A and B) was used for molecular docking. PDB code 7brp is
a polyprotein replicase with a resolution of 1.80 Å that cleaves the C-terminus at 11 sites. The boceprevir ligand
of 7brp was used as a control. To increase the selectivity of the compounds, MOE was used to dock the selected
hits at the Mpro binding site. Before the preliminary docking protocol was applied, the selected ligand was removed
from the complex protein crystal structure, and the docking protocol was then repeated on the protein binding
site, thus validating the procedure. The RMS deviation (RMSD) between cocrypted and redocked ligands was
measured using MOE scientific vector language script at 1.86 Å [21]. The docking was successful in reproducing a
determined binding mode for the intended protein–ligand complex.

The target protein’s crystal structure was protonated using the Protonate 3D method [22], and energy minimization
was accompanied by the MOE-implemented AMBER12 force field. To specifically identify the active site, the grid
was set to match hits in the PDB. The triangular matcher algorithm was used as a placement method during docking.
The London dG scoring and generalized Born volume integral/weighted surface area dG rescoring functions were
also used. In a given binding site, all compounds were docked. Next, a protein–ligand interaction fingerprint (PLIF)
module in MOE was applied to fingerprint the binding interaction of crucial residues between compounds and
protein. More associations and binding poses were inspected visually using MOE 2015.10 (Chemical Computing
Group, Montreal, Canada). Based on the binding profiles, five compounds from the authors’ database were subjected
to MD simulation.

PLIF analysis
PLIF analysis was performed using the PLIF module in MOE 2015.10. This analysis provides valuable information
regarding protein–ligand interactions by converting 3D structural binding information into a 1D binary string [23].
Protein preparation steps were first performed on the five selected proteins. These steps included the addition of
hydrogen atoms, bond order assignments, disulfide fixation and protonation state assignment followed by energy
minimization, which was performed utilizing the AMBER10:extended Hückel theory force field, followed by
superposing the protein structures. Finally, the interaction fingerprints were generated by labeling all common
binding site residues in the five proteases. These fingerprints provide valuable information that can be used for
pharmacophore model generation, virtual screening and clustering.
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MD simulations
MD simulation was performed using the NAMD engine [24], which is integrated into the MOE software. The
AMBER12:extended Hückel theory all-atom optimized potentials for liquid simulations force field (group II ion
and group VIII parameters) [25] was applied, as it is often used to describe macromolecular systems. The system was
solvated and neutralized by adding Cl- or Na+ ions and water molecules, and the total number of solvent molecules
was 9295 (equivalent to 1.023 g/cm3). A periodic boundary condition was utilized, and the box size was 38.29
× 38.44 × 26.57 Å. Following steepest descent geometry optimization, an equilibration of 100 steps was done in
the constant pressure/constant temperature/constant number of particles ensemble with particle mesh Ewald for
efficient full electrostatics. The SHAKE algorithm was utilized to ensure equilibrium values for all bonds involving
hydrogen atoms [26]. Finally, the whole system was subjected to MD production runs at a temperature of 300 K
for 100 ns in the absolute temperature/number of particles/volume ensemble.

For the last 100-ns MD production round, an integration time step of 2.0 fs was carried out, and the trajectories
were captured after every 1 ps. The simulation analysis and visualization molecular dynamic tool use graphic
processing units to accelerate the calculations. To predict the grounds for compound stability, RMSD, RMS
fluctuation (RMSF), radius of gyration (RoG) and hydrogen bond stabilization were determined in the simulated
systems. Prism 8 (GraphPad Software, CA, USA) was used to plot the graphs.

Free energy calculations
Calculations of the binding free energy for the ligand-protein complex were estimated from the MD production
trajectories. The molecular mechanics-generalized Born surface area/molecular mechanics-Poisson–Boltzmann
surface area approach incorporated into AmberTools20 was utilized for the free energy calculations [27]. The
following method was carried out to estimate the binding free energy (�Gbind) within each ns [28]:

�Gbind = Gcomplex − Greceptor − Gligand (Eq. 1)

The absolute free energy (G) for every case of the complex, receptor and ligand was calculated utilizing the formulas:

G = EMM + Gsol − TS (Eq. 2)

Gsol = Gsol−ele + GSASA (Eq. 3)

in which EMM is the molecular mechanics energy (sum of internal, electrostatic and van der Waals energy terms),
Gsol is the desolvation free energy, Gsol-ele is the electrostatic solvation component and GSASA is the non-electrostatic
solvation component. Runs of 100 ns were utilized for normal mode calculations for amino acid residues around
the ligand of less than 12 Å.

Absorption, distribution, metabolism, excretion and toxicity studies
Absorption, distribution, metabolism, excretion and toxicity (ADMET) characteristics were foreseen using the
ADMET descriptors in BIOVIA Discovery Studio 4.5 (Dassault Systèmes, Accelrys, CA, USA). This module uses
six mathematical models to properly quantify and predict ADMET properties [29]. The ADMET absorption model
can predict human intestinal absorption (HIA) after oral administration. The 95% and 99% confidence ellipses
in the ADMET 2D polar surface area (2D PSA) and ADMET AlogP98 plane define the absorption levels of
the HIA model [30]. The ellipses highlight the domains where compounds with excellent absorption are likely to
be selected. The upper limits of the 2D PSA values for the 95% and 99% confidence ellipsoids are 131.62 and
148.12, respectively. The ADMET aqueous solubility model predicts the solubility of each compound in water at
25◦C. This model is based on a genetic partial least squares method using 784 compounds in which solubility was
measured experimentally [31].

The ADMET blood–brain barrier (BBB) model predicts the BBB penetration of a ligand following oral ad-
ministration. This model originated from a quantitative linear regression study to predict BBB penetration and
the 95% and 99% confidence ellipses analogous to those of HIA in the plane of ADMET 2D PSA and ADMET
AlogP98. These values were obtained from many molecules that enter the CNS following oral administration [32].

An ADMET plasma protein binding model was used to predict whether a compound has high binding charac-
teristics to blood carrier proteins. Calculations are based on AlogP98 and 1D symmetry to two marker compounds.
One group is used to mark the binding at a level of ≥90%, whereas the other group flags the binding at a higher
level of ≥95%. The predicted binding affinity is modulated based on the situations used to calculate logP [33]. The
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Figure 1. Yellow native co-crystallized ligand and red
docked ligand.

ADMET CYP2D6 binding model predicts the inhibition of the cytochrome P450 2D6 enzyme using probability
speculation and the 2D chemical structure. These predictions are based on a training set of 100 molecules that
have CYP2D6 inhibition characteristics. The ADMET hepatotoxicity model predicts the potential human liver
toxicity of many miscellaneous compounds. The predictions are based on a model-based recursive partitioning of
382 training compounds that are toxic to the liver. Liver toxicity occurs as a result of a reaction to certain substances
or drugs and can be characterized by neoplasia or elevated aminotransferase levels in a dose-dependent manner in
>10% of the human population [34].

Results & discussion
Validation of the docking procedure
The first step in the docking study was assessing the MOE-Dock program accuracy. This was performed by
extracting the co-crystallized ligand from the active site and redocking within the inhibitor’s binding cavity of the
NSP5 protease. Initially, the RMSD value was found to be 1.86 Å (Figure 1), proving that the authors’ docking
procedure was valid for the studied inhibitors [35] and the MOE-Dock method was thus valid for docking these
inhibitors.

Coronavirus Mpro & SARS-CoV-2 Mpro inhibition
According to a previous study [20], the mechanism of inhibition of boceprevir was determined in the crystal structure
of SARS-CoV-2 Mpro–boceprevir through studies of this complex at a resolution of 2.1 Å. Only one polypeptide
was found in the asymmetric array. Nevertheless, two polypeptides, protomers A and B, were shown to be connected
by a twofold crystallographic axis of symmetry to form a dimer (Figure 2A). On the electron density maps, residues
1–306 were visible. There were three domains within the promoter (Figure 2B). Residues 8–101 formed the first
domain (domain I), whereas residues 102–184 formed domain II. Both domains were shown to have an antiparallel
β-structure. Residues 201–303 formed domain III and were composed of five α-helices arranged in antiparallel
spherical symmetry as well as a spacer region of short length (residues 185–200) that connected domain III to
domain II. In addition, 3CLpro has a Cys-His dyad, which was found in the groove between domains I and II. In
the proteolysis process, cysteine thiol serves as a nucleophile [20]. Proteolysis is initiated upon NSP5 binding with
its peptide-like substrates in the S1 pocket to form a replication–transcription complex [36,37].

Coronavirus utilizes chymotrypsin-like activity as well as papain protease to treat and cleave viral long polyprotein
precursor to afford independent functional nonstructural proteins [38]. Proteases of coronavirus species have several
conserved domains. The locations of the intended subsite amino acids in the enzyme active site are known as S1,
S1′, S2, S3 and S4 (Figure 3A) [39,40]. In the NSP5 active site region, Cys145, Gly143 and Ser144 contribute
the S1′ residues, which also serve as oxyanion holes. The S1 group contains His163 residue, whereas Glu166 and
Gln189 are located at the S2 position. The S3 subsite is completely exposed to the solvent [36,41]. Finally, the S4
site was made up of amino acids with bulky side-chains i.e. Gln189 and Pro168 (Figure 3B) [42].

PLIF analysis
As seen in Figure 4, an automatic visualization of the crucial interactions with the residues was constructed
through the utilization of PLIF analysis. The fingerprint bits showed several interactions, including ionic and
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Figure 2. Crystal structure of SARS coronavirus 2 main protease–boceprevir. (A) Three domains of main protease
with boceprevir. (B) Structural characteristics of SARS-CoV-2 Mpro monomer. The active site, which consists of the
Cys-His dyad, lies at the interface of domains I and II. Dimerization of the protein is controlled by the linker that joins
domains II and III.

surface interactions and side chain acceptor and backbone acceptor interactions. Nevertheless, the fingerprint bits
revealed some important residues, such as Thr26, His41, Ser46, Met49, Leu141, Asn142, Gly143, Cys145, His164,
Met165, Glu166, Leu167, Arg188, Gln189, Thr190, Ala191 and Gln192, that contributed to the protein–ligand
interaction.

Within all complexes, His41 and Cyc145 demonstrated surface and side chain interactions, respectively. In
addition, Cys145 was shown to display side chain acceptor, bond donor and backbone acceptor interactions in
most of the complexes. Finally, the aromatic ring in His41 caused surface interactions with the ligands.

Structure-based virtual screening
The antiviral compound library was utilized for structure-based virtual screening for SARS-CoV-2 Mpro. The
process relies on the determination of computationally suitable molecules in the 3D structure and active site of
the target protein, after which these compounds are ranked according to their interaction profiles. The interaction
profiles were studied using molecular docking that was carried out on NSP5 (PDB ID: 7brp) using MOE 2015.10.

The binding site of NSP5 contains a conserved Cys145 and His41 catalytic dyad with other hot spot amino
acids, such as residues Met165, Glu166, Gln189 and Thr190 [19]. The docking, which is used to filter the prepared
database, relies on predicting possible chemical probes with highest binding affinity to those active site residues.
To cover all of the active site residues, the ligand (boceprevir) was used as a template. Of the 13,840 compounds
docked, the authors selected 353 compounds with substantial affinities that achieved docking scores of less than
-12.0.

future science group 10.4155/fmc-2020-0380
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Pro168

Figure 3. Main protease active site. Surface
representation shows the binding pocket of NSP5
protease. (A) Substrate-binding subsites of SARS-CoV-2
NSP5 (S1′, S1, S2, S3 and S4) (Protein Data Bank ID: 7brp).
(B) The key amino acids of the binding site are indicated
in red (S1′), green (S1), blue (S2), purple (S3) and yellow
(S4).

The PLIF module in MOE was used to analyze the interactions between the active site residues and selected
candidate compounds. The results of candidate compound selection revealed hydrogen bond interactions with
the catalytic dyad. Therefore, among the 353 compounds, ten hits were selected based on the significance of the
interactions with the catalytic dyad and other active site residues. The docking scores indicated that compound
ZINC000095542577 showed the highest binding affinity compared with the others (-16.499 kcal/mol) (Figure 5).
The authors observed significant interactions of all ten selected compounds via the Cys145 and His41 catalytic
dyad with residues of the S1–S4 subsite pocket (Table 1). To determine the stability of the selected compounds,
MD simulation of the selected hits was carried out.

MD simulation
MD simulation is a solid method for studying conformational stability and protein dynamics. Five systems
were selected for 100-ns simulation studies: ZINC000169336666, ZINC000049899562, ZINC000095539404,
ZINC000028387333 and ZINC000095542577.

Binding free energy
By utilizing the MMPBSA.py method, binding free energy calculations were performed using the default settings.
Table 2 shows the total binding free energy values for the final 20 ns of simulations as well as the energy contri-
bution of each component. The results showed that ZINC000028387333 had a higher binding affinity for Mpro.
Nevertheless, the higher binding affinity for compound ZINC000028387333 resembled the binding affinity for
the reference compound. These results are consistent with the molecular docking studies. In fact, all compounds
displayed higher affinity for Mpro, but the affinity was less than that observed for ZINC000028387333. Elec-
trostatic interactions predominated the total binding energy of compound ZINC000028387333 to the target
than van der Waals interactions. However, van der Waals interactions predominated the binding energy for all
the remaining complexes as well as boceprevir. The nonpolar solvation energy was similar in all complexes and
favorable for binding, but the polar solvation energy was similar in ZINC000049899562, ZINC000169336666
and ZINC000095539404 complexes and dissimilar in ZINC000095542577, ZINC000028387333 and bo-
ceprevirmds complexes.
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Table 1. ZINC codes, chemical structures and interaction scores of the ten hits.
No. ZINC code Structure Interaction score

(kcal/mol)
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Table 1. ZINC codes, chemical structures and interaction scores of the ten hits (cont.).
No. ZINC code Structure Interaction score

(kcal/mol)
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Table 1. ZINC codes, chemical structures and interaction scores of the ten hits (cont.).
No. ZINC code Structure Interaction score

(kcal/mol)

10 ZINC000095542577 -16.50

Table 2. Predicted binding free energy and individual energy components for the studied molecules.
Compound MM energy components (kcal/mol) GBSA energy components (kcal/mol)

� Evdw � Eele � GSASA � G sol � G binding-GBSA

ZINC000095542577 -52.613 -66.358 -8.125 85.663 -110.413

ZINC000049899562 -48.30 -37.698 -7.124 57.688 -112.152

ZINC000169336666 -40.339 -34.994 -5.880 55.310 -102.553

ZINC000095539404 -42.475 -36.216 -6.430 57.941 -103.070

ZINC000028387333 -48.876 -65.359 -7.826 77.611 -123.322

Boceprevir -52.262 -26.080 -7.475 -3.126 -125.256

GBSA: Generalized Born surface area; MM: Molecular mechanics.

RMSD analysis
RMSD provides information about the overall stability of a protein complex with regard to variance from the
initial structure. All selected systems were considerably stable, with an estimated RMSD of about 1.4 Å (Figure 6).
Upon estimation of the average variance, ZINC000095542577, ZINC00000049899562, ZINC00016933666
and ZINC000028387333 demonstrated overall RMSDs of 1.472, 1.410, 1.379 and 1.359 Å, respectively, with
a slight Cα backbone fluctuation of about 5000 ps that was stabilized in the remaining simulations. The study
of the Cα backbone RMSD of ZINC000095539404 yielded average RMSDs of 2.1432 Å. However, a tendency
toward a slight drop was observed from 5000 to 8000 ps and was accompanied by significant variation, which
indicated stability of the complexes. At 1000 and approximately 4000 ps, a marginal fluctuation was observed,
which stabilized during the simulation. The data showed that all systems had stable internal motion.

RMSF analysis
RMSF of protein residues demonstrated a small amount of fluctuation on the backbone residues when binding
the compound to the Mpro target. The RMSD values were determined by the least square fitting to the initial
structure as a reference frame running over 100 ns trajectory. When no ligand was bound, the RMSF values of
the Mpro protein residues were compared with the reference (Figure 7). Throughout all systems, the loop region
fluctuated to a certain degree, whereas active residue regions remained unchanged during the simulation process.
The results showed that the interaction of all five hits with the target protein led to their stabilization. Binding
of the five chosen compounds in the active site domain caused a decrease in fluctuations with respect to protein
structure fluctuations on the loop, whereas binding in the active site domain of all chosen compounds did not
result in additional fluctuations in the protein structure. In addition, these fluctuations were observed primarily on
the third to sixth and eighth helices. It can be assumed that no backbone conformational changes took place in the
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Figure 4. Overall protein–ligand interaction fingerprint analysis of 3C-like protease. (A) Matrix display of protein–ligand interaction
fingerprint analysis results as a barcode. (B) Frequency of occurrence of fingerprint bits.

Mpro during ligand binding. Furthermore, the active binding domain was on the second, third, eighth and ninth
helix regions. Notably, a sharp peak was seen most significantly on the close residue from 142 to 164.

RoG & binding analysis of different ligands with Mpro

RoG after ligand binding provides information about the folding of the protein structure. Consequently, RoG was
evaluated to assess the system’s compactness over time. Less compact protein (less folded) with high conformational
entropy was seen with higher RoG values, whereas more folded protein with higher structural stability was associated
with low RoG values. As shown in Figure 8, the average gyration scores of all systems were between 21.5 and 24 Å
(Table 3). The simulation data revealed that all of the systems were compact, suggesting that the systems converged
well.
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Figure 5. ZINC000095542577 lead compound interaction with SARS coronavirus 2 main protease enzyme. (A) 3D
view of Mpro interaction with the lead compound. Green residues represent the lead compound involved in hydrogen
bonding. (B) 2D view of Mpro interaction with the lead compound.
Mpro: Main protease; SARS-CoV-2: SARS coronavirus 2.

A simulation of hydrogen bond stability was conducted to further validate the stability of the hit compounds.
This was performed by calculating all possible hydrogen bond donors and acceptors in the active site domain of
the 3CLpro protein. The hydrogen bond formations between the donors and acceptors were subjected to a fixed
geometric criterion of ≤3.5 Å and a fixed angle of 30◦ between the donors and acceptors. Figure 9 shows the
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Figure 7. Calculation of the simulated systems of amino acid residues fluctuation (root mean square fluctuation).

Table 3. Average gyration scores for selected compounds.
Compound Average gyration score

Protein backbone 22.099 ± 0.126

ZINC000169336666 22.006 ± 0.100

ZINC000028387333 22.249 ± 0.113

ZINC000095539404 22.187 ± 0.123

ZINC000049899562 21.890 ± 0.146

ZINC000095542577 21.984 ± 0.104

Boceprevir 22.154 ± 0.111
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Figure 8. Measurement of radius of gyration of the
simulated systems as a function of time.

Table 4. Average root mean square deviation for selected compounds.
Compound Average RMSD

Protein backbone 1.939 ± 0.225

ZINC000169336666 1.786 ± 0.442

ZINC000028387333 1.922 ± 0.300

ZINC000095539404 1.760 ± 0.290

ZINC000049899562 1.731 ± 0.225

ZINC000095542577 1.924 ± 0.249

Boceprevir 1.337 ± 0.243

RMSD: Root mean square deviation.

hydrogen bond formation between the hit compounds and the active residues, which were completely preserved
during the MD simulation run. As shown in Figure 8, a maximum of 16 hydrogen bonds were observed for
ZINC000028387333 with the 3CLpro protein. Compound ZINC000095542577 also preserved 15 hydrogen
bonds within the active site domain. In addition, compounds ZINC000049899562, ZINC000095539404 and
ZINC000169336666 maintained 14 hydrogen bonds within the active site domain. In addition to the stability of
the hydrogen bond formations, compounds ZINC000169336666, ZINC000049899562, ZINC000095539404,
ZINC000028387333 and ZINC000095542577 showed smaller RMSDs of around 1.79, 1.73, 1.76, 1.92 and
1.92 Å, respectively (Table 4). The findings demonstrated that the binding of these five compounds to the active
amino acids was located predominantly in the loop region, with some of the compounds present in the active
pockets. The screening hits for this study resulted in a diversity of chemical compounds.

ADMET study
Pharmacokinetics and toxicity effects play essential roles in choosing lead compounds and designing safe and
effective compounds. Therefore, ADMET properties of the selected candidates were analyzed. To determine the
compounds’ drug-like properties, Lipinski’s rule of five [43] and Veber rules [44] were applied (Tables 5 & 6). As
depicted in Table 5, BIOVIA Discovery Studio 4.5 was used to determine the ADMET parameters. Furthermore,
an ADMET plot was constructed using the calculated AlogP98 versus 2D PSA. The plot indicated the confidence
level of the predictions for the HIA and BBB penetration models. As shown in Figure 10, the plot that corresponded
to the HIA and BBB penetration models demonstrated two analogous 95% and 99% confidence ellipses. The
PSA value of a given compound was inversely proportional to the HIA value of any compound and thus displayed
an inverse relationship with cell wall permeability [32]. AlogP98 was shown to be lipophilic. Moreover, since the
value is a ratio, it can be used to estimate a compound’s hydrophilicity and hydrophobicity. As a result, the
hydrogen-bonding characteristics determined by calculating PSA may play a crucial role along with the AlogP98
calculation [30]. The ellipse with 95% confidence indicated a chemical boundary that included compounds with
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Figure 9. Stabilization of hydrogen bond over a 100-ns production run.

high absorption (90%). By contrast, the ellipse with 99% confidence showed the region of chemical boundary with
compounds that had excellent absorption through the cell membrane. The criteria of PSA <140 Å2 and AlogP98
<5 should be fulfilled by any compound with optimum cell permeability.

Compound ZINC000029040250 was selected for the ADMET study and showed good HIA (ab-
sorption level 0). Compound ZINC000003583397 showed moderate absorption, whereas compounds
ZINC000014945752, ZINC000014907365 and ZINC000028387333 had low absorption. The remain-
ing compounds exhibited very low absorption. When investigating aqueous solubility, ZINC000095543045,
ZINC000169336666, ZINC000049899562 and ZINC000095542577 showed extremely low aqueous sol-
ubility. Compounds ZINC000003583397 and ZINC000014945752 had low aqueous solubility. Com-
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Table 5. Absorption, distribution, metabolism, excretion and toxicity values of selected compounds.
Compound Absorption

level
CYP2D6 Hepatotoxicity PPB Solubility

level
Solubility BBBP level AlogP98 2D PSA

ZINC000095542577 3 0 True 0 0 -15.7 4 2.756 384.46

ZINC000028387333 2 0 False 0 3 -3.91 4 5.346 104.68

ZINC000095536495 3 0 True 1 3 -3.91 4 6.639 179.94

ZINC000029040250 0 0 False 0 4 -1.75 3 1.03 89.97

ZINC000003583397 1 0 True 1 2 -4.22 4 1.976 139.41

ZINC000049899562 3 0 True 0 0 -9.61 4 3.392 295.78

ZINC000169336666 3 0 True 0 0 -9.35 4 3.009 283.89

ZINC000014945752 2 0 True 1 2 -4.97 4 4.235 136.58

ZINC000014907365 2 0 False 1 3 -3.14 4 4.372 141.87

ZINC000095539404 3 0 True 0 0 -15.6 4 2.756 384.46

AlogP98 must be �5 for good BBB absorption. Drug absorption values: 0 = good, 1 = moderate, 2 = low, 3 = very low and 4 = undefined. Hepatotoxicity indicates drug toxicity by predicted
classes: false = nontoxic and true = toxic. CYP2D6 determines the inhibitory effect by known classes: 0 = noninhibitor and 1 = inhibitor. PPB: true = binding and false = nonbinding.
Solubility predicts molar solubility of drugs with different ranges: level 0 or log(Sw) �-8.0 = extremely low; level 1 or -8.0 �log(Sw) �-6.0 = no, very low, but possible; level 2 or -6.0
�log(Sw) �-4.1 = yes, low; level 3 or -4.1 �log(Sw) �-2.0 = good solubility; level 4 or -2.0 �log(Sw) 0.0 = optimal solubility; and level 5 or 0.0 �log(Sw) = no, too soluble.
ADMET: Absorption, distribution, metabolism, excretion and toxicity; BBB: Blood–brain barrier; BBBP: Blood–brain barrier permeability; CYP2D6: Cytochrome P2D6; PPB: Plasma protein
binding; PSA: Polar surface area.

Table 6. Physicochemical properties of ZINC compounds based on Lipinski’s rule of five.
Compound logP Molecular

weight
Num H acceptor Num H donor Molecular fractional

PSA
Num ring Num rotatable

bond

ZINC000095542577 2.756 788.573 22 13 0.538 5 13

ZINC000028387333 5.346 633.776 5 3 0.159 6 13

ZINC000095536495 6.639 766.922 8 6 0.218 4 21

ZINC000029040250 -1.675 322.399 5 3 0.245 1 9

ZINC000003583397 2.204 421.812 7 4 0.434 3 6

ZINC000049899562 3.392 722.602 17 10 0.448 6 6

ZINC000169336666 3.009 720.587 17 9 0.445 7 3

ZINC000014945752 4.235 620.737 7 4 0.22 7 8

ZINC000014907365 4.372 554.674 7 4 0.238 3 16

ZINC000095539404 2.756 788.573 22 13 0.538 5 13

Num H Acceptor: Number of hydrogen bond acceptors; Num H Donor: Number of hydrogen bond donors; Num Hring: number of rings; Num rotatable bond: Number of rotatable
bonds; PSA: Polar surface area.

pounds ZINC000028387333, ZINC000095536495, ZINC000049899562, ZINC000169336666 and
ZINC000095539404 showed good aqueous solubility. Compound ZINC000029040250 showed optimal solu-
bility. Compounds ZINC000095542577, ZINC000095536495, ZINC000003583397, ZINC000049899562,
ZINC000169336666, ZINC000014945752 and ZINC000095539404 showed probable hepatotoxicity. Com-
pounds ZINC000028387333, ZINC000029040250 and ZINC000014907365 showed no hepatotoxicity. Com-
pound ZINC000029040250 demonstrated low plasma protein binding (level 3), whereas the other compounds
showed undefined plasma protein binding (level 4). All selected compounds, with the exception of compounds
ZINC000029040250 and ZINC000003583397, were found to be outside of the AlogP98 versus 2D PSA con-
fidence ellipse. All selected compounds, with the exception of ZINC000029040250 and ZINC000003583397,
fell outside the ADMET model ellipse filter, suggesting low intestinal absorption and BBB penetration capability.
Figure 9 presents a plot of PSA and AlogP for selected compounds.

Conclusion
SARS-CoV-2 Mpro is an interesting target for drug discovery. Several diverse compounds have been screened to
explore SARS-CoV-2 Mpro inhibition utilizing pharmacophores [45], natural and bioactive compounds [46,47] as
well as peptidomimetic inhibitors [48]. Based on the crystal structure of SARS-CoV-2 NSP5 protease, the ZINC
database, which contains potential antiviral compounds, was virtually screened for potential NSP5 inhibitors. After
the initial selection of 353 compounds out of 13,840, ten compounds were chosen using a PLIF approach, and
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Figure 10. Polar surface area versus AlogP for the selected hits demonstrating the 95% and 99% confidence
threshold ellipses aligned with intestinal absorption and blood–brain barrier.

five compounds were finally identified. The interaction between SARS-CoV-2 NSP5 and the selected hits was
evaluated using MD simulation. RMSD and RMSF analyses and RoG calculation have all been used to analyze
known antiviral drugs [19]. However, in this study, we used the ZINC database to virtually screen anti-NSP5
compounds.

Overall, this type of screening is valuable in the search for novel medicines. SARS-CoV-2 NSP5 is
conserved compared with many mutated amino acids, including M902I, T6891M, S221W (GenBank
MT039890.1); S247R (MT007544.1); I476V, P2079L, T5538I, A930V (MT050493.1); L3606F (MT276597.1);
P1921S (MT121215.1); H3076Y (MT066176.1); G818S, F4321L, F797C (MT093571.1); P5828L, Y5865C
(MT163719.1); and F3071Y (MT198652.2). Among the vast majority of SARS-CoV-2 isolates, NSP5 showed no
mutation; however, the Vietnamese isolate (02Shuman2020VNM; National Center for Biotechnology Information
reference: MT192773.1) showed R60C mutation.

To recapitulate, it can be concluded that compounds ZINC000049899562, ZINC000169336666 and
ZINC000095542577 may act as anti-coronavirus agents. Computational studies proved that these compounds
have great medicinal and pharmacological actions. Further experimental studies are needed to confirm these
findings.

Future perspective
The current study demonstrates the utilization of computer modeling and simulation for the field of drug discovery
and development. The current COVID-19 pandemic continues to challenge health and economy. In addition,
coronaviruses are well known for their ability to mutate and resist treatments and vaccines. Our study has aided
in the identification of several potential anti-COVID-19 hits that can be considered the first step in developing
potent antiviral drugs.
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Summary points

• SARS coronavirus 2 (SARS-CoV-2) main protease is an interesting target for drug discovery.
• Computer modeling and simulation aided the discovery of potential hits.
• The ZINC antiviral database contains different chemical scaffolds.
• Virtual screening of the ZINC antiviral database yielded several hits with excellent binding interaction with the

SARS-CoV-2 main protease.
• Molecular docking analysis aided in the identification of the potential hits.
• Molecular dynamics simulations were utilized to further analyze the hits.
• Three compounds with high binding interaction with NSP5 have been discovered.
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